mirror of https://github.com/milvus-io/milvus.git
enhance: add metrics for counting number of nun-zeros/tokens of sparse/FTS search (#38329)
sparse vectors may have arbitrary number of non zeros and it is hard to optimize without knowing the actual distribution of nnz. this PR adds a metric for analyzing that. issue: https://github.com/milvus-io/milvus/issues/35853 comparing with https://github.com/milvus-io/milvus/pull/38328, this includes also metric for FTS in query node delegator also fixed a bug of sparse when searching by pk Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>pull/38417/head
parent
b14a0c4bf5
commit
75e64b993f
|
@ -488,6 +488,7 @@ func (t *searchTask) initSearchRequest(ctx context.Context) error {
|
|||
if err != nil {
|
||||
return err
|
||||
}
|
||||
metrics.ProxySearchSparseNumNonZeros.WithLabelValues(strconv.FormatInt(paramtable.GetNodeID(), 10), t.collectionName).Observe(float64(typeutil.EstimateSparseVectorNNZFromPlaceholderGroup(t.request.PlaceholderGroup, int(t.request.GetNq()))))
|
||||
t.SearchRequest.PlaceholderGroup = t.request.PlaceholderGroup
|
||||
t.SearchRequest.Topk = queryInfo.GetTopk()
|
||||
t.SearchRequest.MetricType = queryInfo.GetMetricType()
|
||||
|
|
|
@ -1037,6 +1037,10 @@ func (sd *shardDelegator) buildBM25IDF(req *internalpb.SearchRequest) (float64,
|
|||
return 0, err
|
||||
}
|
||||
|
||||
for _, idf := range idfSparseVector {
|
||||
metrics.QueryNodeSearchFTSNumTokens.WithLabelValues(fmt.Sprint(paramtable.GetNodeID()), fmt.Sprint(sd.collectionID)).Observe(float64(typeutil.SparseFloatRowElementCount(idf)))
|
||||
}
|
||||
|
||||
err = SetBM25Params(req, avgdl)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
|
|
|
@ -417,6 +417,16 @@ var (
|
|||
Name: "recall_search_cnt",
|
||||
Help: "counter of recall search",
|
||||
}, []string{nodeIDLabelName, queryTypeLabelName, collectionName})
|
||||
|
||||
// ProxySearchSparseNumNonZeros records the estimated number of non-zeros in each sparse search task
|
||||
ProxySearchSparseNumNonZeros = prometheus.NewHistogramVec(
|
||||
prometheus.HistogramOpts{
|
||||
Namespace: milvusNamespace,
|
||||
Subsystem: typeutil.ProxyRole,
|
||||
Name: "search_sparse_num_non_zeros",
|
||||
Help: "the number of non-zeros in each sparse search task",
|
||||
Buckets: buckets,
|
||||
}, []string{nodeIDLabelName, collectionName})
|
||||
)
|
||||
|
||||
// RegisterProxy registers Proxy metrics
|
||||
|
@ -479,6 +489,8 @@ func RegisterProxy(registry *prometheus.Registry) {
|
|||
registry.MustRegister(ProxyRetrySearchResultInsufficientCount)
|
||||
registry.MustRegister(ProxyRecallSearchCount)
|
||||
|
||||
registry.MustRegister(ProxySearchSparseNumNonZeros)
|
||||
|
||||
RegisterStreamingServiceClient(registry)
|
||||
}
|
||||
|
||||
|
|
|
@ -352,6 +352,18 @@ var (
|
|||
nodeIDLabelName,
|
||||
})
|
||||
|
||||
QueryNodeSearchFTSNumTokens = prometheus.NewHistogramVec(
|
||||
prometheus.HistogramOpts{
|
||||
Namespace: milvusNamespace,
|
||||
Subsystem: typeutil.QueryNodeRole,
|
||||
Name: "search_fts_num_tokens",
|
||||
Help: "number of tokens in each Full Text Search search task",
|
||||
Buckets: buckets,
|
||||
}, []string{
|
||||
nodeIDLabelName,
|
||||
collectionIDLabelName,
|
||||
})
|
||||
|
||||
QueryNodeSearchGroupSize = prometheus.NewHistogramVec(
|
||||
prometheus.HistogramOpts{
|
||||
Namespace: milvusNamespace,
|
||||
|
@ -832,6 +844,7 @@ func RegisterQueryNode(registry *prometheus.Registry) {
|
|||
registry.MustRegister(QueryNodeEvictedReadReqCount)
|
||||
registry.MustRegister(QueryNodeSearchGroupTopK)
|
||||
registry.MustRegister(QueryNodeSearchTopK)
|
||||
registry.MustRegister(QueryNodeSearchFTSNumTokens)
|
||||
registry.MustRegister(QueryNodeNumFlowGraphs)
|
||||
registry.MustRegister(QueryNodeNumEntities)
|
||||
registry.MustRegister(QueryNodeEntitiesSize)
|
||||
|
|
|
@ -2,7 +2,6 @@ package funcutil
|
|||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"math"
|
||||
|
||||
"github.com/cockroachdb/errors"
|
||||
|
@ -97,14 +96,10 @@ func fieldDataToPlaceholderValue(fieldData *schemapb.FieldData) (*commonpb.Place
|
|||
return nil, errors.New("vector data is not schemapb.VectorField_SparseFloatVector")
|
||||
}
|
||||
vec := vectors.SparseFloatVector
|
||||
bytes, err := proto.Marshal(vec)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to marshal schemapb.SparseFloatArray to bytes: %w", err)
|
||||
}
|
||||
placeholderValue := &commonpb.PlaceholderValue{
|
||||
Tag: "$0",
|
||||
Type: commonpb.PlaceholderType_SparseFloatVector,
|
||||
Values: [][]byte{bytes},
|
||||
Values: vec.Contents,
|
||||
}
|
||||
return placeholderValue, nil
|
||||
case schemapb.DataType_VarChar:
|
||||
|
|
|
@ -1919,3 +1919,11 @@ func SparseFloatRowDim(row []byte) int64 {
|
|||
}
|
||||
return int64(SparseFloatRowIndexAt(row, SparseFloatRowElementCount(row)-1)) + 1
|
||||
}
|
||||
|
||||
// placeholderGroup is a serialized PlaceholderGroup, return estimated total
|
||||
// number of non-zero elements of all the sparse vectors in the placeholderGroup
|
||||
// This is a rough estimate, and should be used only for statistics.
|
||||
func EstimateSparseVectorNNZFromPlaceholderGroup(placeholderGroup []byte, nq int) int {
|
||||
overheadBytes := math.Max(10, float64(nq*3))
|
||||
return (len(placeholderGroup) - int(overheadBytes)) / 8
|
||||
}
|
||||
|
|
|
@ -20,6 +20,7 @@ import (
|
|||
"encoding/binary"
|
||||
"fmt"
|
||||
"math"
|
||||
"math/rand"
|
||||
"reflect"
|
||||
"testing"
|
||||
|
||||
|
@ -2714,3 +2715,67 @@ func TestParseJsonSparseFloatRowBytes(t *testing.T) {
|
|||
assert.Error(t, err)
|
||||
})
|
||||
}
|
||||
|
||||
// test EstimateSparseVectorNNZFromPlaceholderGroup: given a PlaceholderGroup
|
||||
// with various nq and averageNNZ, test if the estimated number of non-zero
|
||||
// elements is close to the actual number.
|
||||
func TestSparsePlaceholderGroupSize(t *testing.T) {
|
||||
nqs := []int{1, 10, 100, 1000, 10000}
|
||||
averageNNZs := []int{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}
|
||||
numCases := 0
|
||||
casesWithLargeError := 0
|
||||
for _, nq := range nqs {
|
||||
for _, averageNNZ := range averageNNZs {
|
||||
variants := make([]int, 0)
|
||||
for i := 1; i <= averageNNZ/2; i *= 2 {
|
||||
variants = append(variants, i)
|
||||
}
|
||||
|
||||
for _, variant := range variants {
|
||||
numCases++
|
||||
contents := make([][]byte, nq)
|
||||
contentsSize := 0
|
||||
totalNNZ := 0
|
||||
for i := range contents {
|
||||
// nnz of each row is in range [averageNNZ - variant/2, averageNNZ + variant/2] and at least 1.
|
||||
nnz := averageNNZ + variant/2 + rand.Intn(variant)
|
||||
if nnz < 1 {
|
||||
nnz = 1
|
||||
}
|
||||
indices := make([]uint32, nnz)
|
||||
values := make([]float32, nnz)
|
||||
for j := 0; j < nnz; j++ {
|
||||
indices[j] = uint32(i*averageNNZ + j)
|
||||
values[j] = float32(i*averageNNZ + j)
|
||||
}
|
||||
contents[i] = CreateSparseFloatRow(indices, values)
|
||||
contentsSize += len(contents[i])
|
||||
totalNNZ += nnz
|
||||
}
|
||||
|
||||
placeholderGroup := &commonpb.PlaceholderGroup{
|
||||
Placeholders: []*commonpb.PlaceholderValue{
|
||||
{
|
||||
Tag: "$0",
|
||||
Type: commonpb.PlaceholderType_SparseFloatVector,
|
||||
Values: contents,
|
||||
},
|
||||
},
|
||||
}
|
||||
bytes, _ := proto.Marshal(placeholderGroup)
|
||||
estimatedNNZ := EstimateSparseVectorNNZFromPlaceholderGroup(bytes, nq)
|
||||
errorRatio := (float64(totalNNZ-estimatedNNZ) / float64(totalNNZ)) * 100
|
||||
assert.Less(t, errorRatio, 10.0)
|
||||
if errorRatio > 5.0 {
|
||||
casesWithLargeError++
|
||||
}
|
||||
// keep the logs for easy debugging.
|
||||
// fmt.Printf("nq: %d, total nnz: %d, overhead bytes: %d, len of bytes: %d\n", nq, totalNNZ, len(bytes)-contentsSize, len(bytes))
|
||||
// fmt.Printf("\tnq: %d, total nnz: %d, estimated nnz: %d, diff: %d, error ratio: %f%%\n", nq, totalNNZ, estimatedNNZ, totalNNZ-estimatedNNZ, errorRatio)
|
||||
}
|
||||
}
|
||||
}
|
||||
largeErrorRatio := (float64(casesWithLargeError) / float64(numCases)) * 100
|
||||
// no more than 2% cases have large error ratio.
|
||||
assert.Less(t, largeErrorRatio, 2.0)
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue