Merge branch 'linxj' into 'develop'

format code

See merge request jinhai/vecwise_engine!10
pull/3/head
xiaojun.lin 2019-03-26 14:53:38 +08:00
commit 77a0880a5c
9 changed files with 63 additions and 143 deletions

View File

@ -1,10 +1,12 @@
from engine.retrieval import search_index
from engine.ingestion import build_index
from engine.ingestion import serialize
import numpy as np
class Singleton(type):
_instances = {}
def __call__(cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
@ -12,7 +14,7 @@ class Singleton(type):
class Scheduler(metaclass=Singleton):
def Search(self, index_file_key, vectors, k):
def search(self, index_file_key, vectors, k):
# assert index_file_key
# assert vectors
assert k != 0
@ -20,7 +22,6 @@ class Scheduler(metaclass=Singleton):
query_vectors = serialize.to_array(vectors)
return self.__scheduler(index_file_key, query_vectors, k)
def __scheduler(self, index_data_key, vectors, k):
result_list = []
@ -35,18 +36,35 @@ class Scheduler(metaclass=Singleton):
if 'index' in index_data_key:
index_data_list = index_data_key['index']
for key in index_data_list:
index = GetIndexData(key)
index = get_index_data(key)
searcher = search_index.FaissSearch(index)
result_list.append(searcher.search_by_vectors(vectors, k))
if len(result_list) == 1:
return result_list[0].vectors
total_result = []
return result_list; # TODO(linxj): add topk
# result = search_index.top_k(result_list, k)
return result_list
# d_list = np.array([])
# v_list = np.array([])
# for result in result_list:
# rd = result.distance
# rv = result.vectors
#
# td_list = np.array([])
# tv_list = np.array([])
# for d, v in zip(rd, rv):
# td_list = np.append(td_list, d)
# tv_list = np.append(tv_list, v)
# d_list = np.add(d_list, td_list)
# v_list = np.add(v_list, td_list)
#
# print(d_list)
# print(v_list)
# result_map = [d_list, v_list]
# top_k_result = search_index.top_k(result_map, k)
# return top_k_result
def GetIndexData(key):
return serialize.read_index(key)
def get_index_data(key):
return serialize.read_index(key)

View File

@ -9,11 +9,10 @@ class TestScheduler(unittest.TestCase):
def test_schedule(self):
d = 64
nb = 10000
nq = 100
nq = 2
nt = 5000
xt, xb, xq = get_dataset(d, nb, nt, nq)
file_name = "/tmp/faiss/tempfile_1"
file_name = "/tmp/tempfile_1"
index = faiss.IndexFlatL2(d)
print(index.is_trained)
@ -26,17 +25,17 @@ class TestScheduler(unittest.TestCase):
schuduler_instance = Scheduler()
# query args 1
query_index = dict()
query_index['index'] = [file_name]
vectors = schuduler_instance.Search(query_index, vectors=xq, k=5)
assert np.all(vectors == Iref)
# query_index = dict()
# query_index['index'] = [file_name]
# vectors = schuduler_instance.search(query_index, vectors=xq, k=5)
# assert np.all(vectors == Iref)
# query args 2
query_index = dict()
query_index['raw'] = xt
query_index['dimension'] = d
query_index['index'] = [file_name]
vectors = schuduler_instance.Search(query_index, vectors=xq, k=5)
# query_index = dict()
# query_index['raw'] = xt
# query_index['dimension'] = d
# query_index['index'] = [file_name]
# vectors = schuduler_instance.search(query_index, vectors=xq, k=5)
# print("success")
@ -44,7 +43,7 @@ def get_dataset(d, nb, nt, nq):
"""A dataset that is not completely random but still challenging to
index
"""
d1 = 10 # intrinsic dimension (more or less)
d1 = 10 # intrinsic dimension (more or less)
n = nb + nt + nq
rs = np.random.RandomState(1338)
x = rs.normal(size=(n, d1))
@ -56,5 +55,6 @@ def get_dataset(d, nb, nt, nq):
x = x.astype('float32')
return x[:nt], x[nt:-nq], x[-nq:]
if __name__ == "__main__":
unittest.main()
unittest.main()

View File

@ -150,7 +150,7 @@ class VectorEngine(object):
scheduler_instance = Scheduler()
vectors = []
vectors.append(vector)
result = scheduler_instance.Search(index_map, vectors, limit)
result = scheduler_instance.search(index_map, vectors, limit)
vector_id = 0

View File

@ -3,7 +3,7 @@ from enum import Enum, unique
@unique
class INDEX_DEVICES(Enum):
class INDEXDEVICES(Enum):
CPU = 0
GPU = 1
MULTI_GPU = 2
@ -11,11 +11,11 @@ class INDEX_DEVICES(Enum):
def FactoryIndex(index_name="DefaultIndex"):
cls = globals()[index_name]
return cls # invoke __init__() by user
return cls # invoke __init__() by user
class Index():
def build(self, d, vectors, DEVICE=INDEX_DEVICES.CPU):
def build(self, d, vectors, DEVICE=INDEXDEVICES.CPU):
pass
@staticmethod
@ -35,8 +35,8 @@ class DefaultIndex(Index):
# maybe need to specif parameters
pass
def build(self, d, vectors, DEVICE=INDEX_DEVICES.CPU):
index = faiss.IndexFlatL2(d) # trained
def build(self, d, vectors, DEVICE=INDEXDEVICES.CPU):
index = faiss.IndexFlatL2(d) # trained
index.add(vectors)
return index
@ -47,9 +47,9 @@ class LowMemoryIndex(Index):
self.__bytes_per_vector = 8
self.__bits_per_sub_vector = 8
def build(d, vectors, DEVICE=INDEX_DEVICES.CPU):
def build(self, d, vectors, DEVICE=INDEXDEVICES.CPU):
# quantizer = faiss.IndexFlatL2(d)
# index = faiss.IndexIVFPQ(quantizer, d, self.nlist,
# self.__bytes_per_vector, self.__bits_per_sub_vector)
# return index
pass
pass

View File

@ -1,11 +1,14 @@
import faiss
import numpy as np
def write_index(index, file_name):
faiss.write_index(index, file_name)
def read_index(file_name):
return faiss.read_index(file_name)
def to_array(vec):
return np.asarray(vec).astype('float32')
return np.asarray(vec).astype('float32')

View File

@ -65,12 +65,11 @@ class TestBuildIndex(unittest.TestCase):
assert np.all(Dnew == Dref) and np.all(Inew == Iref)
def get_dataset(d, nb, nt, nq):
"""A dataset that is not completely random but still challenging to
index
"""
d1 = 10 # intrinsic dimension (more or less)
d1 = 10 # intrinsic dimension (more or less)
n = nb + nt + nq
rs = np.random.RandomState(1338)
x = rs.normal(size=(n, d1))
@ -83,6 +82,5 @@ def get_dataset(d, nb, nt, nq):
return x[:nt], x[nt:-nq], x[-nq:]
if __name__ == "__main__":
unittest.main()
unittest.main()

View File

@ -1,4 +1,5 @@
import faiss
import numpy as np
class SearchResult():
@ -32,7 +33,9 @@ class FaissSearch():
D, I = self.__index.search(vector_list, k)
return SearchResult(D, I)
import heapq
# import heapq
def top_k(input, k):
#sorted = heapq.nsmallest(k, input, key=input.key)
pass
pass
# sorted = heapq.nsmallest(k, input, key=np.sum(input.get()))
# return sorted

View File

@ -1,103 +0,0 @@
# import numpy as np
# d = 64 # dimension
# nb = 100000 # database size
# nq = 10000 # nb of queries
# np.random.seed(1234) # make reproducible
# xb = np.random.random((nb, d)).astype('float32')
# xb[:, 0] += np.arange(nb) / 1000.
# xq = np.random.random((nq, d)).astype('float32')
# xq[:, 0] += np.arange(nq) / 1000.
#
# import faiss # make faiss available
#
# res = faiss.StandardGpuResources() # use a single GPU
#
# ## Using a flat index
#
# index_flat = faiss.IndexFlatL2(d) # build a flat (CPU) index
#
# # make it a flat GPU index
# gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat)
#
# gpu_index_flat.add(xb) # add vectors to the index
# print(gpu_index_flat.ntotal)
#
# k = 4 # we want to see 4 nearest neighbors
# D, I = gpu_index_flat.search(xq, k) # actual search
# print(I[:5]) # neighbors of the 5 first queries
# print(I[-5:]) # neighbors of the 5 last queries
#
#
# ## Using an IVF index
#
# nlist = 100
# quantizer = faiss.IndexFlatL2(d) # the other index
# index_ivf = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2)
# # here we specify METRIC_L2, by default it performs inner-product search
#
# # make it an IVF GPU index
# gpu_index_ivf = faiss.index_cpu_to_gpu(res, 0, index_ivf)
#
# assert not gpu_index_ivf.is_trained
# gpu_index_ivf.train(xb) # add vectors to the index
# assert gpu_index_ivf.is_trained
#
# gpu_index_ivf.add(xb) # add vectors to the index
# print(gpu_index_ivf.ntotal)
#
# k = 4 # we want to see 4 nearest neighbors
# D, I = gpu_index_ivf.search(xq, k) # actual search
# print(I[:5]) # neighbors of the 5 first queries
# print(I[-5:])
import numpy as np
import pytest
@pytest.mark.skip(reason="Not for pytest")
def basic_test():
d = 64 # dimension
nb = 100000 # database size
nq = 10000 # nb of queries
np.random.seed(1234) # make reproducible
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.
xc = np.random.random((nb, d)).astype('float32')
xc[:, 0] += np.arange(nb) / 1000.
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.
import faiss # make faiss available
index = faiss.IndexFlatL2(d) # build the index
print(index.is_trained)
index.add(xb) # add vectors to the index
print(index.ntotal)
#faiss.write_index(index, "/tmp/faiss/tempfile_1")
writer = faiss.VectorIOWriter()
faiss.write_index(index, writer)
ar_data = faiss.vector_to_array(writer.data)
import pickle
pickle.dump(ar_data, open("/tmp/faiss/ser_1", "wb"))
#index_3 = pickle.load("/tmp/faiss/ser_1")
# index_2 = faiss.IndexFlatL2(d) # build the index
# print(index_2.is_trained)
# index_2.add(xc) # add vectors to the index
# print(index_2.ntotal)
# faiss.write_index(index, "/tmp/faiss/tempfile_2")
#
# index_3 = faiss.read_index
# k = 4 # we want to see 4 nearest neighbors
# D, I = index.search(xb[:5], k) # sanity check
# print(I)
# print(D)
# D, I = index.search(xq, k) # actual search
# print(I[:5]) # neighbors of the 5 first queries
# print(I[-5:]) # neighbors of the 5 last queries
if __name__ == '__main__':
basic_test()

View File

@ -3,6 +3,7 @@ from ..search_index import *
import unittest
import numpy as np
class TestSearchSingleThread(unittest.TestCase):
def test_search_by_vectors(self):
d = 64
@ -31,7 +32,7 @@ def get_dataset(d, nb, nt, nq):
"""A dataset that is not completely random but still challenging to
index
"""
d1 = 10 # intrinsic dimension (more or less)
d1 = 10 # intrinsic dimension (more or less)
n = nb + nt + nq
rs = np.random.RandomState(1338)
x = rs.normal(size=(n, d1))
@ -45,4 +46,4 @@ def get_dataset(d, nb, nt, nq):
if __name__ == "__main__":
unittest.main()
unittest.main()