mirror of https://github.com/milvus-io/milvus.git
Merge remote-tracking branch 'source/0.5.1' into 0.5.1
Former-commit-id: f29536b8ff8ac23aa9f629da28825c1efcedcf0bpull/191/head
commit
52b6307027
|
@ -86,5 +86,6 @@ install(TARGETS test_gpuresource DESTINATION unittest)
|
|||
install(TARGETS test_customized_index DESTINATION unittest)
|
||||
|
||||
#add_subdirectory(faiss_ori)
|
||||
#add_subdirectory(faiss_benchmark)
|
||||
add_subdirectory(test_nsg)
|
||||
|
||||
|
|
|
@ -0,0 +1,24 @@
|
|||
include_directories(${INDEX_SOURCE_DIR}/thirdparty)
|
||||
include_directories(${INDEX_SOURCE_DIR}/include)
|
||||
include_directories(/usr/local/cuda/include)
|
||||
include_directories(/usr/local/hdf5/include)
|
||||
|
||||
link_directories(/usr/local/cuda/lib64)
|
||||
link_directories(/usr/local/hdf5/lib)
|
||||
|
||||
set(unittest_libs
|
||||
gtest gmock gtest_main gmock_main)
|
||||
|
||||
set(depend_libs
|
||||
faiss openblas lapack hdf5
|
||||
arrow ${ARROW_PREFIX}/lib/libjemalloc_pic.a
|
||||
)
|
||||
|
||||
set(basic_libs
|
||||
cudart cublas
|
||||
gomp gfortran pthread
|
||||
)
|
||||
|
||||
add_executable(test_faiss_benchmark faiss_benchmark_test.cpp)
|
||||
target_link_libraries(test_faiss_benchmark ${depend_libs} ${unittest_libs} ${basic_libs})
|
||||
install(TARGETS test_faiss_benchmark DESTINATION unittest)
|
|
@ -0,0 +1,25 @@
|
|||
### To run this FAISS benchmark, please follow these steps:
|
||||
|
||||
#### Step 1:
|
||||
Download the HDF5 source from:
|
||||
https://support.hdfgroup.org/ftp/HDF5/releases/
|
||||
and build/install to "/usr/local/hdf5".
|
||||
|
||||
#### Step 2:
|
||||
Download HDF5 data files from:
|
||||
https://github.com/erikbern/ann-benchmarks
|
||||
|
||||
#### Step 3:
|
||||
Update 'milvus/core/src/index/unittest/CMakeLists.txt',
|
||||
uncomment "#add_subdirectory(faiss_benchmark)".
|
||||
|
||||
#### Step 4:
|
||||
Build Milvus with unittest enabled: "./build.sh -t Release -u",
|
||||
binary 'test_faiss_benchmark' will be generated.
|
||||
|
||||
#### Step 5:
|
||||
Put HDF5 data files into the same directory with binary 'test_faiss_benchmark'.
|
||||
|
||||
#### Step 6:
|
||||
Run test binary 'test_faiss_benchmark'.
|
||||
|
|
@ -0,0 +1,604 @@
|
|||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
|
||||
#include <faiss/AutoTune.h>
|
||||
#include <faiss/Index.h>
|
||||
#include <faiss/IndexIVF.h>
|
||||
#include <faiss/gpu/GpuAutoTune.h>
|
||||
#include <faiss/gpu/GpuIndexFlat.h>
|
||||
#include <faiss/gpu/GpuIndexIVFSQHybrid.h>
|
||||
#include <faiss/gpu/StandardGpuResources.h>
|
||||
#include <faiss/index_io.h>
|
||||
#include <faiss/utils.h>
|
||||
|
||||
#include <hdf5.h>
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <sys/time.h>
|
||||
#include <sys/types.h>
|
||||
#include <unistd.h>
|
||||
#include <vector>
|
||||
|
||||
/*****************************************************
|
||||
* To run this test, please download the HDF5 from
|
||||
* https://support.hdfgroup.org/ftp/HDF5/releases/
|
||||
* and install it to /usr/local/hdf5 .
|
||||
*****************************************************/
|
||||
|
||||
double
|
||||
elapsed() {
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv, nullptr);
|
||||
return tv.tv_sec + tv.tv_usec * 1e-6;
|
||||
}
|
||||
|
||||
void*
|
||||
hdf5_read(const char* file_name, const char* dataset_name, H5T_class_t dataset_class, size_t& d_out, size_t& n_out) {
|
||||
hid_t file, dataset, datatype, dataspace, memspace;
|
||||
H5T_class_t t_class; /* data type class */
|
||||
H5T_order_t order; /* data order */
|
||||
size_t size; /* size of the data element stored in file */
|
||||
hsize_t dimsm[3]; /* memory space dimensions */
|
||||
hsize_t dims_out[2]; /* dataset dimensions */
|
||||
hsize_t count[2]; /* size of the hyperslab in the file */
|
||||
hsize_t offset[2]; /* hyperslab offset in the file */
|
||||
hsize_t count_out[3]; /* size of the hyperslab in memory */
|
||||
hsize_t offset_out[3]; /* hyperslab offset in memory */
|
||||
int rank;
|
||||
void* data_out; /* output buffer */
|
||||
|
||||
/* Open the file and the dataset. */
|
||||
file = H5Fopen(file_name, H5F_ACC_RDONLY, H5P_DEFAULT);
|
||||
dataset = H5Dopen2(file, dataset_name, H5P_DEFAULT);
|
||||
|
||||
/*
|
||||
* Get datatype and dataspace handles and then query
|
||||
* dataset class, order, size, rank and dimensions.
|
||||
*/
|
||||
datatype = H5Dget_type(dataset); /* datatype handle */
|
||||
t_class = H5Tget_class(datatype);
|
||||
assert(t_class == dataset_class || !"Illegal dataset class type");
|
||||
|
||||
order = H5Tget_order(datatype);
|
||||
switch (order) {
|
||||
case H5T_ORDER_LE:
|
||||
printf("Little endian order \n");
|
||||
break;
|
||||
case H5T_ORDER_BE:
|
||||
printf("Big endian order \n");
|
||||
break;
|
||||
default:
|
||||
printf("Illegal endian order \n");
|
||||
break;
|
||||
}
|
||||
|
||||
size = H5Tget_size(datatype);
|
||||
printf("Data size is %d \n", (int)size);
|
||||
|
||||
dataspace = H5Dget_space(dataset); /* dataspace handle */
|
||||
rank = H5Sget_simple_extent_ndims(dataspace);
|
||||
H5Sget_simple_extent_dims(dataspace, dims_out, NULL);
|
||||
n_out = dims_out[0];
|
||||
d_out = dims_out[1];
|
||||
printf("rank %d, dimensions %lu x %lu \n", rank, n_out, d_out);
|
||||
|
||||
/* Define hyperslab in the dataset. */
|
||||
offset[0] = offset[1] = 0;
|
||||
count[0] = dims_out[0];
|
||||
count[1] = dims_out[1];
|
||||
H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL);
|
||||
|
||||
/* Define the memory dataspace. */
|
||||
dimsm[0] = dims_out[0];
|
||||
dimsm[1] = dims_out[1];
|
||||
dimsm[2] = 1;
|
||||
memspace = H5Screate_simple(3, dimsm, NULL);
|
||||
|
||||
/* Define memory hyperslab. */
|
||||
offset_out[0] = offset_out[1] = offset_out[2] = 0;
|
||||
count_out[0] = dims_out[0];
|
||||
count_out[1] = dims_out[1];
|
||||
count_out[2] = 1;
|
||||
H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL);
|
||||
|
||||
/* Read data from hyperslab in the file into the hyperslab in memory and display. */
|
||||
switch (t_class) {
|
||||
case H5T_INTEGER:
|
||||
data_out = new int[dims_out[0] * dims_out[1]];
|
||||
H5Dread(dataset, H5T_NATIVE_INT, memspace, dataspace, H5P_DEFAULT, data_out);
|
||||
break;
|
||||
case H5T_FLOAT:
|
||||
data_out = new float[dims_out[0] * dims_out[1]];
|
||||
H5Dread(dataset, H5T_NATIVE_FLOAT, memspace, dataspace, H5P_DEFAULT, data_out);
|
||||
break;
|
||||
default:
|
||||
printf("Illegal dataset class type\n");
|
||||
break;
|
||||
}
|
||||
|
||||
/* Close/release resources. */
|
||||
H5Tclose(datatype);
|
||||
H5Dclose(dataset);
|
||||
H5Sclose(dataspace);
|
||||
H5Sclose(memspace);
|
||||
H5Fclose(file);
|
||||
|
||||
return data_out;
|
||||
}
|
||||
|
||||
std::string
|
||||
get_index_file_name(const std::string& ann_test_name, const std::string& index_key, int32_t data_loops) {
|
||||
size_t pos = index_key.find_first_of(',', 0);
|
||||
std::string file_name = ann_test_name;
|
||||
file_name = file_name + "_" + index_key.substr(0, pos) + "_" + index_key.substr(pos + 1);
|
||||
file_name = file_name + "_" + std::to_string(data_loops) + ".index";
|
||||
return file_name;
|
||||
}
|
||||
|
||||
bool
|
||||
parse_ann_test_name(const std::string& ann_test_name, size_t& dim, faiss::MetricType& metric_type) {
|
||||
size_t pos1, pos2;
|
||||
|
||||
if (ann_test_name.empty())
|
||||
return false;
|
||||
|
||||
pos1 = ann_test_name.find_first_of('-', 0);
|
||||
if (pos1 == std::string::npos)
|
||||
return false;
|
||||
pos2 = ann_test_name.find_first_of('-', pos1 + 1);
|
||||
if (pos2 == std::string::npos)
|
||||
return false;
|
||||
|
||||
dim = std::stoi(ann_test_name.substr(pos1 + 1, pos2 - pos1 - 1));
|
||||
std::string metric_str = ann_test_name.substr(pos2 + 1);
|
||||
if (metric_str == "angular") {
|
||||
metric_type = faiss::METRIC_INNER_PRODUCT;
|
||||
} else if (metric_str == "euclidean") {
|
||||
metric_type = faiss::METRIC_L2;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int32_t
|
||||
GetResultHitCount(const faiss::Index::idx_t* ground_index, const faiss::Index::idx_t* index, size_t ground_k, size_t k,
|
||||
size_t nq, int32_t index_add_loops) {
|
||||
assert(ground_k <= k);
|
||||
int hit = 0;
|
||||
for (int i = 0; i < nq; i++) {
|
||||
// count the num of results exist in ground truth result set
|
||||
// each result replicates INDEX_ADD_LOOPS times
|
||||
for (int j_c = 0; j_c < ground_k; j_c++) {
|
||||
int r_c = index[i * k + j_c];
|
||||
int j_g = 0;
|
||||
for (; j_g < ground_k / index_add_loops; j_g++) {
|
||||
if (ground_index[i * ground_k + j_g] == r_c) {
|
||||
hit++;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return hit;
|
||||
}
|
||||
|
||||
void
|
||||
test_ann_hdf5(const std::string& ann_test_name, const std::string& index_key, int32_t index_add_loops,
|
||||
const std::vector<size_t>& nprobes, int32_t search_loops) {
|
||||
double t0 = elapsed();
|
||||
|
||||
const std::string ann_file_name = ann_test_name + ".hdf5";
|
||||
|
||||
faiss::MetricType metric_type;
|
||||
size_t dim;
|
||||
|
||||
if (!parse_ann_test_name(ann_test_name, dim, metric_type)) {
|
||||
printf("Invalid ann test name: %s\n", ann_test_name.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
faiss::Index* index;
|
||||
size_t d;
|
||||
|
||||
std::string index_file_name = get_index_file_name(ann_test_name, index_key, index_add_loops);
|
||||
try {
|
||||
index = faiss::read_index(index_file_name.c_str());
|
||||
d = dim;
|
||||
} catch (...) {
|
||||
printf("Cannot read index file: %s\n", index_file_name.c_str());
|
||||
|
||||
printf("[%.3f s] Loading train set\n", elapsed() - t0);
|
||||
|
||||
size_t nb;
|
||||
float* xb = (float*)hdf5_read(ann_file_name.c_str(), "train", H5T_FLOAT, d, nb);
|
||||
assert(d == dim || !"dataset does not have correct dimension");
|
||||
|
||||
printf("[%.3f s] Preparing index \"%s\" d=%ld\n", elapsed() - t0, index_key.c_str(), d);
|
||||
|
||||
index = faiss::index_factory(d, index_key.c_str(), metric_type);
|
||||
|
||||
printf("[%.3f s] Training on %ld vectors\n", elapsed() - t0, nb);
|
||||
|
||||
index->train(nb, xb);
|
||||
|
||||
printf("[%.3f s] Loading database\n", elapsed() - t0);
|
||||
|
||||
// add index multiple times to get ~1G data set
|
||||
for (int i = 0; i < index_add_loops; i++) {
|
||||
printf("[%.3f s] Indexing database, size %ld*%ld\n", elapsed() - t0, nb, d);
|
||||
index->add(nb, xb);
|
||||
}
|
||||
|
||||
faiss::write_index(index, index_file_name.c_str());
|
||||
|
||||
delete[] xb;
|
||||
}
|
||||
|
||||
size_t nq;
|
||||
float* xq;
|
||||
{
|
||||
printf("[%.3f s] Loading queries\n", elapsed() - t0);
|
||||
|
||||
size_t d2;
|
||||
xq = (float*)hdf5_read(ann_file_name.c_str(), "test", H5T_FLOAT, d2, nq);
|
||||
assert(d == d2 || !"query does not have same dimension as train set");
|
||||
}
|
||||
|
||||
size_t k; // nb of results per query in the GT
|
||||
faiss::Index::idx_t* gt; // nq * k matrix of ground-truth nearest-neighbors
|
||||
{
|
||||
printf("[%.3f s] Loading ground truth for %ld queries\n", elapsed() - t0, nq);
|
||||
|
||||
// load ground-truth and convert int to long
|
||||
size_t nq2;
|
||||
int* gt_int = (int*)hdf5_read(ann_file_name.c_str(), "neighbors", H5T_INTEGER, k, nq2);
|
||||
assert(nq2 == nq || !"incorrect nb of ground truth entries");
|
||||
|
||||
gt = new faiss::Index::idx_t[k * nq];
|
||||
for (int i = 0; i < k * nq; i++) {
|
||||
gt[i] = gt_int[i];
|
||||
}
|
||||
delete[] gt_int;
|
||||
}
|
||||
|
||||
for (auto nprobe : nprobes) {
|
||||
faiss::ParameterSpace params;
|
||||
|
||||
std::string nprobe_str = "nprobe=" + std::to_string(nprobe);
|
||||
params.set_index_parameters(index, nprobe_str.c_str());
|
||||
|
||||
// output buffers
|
||||
#if 1
|
||||
const size_t NQ = 1000, K = 1000;
|
||||
faiss::Index::idx_t* I = new faiss::Index::idx_t[NQ * K];
|
||||
float* D = new float[NQ * K];
|
||||
|
||||
printf("\n%s | %s | nprobe=%lu\n", ann_test_name.c_str(), index_key.c_str(), nprobe);
|
||||
printf("======================================================================================\n");
|
||||
for (size_t t_nq = 10; t_nq <= NQ; t_nq *= 10) { // nq = {10, 100, 1000}
|
||||
for (size_t t_k = 100; t_k <= K; t_k *= 10) { // k = {100, 1000}
|
||||
faiss::indexIVF_stats.quantization_time = 0.0;
|
||||
faiss::indexIVF_stats.search_time = 0.0;
|
||||
|
||||
double t_start = elapsed(), t_end;
|
||||
for (int i = 0; i < search_loops; i++) {
|
||||
index->search(t_nq, xq, t_k, D, I);
|
||||
}
|
||||
t_end = elapsed();
|
||||
|
||||
// k = 100 for ground truth
|
||||
int32_t hit = GetResultHitCount(gt, I, k, t_k, t_nq, index_add_loops);
|
||||
|
||||
printf("nq = %4ld, k = %4ld, elapse = %.4fs (quant = %.4fs, search = %.4fs), R@ = %.4f\n", t_nq, t_k,
|
||||
(t_end - t_start) / search_loops, faiss::indexIVF_stats.quantization_time / 1000 / search_loops,
|
||||
faiss::indexIVF_stats.search_time / 1000 / search_loops,
|
||||
(hit / float(t_nq * k / index_add_loops)));
|
||||
}
|
||||
}
|
||||
printf("======================================================================================\n");
|
||||
#else
|
||||
printf("[%.3f s] Perform a search on %ld queries\n", elapsed() - t0, nq);
|
||||
|
||||
faiss::Index::idx_t* I = new faiss::Index::idx_t[nq * k];
|
||||
float* D = new float[nq * k];
|
||||
|
||||
index->search(nq, xq, k, D, I);
|
||||
|
||||
printf("[%.3f s] Compute recalls\n", elapsed() - t0);
|
||||
|
||||
// evaluate result by hand.
|
||||
int n_1 = 0, n_10 = 0, n_100 = 0;
|
||||
for (int i = 0; i < nq; i++) {
|
||||
int gt_nn = gt[i * k];
|
||||
for (int j = 0; j < k; j++) {
|
||||
if (I[i * k + j] == gt_nn) {
|
||||
if (j < 1)
|
||||
n_1++;
|
||||
if (j < 10)
|
||||
n_10++;
|
||||
if (j < 100)
|
||||
n_100++;
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("R@1 = %.4f\n", n_1 / float(nq));
|
||||
printf("R@10 = %.4f\n", n_10 / float(nq));
|
||||
printf("R@100 = %.4f\n", n_100 / float(nq));
|
||||
#endif
|
||||
|
||||
printf("[%.3f s] Search test done\n\n", elapsed() - t0);
|
||||
|
||||
delete[] I;
|
||||
delete[] D;
|
||||
}
|
||||
|
||||
delete[] xq;
|
||||
delete[] gt;
|
||||
delete index;
|
||||
}
|
||||
|
||||
#ifdef CUSTOMIZATION
|
||||
void
|
||||
test_ivfsq8h(const std::string& ann_test_name, int32_t index_add_loops, const std::vector<size_t>& nprobes,
|
||||
bool pure_gpu_mode, int32_t search_loops) {
|
||||
double t0 = elapsed();
|
||||
|
||||
const std::string ann_file_name = ann_test_name + ".hdf5";
|
||||
|
||||
faiss::MetricType metric_type;
|
||||
size_t dim;
|
||||
|
||||
if (!parse_ann_test_name(ann_test_name, dim, metric_type)) {
|
||||
printf("Invalid ann test name: %s\n", ann_test_name.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
faiss::distance_compute_blas_threshold = 800;
|
||||
faiss::gpu::StandardGpuResources res;
|
||||
|
||||
const std::string index_key = "IVF16384,SQ8Hybrid";
|
||||
|
||||
faiss::Index* cpu_index = nullptr;
|
||||
size_t d;
|
||||
|
||||
std::string index_file_name = get_index_file_name(ann_test_name, index_key, index_add_loops);
|
||||
try {
|
||||
cpu_index = faiss::read_index(index_file_name.c_str());
|
||||
d = dim;
|
||||
} catch (...) {
|
||||
printf("Cannot read index file: %s\n", index_file_name.c_str());
|
||||
|
||||
printf("[%.3f s] Loading train set\n", elapsed() - t0);
|
||||
|
||||
size_t nb;
|
||||
float* xb = (float*)hdf5_read(ann_file_name.c_str(), "train", H5T_FLOAT, d, nb);
|
||||
assert(d == dim || !"dataset does not have correct dimension");
|
||||
|
||||
printf("[%.3f s] Preparing index \"%s\" d=%ld\n", elapsed() - t0, index_key.c_str(), d);
|
||||
|
||||
faiss::Index* ori_index = faiss::index_factory(d, index_key.c_str(), metric_type);
|
||||
|
||||
auto device_index = faiss::gpu::index_cpu_to_gpu(&res, 0, ori_index);
|
||||
|
||||
printf("[%.3f s] Training on %ld vectors\n", elapsed() - t0, nb);
|
||||
|
||||
device_index->train(nb, xb);
|
||||
|
||||
printf("[%.3f s] Loading database\n", elapsed() - t0);
|
||||
|
||||
for (int i = 0; i < index_add_loops; i++) {
|
||||
printf("[%.3f s] Indexing database, size %ld*%ld\n", elapsed() - t0, nb, d);
|
||||
device_index->add(nb, xb);
|
||||
}
|
||||
|
||||
cpu_index = faiss::gpu::index_gpu_to_cpu(device_index);
|
||||
faiss::write_index(cpu_index, index_file_name.c_str());
|
||||
|
||||
delete[] xb;
|
||||
}
|
||||
|
||||
faiss::IndexIVF* cpu_ivf_index = dynamic_cast<faiss::IndexIVF*>(cpu_index);
|
||||
if (cpu_ivf_index != nullptr) {
|
||||
cpu_ivf_index->to_readonly();
|
||||
}
|
||||
|
||||
faiss::gpu::GpuClonerOptions option;
|
||||
option.allInGpu = true;
|
||||
|
||||
faiss::IndexComposition index_composition;
|
||||
index_composition.index = cpu_index;
|
||||
index_composition.quantizer = nullptr;
|
||||
index_composition.mode = 1;
|
||||
|
||||
double copy_time = elapsed();
|
||||
auto index = faiss::gpu::index_cpu_to_gpu(&res, 0, &index_composition, &option);
|
||||
delete index;
|
||||
|
||||
if (pure_gpu_mode) {
|
||||
index_composition.mode = 2; // 0: all data, 1: copy quantizer, 2: copy data
|
||||
index = faiss::gpu::index_cpu_to_gpu(&res, 0, &index_composition, &option);
|
||||
}
|
||||
|
||||
copy_time = elapsed() - copy_time;
|
||||
printf("[%.3f s] Copy quantizer completed, cost %f s\n", elapsed() - t0, copy_time);
|
||||
|
||||
size_t nq;
|
||||
float* xq;
|
||||
{
|
||||
printf("[%.3f s] Loading queries\n", elapsed() - t0);
|
||||
|
||||
size_t d2;
|
||||
xq = (float*)hdf5_read(ann_file_name.c_str(), "test", H5T_FLOAT, d2, nq);
|
||||
assert(d == d2 || !"query does not have same dimension as train set");
|
||||
}
|
||||
|
||||
size_t k;
|
||||
faiss::Index::idx_t* gt;
|
||||
{
|
||||
printf("[%.3f s] Loading ground truth for %ld queries\n", elapsed() - t0, nq);
|
||||
|
||||
size_t nq2;
|
||||
int* gt_int = (int*)hdf5_read(ann_file_name.c_str(), "neighbors", H5T_INTEGER, k, nq2);
|
||||
assert(nq2 == nq || !"incorrect nb of ground truth entries");
|
||||
|
||||
gt = new faiss::Index::idx_t[k * nq];
|
||||
for (uint64_t i = 0; i < k * nq; ++i) {
|
||||
gt[i] = gt_int[i];
|
||||
}
|
||||
delete[] gt_int;
|
||||
}
|
||||
|
||||
const size_t NQ = 1000, K = 1000;
|
||||
if (!pure_gpu_mode) {
|
||||
for (auto nprobe : nprobes) {
|
||||
auto ivf_index = dynamic_cast<faiss::IndexIVF*>(cpu_index);
|
||||
ivf_index->nprobe = nprobe;
|
||||
|
||||
auto is_gpu_flat_index = dynamic_cast<faiss::gpu::GpuIndexFlat*>(ivf_index->quantizer);
|
||||
if (is_gpu_flat_index == nullptr) {
|
||||
delete ivf_index->quantizer;
|
||||
ivf_index->quantizer = index_composition.quantizer;
|
||||
}
|
||||
|
||||
int64_t* I = new faiss::Index::idx_t[NQ * K];
|
||||
float* D = new float[NQ * K];
|
||||
|
||||
printf("\n%s | %s-MIX | nprobe=%lu\n", ann_test_name.c_str(), index_key.c_str(), nprobe);
|
||||
printf("======================================================================================\n");
|
||||
for (size_t t_nq = 10; t_nq <= NQ; t_nq *= 10) { // nq = {10, 100, 1000}
|
||||
for (size_t t_k = 100; t_k <= K; t_k *= 10) { // k = {100, 1000}
|
||||
faiss::indexIVF_stats.quantization_time = 0.0;
|
||||
faiss::indexIVF_stats.search_time = 0.0;
|
||||
|
||||
double t_start = elapsed(), t_end;
|
||||
for (int32_t i = 0; i < search_loops; i++) {
|
||||
cpu_index->search(t_nq, xq, t_k, D, I);
|
||||
}
|
||||
t_end = elapsed();
|
||||
|
||||
// k = 100 for ground truth
|
||||
int32_t hit = GetResultHitCount(gt, I, k, t_k, t_nq, index_add_loops);
|
||||
|
||||
printf("nq = %4ld, k = %4ld, elapse = %.4fs (quant = %.4fs, search = %.4fs), R@ = %.4f\n", t_nq,
|
||||
t_k, (t_end - t_start) / search_loops,
|
||||
faiss::indexIVF_stats.quantization_time / 1000 / search_loops,
|
||||
faiss::indexIVF_stats.search_time / 1000 / search_loops,
|
||||
(hit / float(t_nq * k / index_add_loops)));
|
||||
}
|
||||
}
|
||||
printf("======================================================================================\n");
|
||||
|
||||
printf("[%.3f s] Search test done\n\n", elapsed() - t0);
|
||||
|
||||
delete[] I;
|
||||
delete[] D;
|
||||
}
|
||||
} else {
|
||||
std::shared_ptr<faiss::Index> gpu_index_ivf_ptr = std::shared_ptr<faiss::Index>(index);
|
||||
|
||||
for (auto nprobe : nprobes) {
|
||||
faiss::gpu::GpuIndexIVFSQHybrid* gpu_index_ivf_hybrid =
|
||||
dynamic_cast<faiss::gpu::GpuIndexIVFSQHybrid*>(gpu_index_ivf_ptr.get());
|
||||
gpu_index_ivf_hybrid->setNumProbes(nprobe);
|
||||
|
||||
int64_t* I = new faiss::Index::idx_t[NQ * K];
|
||||
float* D = new float[NQ * K];
|
||||
|
||||
printf("\n%s | %s-GPU | nprobe=%lu\n", ann_test_name.c_str(), index_key.c_str(), nprobe);
|
||||
printf("======================================================================================\n");
|
||||
for (size_t t_nq = 10; t_nq <= NQ; t_nq *= 10) { // nq = {10, 100, 1000}
|
||||
for (size_t t_k = 100; t_k <= K; t_k *= 10) { // k = {100, 1000}
|
||||
faiss::indexIVF_stats.quantization_time = 0.0;
|
||||
faiss::indexIVF_stats.search_time = 0.0;
|
||||
|
||||
double t_start = elapsed(), t_end;
|
||||
for (int32_t i = 0; i < search_loops; i++) {
|
||||
gpu_index_ivf_ptr->search(nq, xq, k, D, I);
|
||||
}
|
||||
t_end = elapsed();
|
||||
|
||||
// k = 100 for ground truth
|
||||
int32_t hit = GetResultHitCount(gt, I, k, t_k, t_nq, index_add_loops);
|
||||
|
||||
printf("nq = %4ld, k = %4ld, elapse = %.4fs (quant = %.4fs, search = %.4fs), R@ = %.4f\n", t_nq,
|
||||
t_k, (t_end - t_start) / search_loops,
|
||||
faiss::indexIVF_stats.quantization_time / 1000 / search_loops,
|
||||
faiss::indexIVF_stats.search_time / 1000 / search_loops,
|
||||
(hit / float(t_nq * k / index_add_loops)));
|
||||
}
|
||||
}
|
||||
printf("======================================================================================\n");
|
||||
|
||||
printf("[%.3f s] Search test done\n\n", elapsed() - t0);
|
||||
|
||||
delete[] I;
|
||||
delete[] D;
|
||||
}
|
||||
}
|
||||
|
||||
delete[] xq;
|
||||
delete[] gt;
|
||||
delete cpu_index;
|
||||
}
|
||||
#endif
|
||||
|
||||
/************************************************************************************
|
||||
* https://github.com/erikbern/ann-benchmarks
|
||||
*
|
||||
* Dataset Dimensions Train_size Test_size Neighbors Distance Download
|
||||
* Fashion-
|
||||
* MNIST 784 60,000 10,000 100 Euclidean HDF5 (217MB)
|
||||
* GIST 960 1,000,000 1,000 100 Euclidean HDF5 (3.6GB)
|
||||
* GloVe 100 1,183,514 10,000 100 Angular HDF5 (463MB)
|
||||
* GloVe 200 1,183,514 10,000 100 Angular HDF5 (918MB)
|
||||
* MNIST 784 60,000 10,000 100 Euclidean HDF5 (217MB)
|
||||
* NYTimes 256 290,000 10,000 100 Angular HDF5 (301MB)
|
||||
* SIFT 128 1,000,000 10,000 100 Euclidean HDF5 (501MB)
|
||||
*************************************************************************************/
|
||||
|
||||
TEST(FAISSTEST, BENCHMARK) {
|
||||
std::vector<size_t> param_nprobes = {8, 128};
|
||||
const int32_t SEARCH_LOOPS = 5;
|
||||
const int32_t SIFT_INSERT_LOOPS = 2; // insert twice to get ~1G data set
|
||||
const int32_t GLOVE_INSERT_LOOPS = 1;
|
||||
|
||||
test_ann_hdf5("sift-128-euclidean", "IVF4096,Flat", SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
||||
test_ann_hdf5("sift-128-euclidean", "IVF16384,SQ8", SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
||||
#ifdef CUSTOMIZATION
|
||||
test_ann_hdf5("sift-128-euclidean", "IVF16384,SQ8Hybrid", SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
||||
test_ivfsq8h("sift-128-euclidean", SIFT_INSERT_LOOPS, param_nprobes, false, SEARCH_LOOPS);
|
||||
test_ivfsq8h("sift-128-euclidean", SIFT_INSERT_LOOPS, param_nprobes, true, SEARCH_LOOPS);
|
||||
#endif
|
||||
|
||||
test_ann_hdf5("glove-200-angular", "IVF4096,Flat", GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
||||
test_ann_hdf5("glove-200-angular", "IVF16384,SQ8", GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
||||
#ifdef CUSTOMIZATION
|
||||
test_ann_hdf5("glove-200-angular", "IVF16384,SQ8Hybrid", GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
||||
test_ivfsq8h("glove-200-angular", GLOVE_INSERT_LOOPS, param_nprobes, false, SEARCH_LOOPS);
|
||||
test_ivfsq8h("glove-200-angular", GLOVE_INSERT_LOOPS, param_nprobes, true, SEARCH_LOOPS);
|
||||
#endif
|
||||
}
|
Loading…
Reference in New Issue