mirror of https://github.com/milvus-io/milvus.git
[skip-ci] remove redundant code in test cases (#2019)
Signed-off-by: break2017 <zhenxiang0708@163.com>pull/2022/head
parent
5bcd3034c6
commit
65a6d8cce7
|
@ -513,7 +513,6 @@ class TestSearchBase:
|
|||
expected: raise exception
|
||||
'''
|
||||
query_vectors = [vectors[0]]
|
||||
top_k = 1
|
||||
nprobe = 1
|
||||
with pytest.raises(Exception) as e:
|
||||
status, ids = dis_connect.search_vectors(collection, top_k, query_vectors)
|
||||
|
@ -525,7 +524,6 @@ class TestSearchBase:
|
|||
expected: status not ok
|
||||
'''
|
||||
collection_name = gen_unique_str("not_existed_collection")
|
||||
top_k = 1
|
||||
nprobe = 1
|
||||
query_vecs = [vectors[0]]
|
||||
status, result = connect.search_vectors(collection_name, top_k, query_vecs)
|
||||
|
@ -538,7 +536,6 @@ class TestSearchBase:
|
|||
expected: status not ok
|
||||
'''
|
||||
collection_name = None
|
||||
top_k = 1
|
||||
nprobe = 1
|
||||
query_vecs = [vectors[0]]
|
||||
with pytest.raises(Exception) as e:
|
||||
|
@ -567,7 +564,6 @@ class TestSearchBase:
|
|||
expected: the return distance equals to the computed value
|
||||
'''
|
||||
nb = 2
|
||||
top_k = 1
|
||||
vectors, ids = self.init_data(connect, collection, nb=nb)
|
||||
query_vecs = [[0.50 for i in range(dim)]]
|
||||
distance_0 = numpy.linalg.norm(numpy.array(query_vecs[0]) - numpy.array(vectors[0]))
|
||||
|
@ -582,7 +578,6 @@ class TestSearchBase:
|
|||
expected: the return distance equals to the computed value
|
||||
'''
|
||||
nb = 2
|
||||
top_k = 1
|
||||
nprobe = 1
|
||||
vectors, ids = self.init_data(connect, ip_collection, nb=nb)
|
||||
index_type = IndexType.FLAT
|
||||
|
@ -605,7 +600,6 @@ class TestSearchBase:
|
|||
expected: the return distance equals to the computed value
|
||||
'''
|
||||
# from scipy.spatial import distance
|
||||
top_k = 1
|
||||
nprobe = 512
|
||||
int_vectors, vectors, ids = self.init_binary_data(connect, jac_collection, nb=2)
|
||||
index_type = IndexType.FLAT
|
||||
|
@ -631,7 +625,6 @@ class TestSearchBase:
|
|||
expected: the return distance equals to the computed value
|
||||
'''
|
||||
# from scipy.spatial import distance
|
||||
top_k = 1
|
||||
nprobe = 512
|
||||
int_vectors, vectors, ids = self.init_binary_data(connect, ham_collection, nb=2)
|
||||
index_type = IndexType.FLAT
|
||||
|
@ -657,7 +650,6 @@ class TestSearchBase:
|
|||
expected: the return distance equals to the computed value
|
||||
'''
|
||||
# from scipy.spatial import distance
|
||||
top_k = 1
|
||||
nprobe = 512
|
||||
int_vectors, vectors, ids = self.init_binary_data(connect, substructure_collection, nb=2)
|
||||
index_type = IndexType.FLAT
|
||||
|
@ -712,7 +704,6 @@ class TestSearchBase:
|
|||
expected: the return distance equals to the computed value
|
||||
'''
|
||||
# from scipy.spatial import distance
|
||||
top_k = 1
|
||||
nprobe = 512
|
||||
int_vectors, vectors, ids = self.init_binary_data(connect, superstructure_collection, nb=2)
|
||||
index_type = IndexType.FLAT
|
||||
|
@ -767,7 +758,6 @@ class TestSearchBase:
|
|||
expected: the return distance equals to the computed value
|
||||
'''
|
||||
# from scipy.spatial import distance
|
||||
top_k = 1
|
||||
nprobe = 512
|
||||
int_vectors, vectors, ids = self.init_binary_data(connect, tanimoto_collection, nb=2)
|
||||
index_type = IndexType.FLAT
|
||||
|
@ -938,7 +928,7 @@ class TestSearchBase:
|
|||
idx.append(ids[0])
|
||||
idx.append(ids[10])
|
||||
idx.append(ids[20])
|
||||
time.sleep(6)
|
||||
milvus.flush([collection])
|
||||
query_vecs = [vectors[0], vectors[10], vectors[20]]
|
||||
# start query from random collection
|
||||
for i in range(num):
|
||||
|
@ -978,7 +968,7 @@ class TestSearchBase:
|
|||
idx.append(ids[0])
|
||||
idx.append(ids[10])
|
||||
idx.append(ids[20])
|
||||
time.sleep(6)
|
||||
milvus.flush([collection])
|
||||
query_vecs = [vectors[0], vectors[10], vectors[20]]
|
||||
# start query from random collection
|
||||
for i in range(num):
|
||||
|
@ -1030,7 +1020,6 @@ class TestSearchParamsInvalid(object):
|
|||
def test_search_with_invalid_collectionname(self, connect, get_collection_name):
|
||||
collection_name = get_collection_name
|
||||
logging.getLogger().info(collection_name)
|
||||
top_k = 1
|
||||
nprobe = 1
|
||||
query_vecs = gen_vectors(1, dim)
|
||||
status, result = connect.search_vectors(collection_name, top_k, query_vecs)
|
||||
|
@ -1038,7 +1027,6 @@ class TestSearchParamsInvalid(object):
|
|||
|
||||
@pytest.mark.level(1)
|
||||
def test_search_with_invalid_tag_format(self, connect, collection):
|
||||
top_k = 1
|
||||
nprobe = 1
|
||||
query_vecs = gen_vectors(1, dim)
|
||||
with pytest.raises(Exception) as e:
|
||||
|
@ -1047,7 +1035,6 @@ class TestSearchParamsInvalid(object):
|
|||
|
||||
@pytest.mark.level(1)
|
||||
def test_search_with_tag_not_existed(self, connect, collection):
|
||||
top_k = 1
|
||||
nprobe = 1
|
||||
query_vecs = gen_vectors(1, dim)
|
||||
status, result = connect.search_vectors(collection, top_k, query_vecs, partition_tags=["tag"])
|
||||
|
@ -1119,8 +1106,6 @@ class TestSearchParamsInvalid(object):
|
|||
index_type = IndexType.IVF_SQ8
|
||||
index_param = {"nlist": 16384}
|
||||
connect.create_index(collection, index_type, index_param)
|
||||
|
||||
top_k = 1
|
||||
nprobe = get_nprobes
|
||||
search_param = {"nprobe": nprobe}
|
||||
logging.getLogger().info(nprobe)
|
||||
|
@ -1142,8 +1127,6 @@ class TestSearchParamsInvalid(object):
|
|||
index_type = IndexType.IVF_SQ8
|
||||
index_param = {"nlist": 16384}
|
||||
connect.create_index(ip_collection, index_type, index_param)
|
||||
|
||||
top_k = 1
|
||||
nprobe = get_nprobes
|
||||
search_param = {"nprobe": nprobe}
|
||||
logging.getLogger().info(nprobe)
|
||||
|
@ -1180,8 +1163,6 @@ class TestSearchParamsInvalid(object):
|
|||
index_type = get_simple_index["index_type"]
|
||||
index_param = get_simple_index["index_param"]
|
||||
connect.create_index(collection, index_type, index_param)
|
||||
|
||||
top_k = 1
|
||||
query_vecs = gen_vectors(1, dim)
|
||||
status, result = connect.search_vectors(collection, top_k, query_vecs, params={})
|
||||
|
||||
|
|
Loading…
Reference in New Issue