mirror of https://github.com/milvus-io/milvus.git
Modify tests after code change (#20399)
Signed-off-by: Binbin Lv <binbin.lv@zilliz.com> Signed-off-by: Binbin Lv <binbin.lv@zilliz.com>pull/20402/head
parent
1a4c0fa2e8
commit
510106bd64
|
@ -12,7 +12,7 @@ allure-pytest==2.7.0
|
|||
pytest-print==0.2.1
|
||||
pytest-level==0.1.1
|
||||
pytest-xdist==2.5.0
|
||||
pymilvus==2.2.0.dev71
|
||||
pymilvus==2.2.0.dev72
|
||||
pytest-rerunfailures==9.1.1
|
||||
git+https://github.com/Projectplace/pytest-tags
|
||||
ndg-httpsclient
|
||||
|
|
|
@ -81,7 +81,7 @@ class TestInsertParams(TestcaseBase):
|
|||
"""
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
collection_w = self.init_collection_wrap(name=c_name)
|
||||
error = {ct.err_code: 0, ct.err_msg: "Data type is not support"}
|
||||
error = {ct.err_code: 1, ct.err_msg: "The type of data should be list or pandas.DataFrame"}
|
||||
collection_w.insert(data=get_non_data_type, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
|
@ -94,7 +94,8 @@ class TestInsertParams(TestcaseBase):
|
|||
"""
|
||||
c_name = cf.gen_unique_str(prefix)
|
||||
collection_w = self.init_collection_wrap(name=c_name)
|
||||
error = {ct.err_code: 0, ct.err_msg: "The data fields number is not match with schema"}
|
||||
error = {ct.err_code: 1, ct.err_msg: "The fields don't match with schema fields, "
|
||||
"expected: ['int64', 'float', 'varchar', 'float_vector'], got %s" % data}
|
||||
collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
|
@ -122,7 +123,7 @@ class TestInsertParams(TestcaseBase):
|
|||
collection_w = self.init_collection_wrap(name=c_name)
|
||||
df = cf.gen_default_dataframe_data(10)
|
||||
df.rename(columns={ct.default_int64_field_name: ' '}, inplace=True)
|
||||
error = {ct.err_code: 0, ct.err_msg: "The types of schema and data do not match"}
|
||||
error = {ct.err_code: 1, ct.err_msg: "The name of field don't match, expected: int64, got "}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
|
@ -136,7 +137,7 @@ class TestInsertParams(TestcaseBase):
|
|||
collection_w = self.init_collection_wrap(name=c_name)
|
||||
df = cf.gen_default_dataframe_data(10)
|
||||
df.rename(columns={ct.default_int64_field_name: get_invalid_field_name}, inplace=True)
|
||||
error = {ct.err_code: 0, ct.err_msg: "The types of schema and data do not match"}
|
||||
error = {ct.err_code: 1, ct.err_msg: "The name of field don't match, expected: int64, got %s" % get_invalid_field_name}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
def test_insert_dataframe_index(self):
|
||||
|
@ -260,7 +261,7 @@ class TestInsertParams(TestcaseBase):
|
|||
collection_w = self.init_collection_wrap(name=c_name)
|
||||
df = cf.gen_default_dataframe_data(10)
|
||||
df.rename(columns={ct.default_float_field_name: "int"}, inplace=True)
|
||||
error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'}
|
||||
error = {ct.err_code: 1, ct.err_msg: "The name of field don't match, expected: float, got int"}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
|
@ -325,7 +326,9 @@ class TestInsertParams(TestcaseBase):
|
|||
df = cf.gen_default_dataframe_data(ct.default_nb)
|
||||
new_values = [i for i in range(ct.default_nb)]
|
||||
df.insert(3, 'new', new_values)
|
||||
error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema.'}
|
||||
error = {ct.err_code: 1, ct.err_msg: "The fields don't match with schema fields, "
|
||||
"expected: ['int64', 'float', 'varchar', 'float_vector'], "
|
||||
"got ['int64', 'float', 'varchar', 'new', 'float_vector']"}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
|
@ -339,7 +342,9 @@ class TestInsertParams(TestcaseBase):
|
|||
collection_w = self.init_collection_wrap(name=c_name)
|
||||
df = cf.gen_default_dataframe_data(ct.default_nb)
|
||||
df.drop(ct.default_float_vec_field_name, axis=1, inplace=True)
|
||||
error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema.'}
|
||||
error = {ct.err_code: 1, ct.err_msg: "The fields don't match with schema fields, "
|
||||
"expected: ['int64', 'float', 'varchar', 'float_vector'], "
|
||||
"got ['int64', 'float', 'varchar']"}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
|
@ -486,7 +491,7 @@ class TestInsertOperation(TestcaseBase):
|
|||
"""
|
||||
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
|
||||
df = cf.gen_collection_schema_all_datatype
|
||||
error = {ct.err_code: 0, ct.err_msg: "Data type is not support"}
|
||||
error = {ct.err_code: 1, ct.err_msg: "The type of data should be list or pandas.DataFrame"}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
|
@ -528,7 +533,7 @@ class TestInsertOperation(TestcaseBase):
|
|||
field_one = cf.gen_int64_field(is_primary=True)
|
||||
field_two = cf.gen_int64_field()
|
||||
df = [field_one, field_two, vec_field]
|
||||
error = {ct.err_code: 0, ct.err_msg: "Data type is not support."}
|
||||
error = {ct.err_code: 1, ct.err_msg: "data should be a list of list"}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
|
@ -686,7 +691,7 @@ class TestInsertOperation(TestcaseBase):
|
|||
schema = cf.gen_default_collection_schema(auto_id=True)
|
||||
collection_w = self.init_collection_wrap(name=c_name, schema=schema)
|
||||
df = cf.gen_default_dataframe_data(nb=100)
|
||||
error = {ct.err_code: 0, ct.err_msg: 'Auto_id is True, primary field should not have data'}
|
||||
error = {ct.err_code: 1, ct.err_msg: "Please don't provide data for auto_id primary field: int64"}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
assert collection_w.is_empty
|
||||
|
||||
|
@ -701,7 +706,8 @@ class TestInsertOperation(TestcaseBase):
|
|||
schema = cf.gen_default_collection_schema(auto_id=True)
|
||||
collection_w = self.init_collection_wrap(name=c_name, schema=schema)
|
||||
data = cf.gen_default_list_data(nb=100)
|
||||
error = {ct.err_code: 0, ct.err_msg: 'The data fields number is not match with schema'}
|
||||
error = {ct.err_code: 1, ct.err_msg: "The fields don't match with schema fields, "
|
||||
"expected: ['float', 'varchar', 'float_vector'], got ['', '', '', '']"}
|
||||
collection_w.insert(data=data, check_task=CheckTasks.err_res, check_items=error)
|
||||
assert collection_w.is_empty
|
||||
|
||||
|
@ -1058,7 +1064,7 @@ class TestInsertInvalidBinary(TestcaseBase):
|
|||
vec_field, _ = self.field_schema_wrap.init_field_schema(name=ct.default_binary_vec_field_name,
|
||||
dtype=DataType.BINARY_VECTOR)
|
||||
df = [field_one, field_two, vec_field]
|
||||
error = {ct.err_code: 0, ct.err_msg: "Data type is not support."}
|
||||
error = {ct.err_code: 1, ct.err_msg: "data should be a list of list"}
|
||||
mutation_res, _ = collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
|
@ -1132,7 +1138,7 @@ class TestInsertString(TestcaseBase):
|
|||
df = cf.gen_default_dataframe_data(nb)
|
||||
new_float_value = pd.Series(data=[float(i) for i in range(nb)], dtype="float64")
|
||||
df.iloc[:, 2] = new_float_value
|
||||
error = {ct.err_code: 0, ct.err_msg: 'The types of schema and data do not match'}
|
||||
error = {ct.err_code: 1, ct.err_msg: "The data type of field varchar doesn't match, expected: VARCHAR, got DOUBLE"}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L0)
|
||||
|
@ -1146,7 +1152,7 @@ class TestInsertString(TestcaseBase):
|
|||
c_name = cf.gen_unique_str(prefix)
|
||||
collection_w = self.init_collection_wrap(name=c_name)
|
||||
df = [cf.gen_int64_field(), cf.gen_string_field(name=ct.get_invalid_strs), cf.gen_float_vec_field()]
|
||||
error = {ct.err_code: 0, ct.err_msg: 'Data type is not support.'}
|
||||
error = {ct.err_code: 1, ct.err_msg: 'data should be a list of list'}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L0)
|
||||
|
@ -1165,7 +1171,7 @@ class TestInsertString(TestcaseBase):
|
|||
field_three = cf.gen_string_field(max_length=nums)
|
||||
vec_field = cf.gen_float_vec_field()
|
||||
df = [field_one, field_two, field_three, vec_field]
|
||||
error = {ct.err_code: 0, ct.err_msg: 'Data type is not support.'}
|
||||
error = {ct.err_code: 1, ct.err_msg: 'data should be a list of list'}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
|
@ -1182,7 +1188,7 @@ class TestInsertString(TestcaseBase):
|
|||
int_field = cf.gen_int64_field(is_primary=True)
|
||||
vec_field = cf.gen_float_vec_field()
|
||||
df = [string_field, int_field, vec_field]
|
||||
error = {ct.err_code: 0, ct.err_msg: 'Data type is not support.'}
|
||||
error = {ct.err_code: 1, ct.err_msg: 'data should be a list of list'}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
|
@ -1199,7 +1205,7 @@ class TestInsertString(TestcaseBase):
|
|||
vec_field = cf.gen_float_vec_field()
|
||||
string_field = cf.gen_string_field(is_primary=True, auto_id=True)
|
||||
df = [int_field, string_field, vec_field]
|
||||
error = {ct.err_code: 0, ct.err_msg: 'Data type is not support.'}
|
||||
error = {ct.err_code: 1, ct.err_msg: 'data should be a list of list'}
|
||||
collection_w.insert(data=df, check_task=CheckTasks.err_res, check_items=error)
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L1)
|
||||
|
|
Loading…
Reference in New Issue