[skip ci] Update scale data node test (#12879)

Signed-off-by: ThreadDao <yufen.zong@zilliz.com>
pull/12883/head
ThreadDao 2021-12-07 15:53:03 +08:00 committed by GitHub
parent d8b2e84135
commit 55e62cc7ff
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 70 additions and 79 deletions

View File

@ -1,6 +1,6 @@
# scale object
IMAGE_REPOSITORY = "milvusdb/milvus-dev" # repository of milvus image
IMAGE_TAG = "master-latest" # tag of milvus image
IMAGE_REPOSITORY = "harbor.zilliz.cc/milvus/milvus" # repository of milvus image
IMAGE_TAG = "master-20211207-4cd314d" # tag of milvus image
NAMESPACE = "chaos-testing" # namespace
IF_NOT_PRESENT = "IfNotPresent" # image pullPolicy IfNotPresent
ALWAYS = "Always" # image pullPolicy Always

View File

@ -1,12 +1,16 @@
import threading
import time
import pytest
from base.collection_wrapper import ApiCollectionWrapper
from common.common_type import CaseLabel
from common import common_func as cf
from common import common_type as ct
from scale import constants, scale_common
from scale.helm_env import HelmEnv
from pymilvus import connections, utility
from customize.milvus_operator import MilvusOperator
from scale import constants
from pymilvus import connections
from utils.util_log import test_log as log
from utils.util_k8s import wait_pods_ready
prefix = "data_scale"
default_schema = cf.gen_default_collection_schema()
@ -17,89 +21,76 @@ default_index_params = {"index_type": "IVF_SQ8", "metric_type": "L2", "params":
class TestDataNodeScale:
@pytest.mark.tags(CaseLabel.L3)
def test_expand_data_node(self):
def test_scale_data_node(self):
"""
target: test create and insert api after expand dataNode pod
method: 1.create collection a and insert df
2.expand dataNode pod from 1 to 2
3.verify collection a property and verify create and insert of new collection
expected: two collection create and insert op are both correctly
target:
method:
expected:
"""
release_name = "scale-data"
milvusOp, host, port = scale_common.deploy_default_milvus(release_name)
# connect
connections.add_connection(default={"host": host, "port": port})
connections.connect(alias='default')
# create
c_name = cf.gen_unique_str(prefix)
collection_w = ApiCollectionWrapper()
collection_w.init_collection(name=c_name, schema=cf.gen_default_collection_schema())
# # insert
data = cf.gen_default_list_data()
mutation_res, _ = collection_w.insert(data)
assert mutation_res.insert_count == ct.default_nb
# scale dataNode to 2 pods
milvusOp.upgrade(release_name, {'spec.components.dataNode.replicas': 2}, constants.NAMESPACE)
milvusOp.wait_for_healthy(release_name, constants.NAMESPACE)
# after scale, assert data consistent
assert utility.has_collection(c_name)
assert collection_w.num_entities == ct.default_nb
# assert new operations
new_cname = cf.gen_unique_str(prefix)
new_collection_w = ApiCollectionWrapper()
new_collection_w.init_collection(name=new_cname, schema=cf.gen_default_collection_schema())
new_mutation_res, _ = new_collection_w.insert(data)
assert new_mutation_res.insert_count == ct.default_nb
assert new_collection_w.num_entities == ct.default_nb
# assert old collection ddl
mutation_res_2, _ = collection_w.insert(data)
assert mutation_res.insert_count == ct.default_nb
assert collection_w.num_entities == ct.default_nb*2
collection_w.drop()
new_collection_w.drop()
# milvusOp.uninstall(release_name, namespace=constants.NAMESPACE)
@pytest.mark.tags(CaseLabel.L3)
def test_shrink_data_node(self):
"""
target: test shrink dataNode from 2 to 1
method: 1.create collection and insert df 2. shrink dataNode 3.insert df
expected: verify the property of collection which channel on shrink pod
"""
release_name = "scale-data"
env = HelmEnv(release_name=release_name, dataNode=2)
host = env.helm_install_cluster_milvus(image_pull_policy=constants.IF_NOT_PRESENT)
image = f'{constants.IMAGE_REPOSITORY}:{constants.IMAGE_TAG}'
data_config = {
'metadata.namespace': constants.NAMESPACE,
'metadata.name': release_name,
'spec.components.image': image,
'spec.components.proxy.serviceType': 'LoadBalancer',
'spec.components.dataNode.replicas': 2,
'spec.config.dataCoord.enableCompaction': True,
'spec.config.dataCoord.enableGarbageCollection': True
}
mic = MilvusOperator()
mic.install(data_config)
healthy = mic.wait_for_healthy(release_name, constants.NAMESPACE, timeout=1200)
log.info(f"milvus healthy: {healthy}")
host = mic.endpoint(release_name, constants.NAMESPACE).split(':')[0]
# host = '10.98.0.4'
# connect
connections.add_connection(default={"host": host, "port": 19530})
connections.connect(alias='default')
c_name = "data_scale_one"
data = cf.gen_default_list_data(ct.default_nb)
# create
c_name = cf.gen_unique_str("scale_query")
# c_name = 'scale_query_DymS7kI4'
collection_w = ApiCollectionWrapper()
collection_w.init_collection(name=c_name, schema=cf.gen_default_collection_schema())
mutation_res, _ = collection_w.insert(data)
assert mutation_res.insert_count == ct.default_nb
assert collection_w.num_entities == ct.default_nb
collection_w.init_collection(name=c_name, schema=cf.gen_default_collection_schema(), shards_num=5)
c_name_2 = "data_scale_two"
collection_w2 = ApiCollectionWrapper()
collection_w2.init_collection(name=c_name_2, schema=cf.gen_default_collection_schema())
mutation_res2, _ = collection_w2.insert(data)
assert mutation_res2.insert_count == ct.default_nb
assert collection_w2.num_entities == ct.default_nb
tmp_nb = 10000
env.helm_upgrade_cluster_milvus(dataNode=1)
def do_insert():
while True:
tmp_df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(tmp_df)
log.debug(collection_w.num_entities)
assert collection_w.num_entities == ct.default_nb
mutation_res2, _ = collection_w2.insert(data)
assert collection_w2.num_entities == ct.default_nb*2
collection_w.drop()
collection_w2.drop()
t_insert = threading.Thread(target=do_insert, args=(), daemon=True)
t_insert.start()
# env.helm_uninstall_cluster_milvus()
# scale dataNode to 5
mic.upgrade(release_name, {'spec.components.dataNode.replicas': 5}, constants.NAMESPACE)
time.sleep(300)
log.debug("Expand dataNode test finished")
# create new collection and insert
new_c_name = cf.gen_unique_str("scale_query")
collection_w_new = ApiCollectionWrapper()
collection_w_new.init_collection(name=new_c_name, schema=cf.gen_default_collection_schema(), shards_num=2)
def do_new_insert():
while True:
tmp_df = cf.gen_default_dataframe_data(tmp_nb)
collection_w_new.insert(tmp_df)
log.debug(collection_w_new.num_entities)
t_insert_new = threading.Thread(target=do_new_insert, args=(), daemon=True)
t_insert_new.start()
# scale dataNode to 3
mic.upgrade(release_name, {'spec.components.dataNode.replicas': 3}, constants.NAMESPACE)
wait_pods_ready(constants.NAMESPACE, f"app.kubernetes.io/instance={release_name}")
log.debug(collection_w.num_entities)
time.sleep(300)
log.debug("Shrink dataNode test finished")
# mic.uninstall(release_name, namespace=constants.NAMESPACE)