Merge remote-tracking branch 'source/0.6.0' into 0.6.0

pull/442/head
groot 2019-11-20 17:55:01 +08:00
commit 3beea54090
28 changed files with 1306 additions and 449 deletions

View File

@ -23,6 +23,7 @@ Please mark all change in change log and use the ticket from JIRA.
- \#77 - Support table partition
- \#127 - Support new Index type IVFPQ
- \#226 - Experimental shards middleware for Milvus
- \#227 - Support new index types SPTAG-KDT and SPTAG-BKT
- \#346 - Support build index with multiple gpu
## Improvement

View File

@ -84,12 +84,12 @@ DBImpl::Start() {
return Status::OK();
}
ENGINE_LOG_TRACE << "DB service start";
// ENGINE_LOG_TRACE << "DB service start";
shutting_down_.store(false, std::memory_order_release);
// for distribute version, some nodes are read only
if (options_.mode_ != DBOptions::MODE::CLUSTER_READONLY) {
ENGINE_LOG_TRACE << "StartTimerTasks";
// ENGINE_LOG_TRACE << "StartTimerTasks";
bg_timer_thread_ = std::thread(&DBImpl::BackgroundTimerTask, this);
}
@ -114,7 +114,7 @@ DBImpl::Stop() {
meta_ptr_->CleanUp();
}
ENGINE_LOG_TRACE << "DB service stop";
// ENGINE_LOG_TRACE << "DB service stop";
return Status::OK();
}
@ -558,7 +558,7 @@ DBImpl::StartMetricTask() {
return;
}
ENGINE_LOG_TRACE << "Start metric task";
// ENGINE_LOG_TRACE << "Start metric task";
server::Metrics::GetInstance().KeepingAliveCounterIncrement(METRIC_ACTION_INTERVAL);
int64_t cache_usage = cache::CpuCacheMgr::GetInstance()->CacheUsage();
@ -584,7 +584,7 @@ DBImpl::StartMetricTask() {
server::Metrics::GetInstance().GPUTemperature();
server::Metrics::GetInstance().CPUTemperature();
ENGINE_LOG_TRACE << "Metric task finished";
// ENGINE_LOG_TRACE << "Metric task finished";
}
Status
@ -756,7 +756,7 @@ DBImpl::BackgroundMergeFiles(const std::string& table_id) {
void
DBImpl::BackgroundCompaction(std::set<std::string> table_ids) {
ENGINE_LOG_TRACE << "Background compaction thread start";
// ENGINE_LOG_TRACE << " Background compaction thread start";
Status status;
for (auto& table_id : table_ids) {
@ -779,7 +779,7 @@ DBImpl::BackgroundCompaction(std::set<std::string> table_ids) {
}
meta_ptr_->CleanUpFilesWithTTL(ttl);
ENGINE_LOG_TRACE << "Background compaction thread exit";
// ENGINE_LOG_TRACE << " Background compaction thread exit";
}
void
@ -812,7 +812,7 @@ DBImpl::StartBuildIndexTask(bool force) {
void
DBImpl::BackgroundBuildIndex() {
ENGINE_LOG_TRACE << "Background build index thread start";
// ENGINE_LOG_TRACE << "Background build index thread start";
std::unique_lock<std::mutex> lock(build_index_mutex_);
meta::TableFilesSchema to_index_files;
@ -835,7 +835,7 @@ DBImpl::BackgroundBuildIndex() {
}
}
ENGINE_LOG_TRACE << "Background build index thread exit";
// ENGINE_LOG_TRACE << "Background build index thread exit";
}
Status

View File

@ -35,7 +35,9 @@ enum class EngineType {
NSG_MIX,
FAISS_IVFSQ8H,
FAISS_PQ,
MAX_VALUE = FAISS_PQ,
SPTAG_KDT,
SPTAG_BKT,
MAX_VALUE = SPTAG_BKT,
};
enum class MetricType {

View File

@ -124,6 +124,14 @@ ExecutionEngineImpl::CreatetVecIndex(EngineType type) {
#endif
break;
}
case EngineType::SPTAG_KDT: {
index = GetVecIndexFactory(IndexType::SPTAG_KDT_RNT_CPU);
break;
}
case EngineType::SPTAG_BKT: {
index = GetVecIndexFactory(IndexType::SPTAG_BKT_RNT_CPU);
break;
}
default: {
ENGINE_LOG_ERROR << "Unsupported index type";
return nullptr;

View File

@ -30,10 +30,10 @@ set(external_srcs
set(index_srcs
knowhere/index/preprocessor/Normalize.cpp
knowhere/index/vector_index/IndexKDT.cpp
knowhere/index/vector_index/IndexSPTAG.cpp
knowhere/index/vector_index/IndexIDMAP.cpp
knowhere/index/vector_index/IndexIVF.cpp
knowhere/index/vector_index/helpers/KDTParameterMgr.cpp
knowhere/index/vector_index/helpers/SPTAGParameterMgr.cpp
knowhere/index/vector_index/IndexNSG.cpp
knowhere/index/vector_index/nsg/NSG.cpp
knowhere/index/vector_index/nsg/NSGIO.cpp

View File

@ -1,180 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <SPTAG/AnnService/inc/Core/Common.h>
#include <SPTAG/AnnService/inc/Core/VectorSet.h>
#include <SPTAG/AnnService/inc/Server/QueryParser.h>
#include <sstream>
#include <vector>
#undef mkdir
#include "knowhere/index/vector_index/IndexKDT.h"
#include "knowhere/index/vector_index/helpers/Definitions.h"
//#include "knowhere/index/preprocessor/normalize.h"
#include "knowhere/adapter/SptagAdapter.h"
#include "knowhere/common/Exception.h"
#include "knowhere/index/vector_index/helpers/KDTParameterMgr.h"
namespace knowhere {
BinarySet
CPUKDTRNG::Serialize() {
std::vector<void*> index_blobs;
std::vector<int64_t> index_len;
// TODO(zirui): dev
// index_ptr_->SaveIndexToMemory(index_blobs, index_len);
BinarySet binary_set;
//
// auto sample = std::make_shared<uint8_t>();
// sample.reset(static_cast<uint8_t*>(index_blobs[0]));
// auto tree = std::make_shared<uint8_t>();
// tree.reset(static_cast<uint8_t*>(index_blobs[1]));
// auto graph = std::make_shared<uint8_t>();
// graph.reset(static_cast<uint8_t*>(index_blobs[2]));
// auto metadata = std::make_shared<uint8_t>();
// metadata.reset(static_cast<uint8_t*>(index_blobs[3]));
//
// binary_set.Append("samples", sample, index_len[0]);
// binary_set.Append("tree", tree, index_len[1]);
// binary_set.Append("graph", graph, index_len[2]);
// binary_set.Append("metadata", metadata, index_len[3]);
return binary_set;
}
void
CPUKDTRNG::Load(const BinarySet& binary_set) {
// TODO(zirui): dev
// std::vector<void*> index_blobs;
//
// auto samples = binary_set.GetByName("samples");
// index_blobs.push_back(samples->data.get());
//
// auto tree = binary_set.GetByName("tree");
// index_blobs.push_back(tree->data.get());
//
// auto graph = binary_set.GetByName("graph");
// index_blobs.push_back(graph->data.get());
//
// auto metadata = binary_set.GetByName("metadata");
// index_blobs.push_back(metadata->data.get());
//
// index_ptr_->LoadIndexFromMemory(index_blobs);
}
// PreprocessorPtr
// CPUKDTRNG::BuildPreprocessor(const DatasetPtr &dataset, const Config &config) {
// return std::make_shared<NormalizePreprocessor>();
//}
IndexModelPtr
CPUKDTRNG::Train(const DatasetPtr& origin, const Config& train_config) {
SetParameters(train_config);
DatasetPtr dataset = origin->Clone();
// if (index_ptr_->GetDistCalcMethod() == SPTAG::DistCalcMethod::Cosine
// && preprocessor_) {
// preprocessor_->Preprocess(dataset);
//}
auto vectorset = ConvertToVectorSet(dataset);
auto metaset = ConvertToMetadataSet(dataset);
index_ptr_->BuildIndex(vectorset, metaset);
// TODO: return IndexModelPtr
return nullptr;
}
void
CPUKDTRNG::Add(const DatasetPtr& origin, const Config& add_config) {
SetParameters(add_config);
DatasetPtr dataset = origin->Clone();
// if (index_ptr_->GetDistCalcMethod() == SPTAG::DistCalcMethod::Cosine
// && preprocessor_) {
// preprocessor_->Preprocess(dataset);
//}
auto vectorset = ConvertToVectorSet(dataset);
auto metaset = ConvertToMetadataSet(dataset);
index_ptr_->AddIndex(vectorset, metaset);
}
void
CPUKDTRNG::SetParameters(const Config& config) {
for (auto& para : KDTParameterMgr::GetInstance().GetKDTParameters()) {
// auto value = config.get_with_default(para.first, para.second);
index_ptr_->SetParameter(para.first, para.second);
}
}
DatasetPtr
CPUKDTRNG::Search(const DatasetPtr& dataset, const Config& config) {
SetParameters(config);
auto tensor = dataset->tensor()[0];
auto p = (float*)tensor->raw_mutable_data();
for (auto i = 0; i < 10; ++i) {
for (auto j = 0; j < 10; ++j) {
std::cout << p[i * 10 + j] << " ";
}
std::cout << std::endl;
}
std::vector<SPTAG::QueryResult> query_results = ConvertToQueryResult(dataset, config);
#pragma omp parallel for
for (auto i = 0; i < query_results.size(); ++i) {
auto target = (float*)query_results[i].GetTarget();
std::cout << target[0] << ", " << target[1] << ", " << target[2] << std::endl;
index_ptr_->SearchIndex(query_results[i]);
}
return ConvertToDataset(query_results);
}
int64_t
CPUKDTRNG::Count() {
index_ptr_->GetNumSamples();
}
int64_t
CPUKDTRNG::Dimension() {
index_ptr_->GetFeatureDim();
}
VectorIndexPtr
CPUKDTRNG::Clone() {
KNOWHERE_THROW_MSG("not support");
}
void
CPUKDTRNG::Seal() {
// do nothing
}
// TODO(linxj):
BinarySet
CPUKDTRNGIndexModel::Serialize() {
}
void
CPUKDTRNGIndexModel::Load(const BinarySet& binary) {
}
} // namespace knowhere

View File

@ -0,0 +1,348 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <SPTAG/AnnService/inc/Core/Common.h>
#include <SPTAG/AnnService/inc/Core/VectorSet.h>
#include <SPTAG/AnnService/inc/Server/QueryParser.h>
#include <array>
#include <sstream>
#include <vector>
#undef mkdir
#include "knowhere/adapter/SptagAdapter.h"
#include "knowhere/common/Exception.h"
#include "knowhere/index/vector_index/IndexSPTAG.h"
#include "knowhere/index/vector_index/helpers/Definitions.h"
#include "knowhere/index/vector_index/helpers/SPTAGParameterMgr.h"
namespace knowhere {
CPUSPTAGRNG::CPUSPTAGRNG(const std::string& IndexType) {
if (IndexType == "KDT") {
index_ptr_ = SPTAG::VectorIndex::CreateInstance(SPTAG::IndexAlgoType::KDT, SPTAG::VectorValueType::Float);
index_ptr_->SetParameter("DistCalcMethod", "L2");
index_type_ = SPTAG::IndexAlgoType::KDT;
} else {
index_ptr_ = SPTAG::VectorIndex::CreateInstance(SPTAG::IndexAlgoType::BKT, SPTAG::VectorValueType::Float);
index_ptr_->SetParameter("DistCalcMethod", "L2");
index_type_ = SPTAG::IndexAlgoType::BKT;
}
}
BinarySet
CPUSPTAGRNG::Serialize() {
std::string index_config;
std::vector<SPTAG::ByteArray> index_blobs;
std::shared_ptr<std::vector<std::uint64_t>> buffersize = index_ptr_->CalculateBufferSize();
std::vector<char*> res(buffersize->size() + 1);
for (uint64_t i = 1; i < res.size(); i++) {
res[i] = new char[buffersize->at(i - 1)];
auto ptr = &res[i][0];
index_blobs.emplace_back(SPTAG::ByteArray((std::uint8_t*)ptr, buffersize->at(i - 1), false));
}
index_ptr_->SaveIndex(index_config, index_blobs);
size_t length = index_config.length();
char* cstr = new char[length];
snprintf(cstr, length, "%s", index_config.c_str());
BinarySet binary_set;
auto sample = std::make_shared<uint8_t>();
sample.reset(static_cast<uint8_t*>(index_blobs[0].Data()));
auto tree = std::make_shared<uint8_t>();
tree.reset(static_cast<uint8_t*>(index_blobs[1].Data()));
auto graph = std::make_shared<uint8_t>();
graph.reset(static_cast<uint8_t*>(index_blobs[2].Data()));
auto deleteid = std::make_shared<uint8_t>();
deleteid.reset(static_cast<uint8_t*>(index_blobs[3].Data()));
auto metadata1 = std::make_shared<uint8_t>();
metadata1.reset(static_cast<uint8_t*>(index_blobs[4].Data()));
auto metadata2 = std::make_shared<uint8_t>();
metadata2.reset(static_cast<uint8_t*>(index_blobs[5].Data()));
auto config = std::make_shared<uint8_t>();
config.reset(static_cast<uint8_t*>((void*)cstr));
binary_set.Append("samples", sample, index_blobs[0].Length());
binary_set.Append("tree", tree, index_blobs[1].Length());
binary_set.Append("deleteid", deleteid, index_blobs[3].Length());
binary_set.Append("metadata1", metadata1, index_blobs[4].Length());
binary_set.Append("metadata2", metadata2, index_blobs[5].Length());
binary_set.Append("config", config, length);
binary_set.Append("graph", graph, index_blobs[2].Length());
// MemoryIOWriter writer;
// size_t len = 0;
// for (int i = 0; i < 6; ++i) {
// len = index_blobs[i].Length();
// assert(len != 0);
// writer(&len, sizeof(size_t), 1);
// writer(index_blobs[i].Data(), len, 1);
// len = 0;
// }
// writer(&length, sizeof(size_t), 1);
// writer(cstr, length, 1);
// auto data = std::make_shared<uint8_t>();
// data.reset(writer.data_);
// BinarySet binary_set;
// binary_set.Append("sptag", data, writer.total);
// MemoryIOWriter writer;
// size_t len = 0;
// for (int i = 0; i < 6; ++i) {
// if (i == 2) continue;
// len = index_blobs[i].Length();
// assert(len != 0);
// writer(&len, sizeof(size_t), 1);
// writer(index_blobs[i].Data(), len, 1);
// len = 0;
// }
// writer(&length, sizeof(size_t), 1);
// writer(cstr, length, 1);
// auto data = std::make_shared<uint8_t>();
// data.reset(writer.data_);
// BinarySet binary_set;
// binary_set.Append("sptag", data, writer.total);
// auto graph = std::make_shared<uint8_t>();
// graph.reset(static_cast<uint8_t*>(index_blobs[2].Data()));
// binary_set.Append("graph", graph, index_blobs[2].Length());
return binary_set;
}
void
CPUSPTAGRNG::Load(const BinarySet& binary_set) {
std::string index_config;
std::vector<SPTAG::ByteArray> index_blobs;
auto samples = binary_set.GetByName("samples");
index_blobs.push_back(SPTAG::ByteArray(samples->data.get(), samples->size, false));
auto tree = binary_set.GetByName("tree");
index_blobs.push_back(SPTAG::ByteArray(tree->data.get(), tree->size, false));
auto graph = binary_set.GetByName("graph");
index_blobs.push_back(SPTAG::ByteArray(graph->data.get(), graph->size, false));
auto deleteid = binary_set.GetByName("deleteid");
index_blobs.push_back(SPTAG::ByteArray(deleteid->data.get(), deleteid->size, false));
auto metadata1 = binary_set.GetByName("metadata1");
index_blobs.push_back(SPTAG::ByteArray(metadata1->data.get(), metadata1->size, false));
auto metadata2 = binary_set.GetByName("metadata2");
index_blobs.push_back(SPTAG::ByteArray(metadata2->data.get(), metadata2->size, false));
auto config = binary_set.GetByName("config");
index_config = reinterpret_cast<char*>(config->data.get());
// std::vector<SPTAG::ByteArray> index_blobs;
// auto data = binary_set.GetByName("sptag");
// MemoryIOReader reader;
// reader.total = data->size;
// reader.data_ = data->data.get();
// size_t len = 0;
// for (int i = 0; i < 6; ++i) {
// reader(&len, sizeof(size_t), 1);
// assert(len != 0);
// auto binary = new uint8_t[len];
// reader(binary, len, 1);
// index_blobs.emplace_back(SPTAG::ByteArray(binary, len, true));
// len = 0;
// }
// reader(&len, sizeof(size_t), 1);
// assert(len != 0);
// auto config = new char[len];
// reader(config, len, 1);
// std::string index_config = config;
// delete[] config;
// std::vector<SPTAG::ByteArray> index_blobs;
// auto data = binary_set.GetByName("sptag");
// MemoryIOReader reader;
// reader.total = data->size;
// reader.data_ = data->data.get();
// size_t len = 0;
// for (int i = 0; i < 6; ++i) {
// if (i == 2) {
// auto graph = binary_set.GetByName("graph");
// index_blobs.emplace_back(SPTAG::ByteArray(graph->data.get(), graph->size, false));
// continue;
// }
// reader(&len, sizeof(size_t), 1);
// assert(len != 0);
// auto binary = new uint8_t[len];
// reader(binary, len, 1);
// index_blobs.emplace_back(SPTAG::ByteArray(binary, len, true));
// len = 0;
// }
// reader(&len, sizeof(size_t), 1);
// assert(len != 0);
// auto config = new char[len];
// reader(config, len, 1);
// std::string index_config = config;
// delete[] config;
index_ptr_->LoadIndex(index_config, index_blobs);
}
// PreprocessorPtr
// CPUKDTRNG::BuildPreprocessor(const DatasetPtr &dataset, const Config &config) {
// return std::make_shared<NormalizePreprocessor>();
//}
IndexModelPtr
CPUSPTAGRNG::Train(const DatasetPtr& origin, const Config& train_config) {
SetParameters(train_config);
DatasetPtr dataset = origin->Clone();
// if (index_ptr_->GetDistCalcMethod() == SPTAG::DistCalcMethod::Cosine
// && preprocessor_) {
// preprocessor_->Preprocess(dataset);
//}
auto vectorset = ConvertToVectorSet(dataset);
auto metaset = ConvertToMetadataSet(dataset);
index_ptr_->BuildIndex(vectorset, metaset);
// TODO: return IndexModelPtr
return nullptr;
}
void
CPUSPTAGRNG::Add(const DatasetPtr& origin, const Config& add_config) {
// SetParameters(add_config);
// DatasetPtr dataset = origin->Clone();
//
// // if (index_ptr_->GetDistCalcMethod() == SPTAG::DistCalcMethod::Cosine
// // && preprocessor_) {
// // preprocessor_->Preprocess(dataset);
// //}
//
// auto vectorset = ConvertToVectorSet(dataset);
// auto metaset = ConvertToMetadataSet(dataset);
// index_ptr_->AddIndex(vectorset, metaset);
}
void
CPUSPTAGRNG::SetParameters(const Config& config) {
#define Assign(param_name, str_name) \
conf->param_name == INVALID_VALUE ? index_ptr_->SetParameter(str_name, std::to_string(build_cfg->param_name)) \
: index_ptr_->SetParameter(str_name, std::to_string(conf->param_name))
if (index_type_ == SPTAG::IndexAlgoType::KDT) {
auto conf = std::dynamic_pointer_cast<KDTCfg>(config);
auto build_cfg = SPTAGParameterMgr::GetInstance().GetKDTParameters();
Assign(kdtnumber, "KDTNumber");
Assign(numtopdimensionkdtsplit, "NumTopDimensionKDTSplit");
Assign(samples, "Samples");
Assign(tptnumber, "TPTNumber");
Assign(tptleafsize, "TPTLeafSize");
Assign(numtopdimensiontptsplit, "NumTopDimensionTPTSplit");
Assign(neighborhoodsize, "NeighborhoodSize");
Assign(graphneighborhoodscale, "GraphNeighborhoodScale");
Assign(graphcefscale, "GraphCEFScale");
Assign(refineiterations, "RefineIterations");
Assign(cef, "CEF");
Assign(maxcheckforrefinegraph, "MaxCheckForRefineGraph");
Assign(numofthreads, "NumberOfThreads");
Assign(maxcheck, "MaxCheck");
Assign(thresholdofnumberofcontinuousnobetterpropagation, "ThresholdOfNumberOfContinuousNoBetterPropagation");
Assign(numberofinitialdynamicpivots, "NumberOfInitialDynamicPivots");
Assign(numberofotherdynamicpivots, "NumberOfOtherDynamicPivots");
} else {
auto conf = std::dynamic_pointer_cast<BKTCfg>(config);
auto build_cfg = SPTAGParameterMgr::GetInstance().GetBKTParameters();
Assign(bktnumber, "BKTNumber");
Assign(bktkmeansk, "BKTKMeansK");
Assign(bktleafsize, "BKTLeafSize");
Assign(samples, "Samples");
Assign(tptnumber, "TPTNumber");
Assign(tptleafsize, "TPTLeafSize");
Assign(numtopdimensiontptsplit, "NumTopDimensionTPTSplit");
Assign(neighborhoodsize, "NeighborhoodSize");
Assign(graphneighborhoodscale, "GraphNeighborhoodScale");
Assign(graphcefscale, "GraphCEFScale");
Assign(refineiterations, "RefineIterations");
Assign(cef, "CEF");
Assign(maxcheckforrefinegraph, "MaxCheckForRefineGraph");
Assign(numofthreads, "NumberOfThreads");
Assign(maxcheck, "MaxCheck");
Assign(thresholdofnumberofcontinuousnobetterpropagation, "ThresholdOfNumberOfContinuousNoBetterPropagation");
Assign(numberofinitialdynamicpivots, "NumberOfInitialDynamicPivots");
Assign(numberofotherdynamicpivots, "NumberOfOtherDynamicPivots");
}
}
DatasetPtr
CPUSPTAGRNG::Search(const DatasetPtr& dataset, const Config& config) {
SetParameters(config);
auto tensor = dataset->tensor()[0];
auto p = (float*)tensor->raw_mutable_data();
for (auto i = 0; i < 10; ++i) {
for (auto j = 0; j < 10; ++j) {
std::cout << p[i * 10 + j] << " ";
}
std::cout << std::endl;
}
std::vector<SPTAG::QueryResult> query_results = ConvertToQueryResult(dataset, config);
#pragma omp parallel for
for (auto i = 0; i < query_results.size(); ++i) {
auto target = (float*)query_results[i].GetTarget();
std::cout << target[0] << ", " << target[1] << ", " << target[2] << std::endl;
index_ptr_->SearchIndex(query_results[i]);
}
return ConvertToDataset(query_results);
}
int64_t
CPUSPTAGRNG::Count() {
return index_ptr_->GetNumSamples();
}
int64_t
CPUSPTAGRNG::Dimension() {
return index_ptr_->GetFeatureDim();
}
VectorIndexPtr
CPUSPTAGRNG::Clone() {
KNOWHERE_THROW_MSG("not support");
}
void
CPUSPTAGRNG::Seal() {
return; // do nothing
}
BinarySet
CPUSPTAGRNGIndexModel::Serialize() {
// KNOWHERE_THROW_MSG("not support"); // not support
}
void
CPUSPTAGRNGIndexModel::Load(const BinarySet& binary) {
// KNOWHERE_THROW_MSG("not support"); // not support
}
} // namespace knowhere

View File

@ -18,33 +18,37 @@
#pragma once
#include <SPTAG/AnnService/inc/Core/VectorIndex.h>
#include <cstdint>
#include <memory>
#include <string>
#include "VectorIndex.h"
#include "knowhere/index/IndexModel.h"
namespace knowhere {
class CPUKDTRNG : public VectorIndex {
class CPUSPTAGRNG : public VectorIndex {
public:
CPUKDTRNG() {
index_ptr_ = SPTAG::VectorIndex::CreateInstance(SPTAG::IndexAlgoType::KDT, SPTAG::VectorValueType::Float);
index_ptr_->SetParameter("DistCalcMethod", "L2");
}
explicit CPUSPTAGRNG(const std::string& IndexType);
public:
BinarySet
Serialize() override;
VectorIndexPtr
Clone() override;
void
Load(const BinarySet& index_array) override;
public:
// PreprocessorPtr
// BuildPreprocessor(const DatasetPtr &dataset, const Config &config) override;
int64_t
Count() override;
int64_t
Dimension() override;
@ -56,6 +60,7 @@ class CPUKDTRNG : public VectorIndex {
DatasetPtr
Search(const DatasetPtr& dataset, const Config& config) override;
void
Seal() override;
@ -66,11 +71,12 @@ class CPUKDTRNG : public VectorIndex {
private:
PreprocessorPtr preprocessor_;
std::shared_ptr<SPTAG::VectorIndex> index_ptr_;
SPTAG::IndexAlgoType index_type_;
};
using CPUKDTRNGPtr = std::shared_ptr<CPUKDTRNG>;
using CPUSPTAGRNGPtr = std::shared_ptr<CPUSPTAGRNG>;
class CPUKDTRNGIndexModel : public IndexModel {
class CPUSPTAGRNGIndexModel : public IndexModel {
public:
BinarySet
Serialize() override;
@ -82,6 +88,6 @@ class CPUKDTRNGIndexModel : public IndexModel {
std::shared_ptr<SPTAG::VectorIndex> index_;
};
using CPUKDTRNGIndexModelPtr = std::shared_ptr<CPUKDTRNGIndexModel>;
using CPUSPTAGRNGIndexModelPtr = std::shared_ptr<CPUSPTAGRNGIndexModel>;
} // namespace knowhere

View File

@ -42,6 +42,32 @@ constexpr int64_t DEFAULT_OUT_DEGREE = INVALID_VALUE;
constexpr int64_t DEFAULT_CANDIDATE_SISE = INVALID_VALUE;
constexpr int64_t DEFAULT_NNG_K = INVALID_VALUE;
// SPTAG Config
constexpr int64_t DEFAULT_SAMPLES = INVALID_VALUE;
constexpr int64_t DEFAULT_TPTNUMBER = INVALID_VALUE;
constexpr int64_t DEFAULT_TPTLEAFSIZE = INVALID_VALUE;
constexpr int64_t DEFAULT_NUMTOPDIMENSIONTPTSPLIT = INVALID_VALUE;
constexpr int64_t DEFAULT_NEIGHBORHOODSIZE = INVALID_VALUE;
constexpr int64_t DEFAULT_GRAPHNEIGHBORHOODSCALE = INVALID_VALUE;
constexpr int64_t DEFAULT_GRAPHCEFSCALE = INVALID_VALUE;
constexpr int64_t DEFAULT_REFINEITERATIONS = INVALID_VALUE;
constexpr int64_t DEFAULT_CEF = INVALID_VALUE;
constexpr int64_t DEFAULT_MAXCHECKFORREFINEGRAPH = INVALID_VALUE;
constexpr int64_t DEFAULT_NUMOFTHREADS = INVALID_VALUE;
constexpr int64_t DEFAULT_MAXCHECK = INVALID_VALUE;
constexpr int64_t DEFAULT_THRESHOLDOFNUMBEROFCONTINUOUSNOBETTERPROPAGATION = INVALID_VALUE;
constexpr int64_t DEFAULT_NUMBEROFINITIALDYNAMICPIVOTS = INVALID_VALUE;
constexpr int64_t DEFAULT_NUMBEROFOTHERDYNAMICPIVOTS = INVALID_VALUE;
// KDT Config
constexpr int64_t DEFAULT_KDTNUMBER = INVALID_VALUE;
constexpr int64_t DEFAULT_NUMTOPDIMENSIONKDTSPLIT = INVALID_VALUE;
// BKT Config
constexpr int64_t DEFAULT_BKTNUMBER = INVALID_VALUE;
constexpr int64_t DEFAULT_BKTKMEANSK = INVALID_VALUE;
constexpr int64_t DEFAULT_BKTLEAFSIZE = INVALID_VALUE;
struct IVFCfg : public Cfg {
int64_t nlist = DEFAULT_NLIST;
int64_t nprobe = DEFAULT_NPROBE;
@ -135,8 +161,57 @@ struct NSGCfg : public IVFCfg {
};
using NSGConfig = std::shared_ptr<NSGCfg>;
struct KDTCfg : public Cfg {
int64_t tptnubmber = -1;
struct SPTAGCfg : public Cfg {
int64_t samples = DEFAULT_SAMPLES;
int64_t tptnumber = DEFAULT_TPTNUMBER;
int64_t tptleafsize = DEFAULT_TPTLEAFSIZE;
int64_t numtopdimensiontptsplit = DEFAULT_NUMTOPDIMENSIONTPTSPLIT;
int64_t neighborhoodsize = DEFAULT_NEIGHBORHOODSIZE;
int64_t graphneighborhoodscale = DEFAULT_GRAPHNEIGHBORHOODSCALE;
int64_t graphcefscale = DEFAULT_GRAPHCEFSCALE;
int64_t refineiterations = DEFAULT_REFINEITERATIONS;
int64_t cef = DEFAULT_CEF;
int64_t maxcheckforrefinegraph = DEFAULT_MAXCHECKFORREFINEGRAPH;
int64_t numofthreads = DEFAULT_NUMOFTHREADS;
int64_t maxcheck = DEFAULT_MAXCHECK;
int64_t thresholdofnumberofcontinuousnobetterpropagation = DEFAULT_THRESHOLDOFNUMBEROFCONTINUOUSNOBETTERPROPAGATION;
int64_t numberofinitialdynamicpivots = DEFAULT_NUMBEROFINITIALDYNAMICPIVOTS;
int64_t numberofotherdynamicpivots = DEFAULT_NUMBEROFOTHERDYNAMICPIVOTS;
SPTAGCfg() = default;
bool
CheckValid() override {
return true;
};
};
using SPTAGConfig = std::shared_ptr<SPTAGCfg>;
struct KDTCfg : public SPTAGCfg {
int64_t kdtnumber = DEFAULT_KDTNUMBER;
int64_t numtopdimensionkdtsplit = DEFAULT_NUMTOPDIMENSIONKDTSPLIT;
KDTCfg() = default;
bool
CheckValid() override {
return true;
};
};
using KDTConfig = std::shared_ptr<KDTCfg>;
struct BKTCfg : public SPTAGCfg {
int64_t bktnumber = DEFAULT_BKTNUMBER;
int64_t bktkmeansk = DEFAULT_BKTKMEANSK;
int64_t bktleafsize = DEFAULT_BKTLEAFSIZE;
BKTCfg() = default;
bool
CheckValid() override {
return true;
};
};
using BKTConfig = std::shared_ptr<BKTCfg>;
} // namespace knowhere

View File

@ -1,55 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <mutex>
#include "knowhere/index/vector_index/helpers/KDTParameterMgr.h"
namespace knowhere {
const std::vector<KDTParameter>&
KDTParameterMgr::GetKDTParameters() {
return kdt_parameters_;
}
KDTParameterMgr::KDTParameterMgr() {
kdt_parameters_ = std::vector<KDTParameter>{
{"KDTNumber", "1"},
{"NumTopDimensionKDTSplit", "5"},
{"NumSamplesKDTSplitConsideration", "100"},
{"TPTNumber", "1"},
{"TPTLeafSize", "2000"},
{"NumTopDimensionTPTSplit", "5"},
{"NeighborhoodSize", "32"},
{"GraphNeighborhoodScale", "2"},
{"GraphCEFScale", "2"},
{"RefineIterations", "0"},
{"CEF", "1000"},
{"MaxCheckForRefineGraph", "10000"},
{"NumberOfThreads", "1"},
{"MaxCheck", "8192"},
{"ThresholdOfNumberOfContinuousNoBetterPropagation", "3"},
{"NumberOfInitialDynamicPivots", "50"},
{"NumberOfOtherDynamicPivots", "4"},
};
}
} // namespace knowhere

View File

@ -0,0 +1,75 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <mutex>
#include "knowhere/index/vector_index/helpers/SPTAGParameterMgr.h"
namespace knowhere {
const KDTConfig&
SPTAGParameterMgr::GetKDTParameters() {
return kdt_config_;
}
const BKTConfig&
SPTAGParameterMgr::GetBKTParameters() {
return bkt_config_;
}
SPTAGParameterMgr::SPTAGParameterMgr() {
kdt_config_ = std::make_shared<KDTCfg>();
kdt_config_->kdtnumber = 1;
kdt_config_->numtopdimensionkdtsplit = 5;
kdt_config_->samples = 100;
kdt_config_->tptnumber = 1;
kdt_config_->tptleafsize = 2000;
kdt_config_->numtopdimensiontptsplit = 5;
kdt_config_->neighborhoodsize = 32;
kdt_config_->graphneighborhoodscale = 2;
kdt_config_->graphcefscale = 2;
kdt_config_->refineiterations = 0;
kdt_config_->cef = 1000;
kdt_config_->maxcheckforrefinegraph = 10000;
kdt_config_->numofthreads = 1;
kdt_config_->maxcheck = 8192;
kdt_config_->thresholdofnumberofcontinuousnobetterpropagation = 3;
kdt_config_->numberofinitialdynamicpivots = 50;
kdt_config_->numberofotherdynamicpivots = 4;
bkt_config_ = std::make_shared<BKTCfg>();
bkt_config_->bktnumber = 1;
bkt_config_->bktkmeansk = 32;
bkt_config_->bktleafsize = 8;
bkt_config_->samples = 100;
bkt_config_->tptnumber = 1;
bkt_config_->tptleafsize = 2000;
bkt_config_->numtopdimensiontptsplit = 5;
bkt_config_->neighborhoodsize = 32;
bkt_config_->graphneighborhoodscale = 2;
bkt_config_->graphcefscale = 2;
bkt_config_->refineiterations = 0;
bkt_config_->cef = 1000;
bkt_config_->maxcheckforrefinegraph = 10000;
bkt_config_->numofthreads = 1;
bkt_config_->maxcheck = 8192;
bkt_config_->thresholdofnumberofcontinuousnobetterpropagation = 3;
bkt_config_->numberofinitialdynamicpivots = 50;
bkt_config_->numberofotherdynamicpivots = 4;
}
} // namespace knowhere

View File

@ -22,31 +22,40 @@
#include <utility>
#include <vector>
#include <SPTAG/AnnService/inc/Core/Common.h>
#include "IndexParameter.h"
namespace knowhere {
using KDTParameter = std::pair<std::string, std::string>;
using KDTConfig = std::shared_ptr<KDTCfg>;
using BKTConfig = std::shared_ptr<BKTCfg>;
class KDTParameterMgr {
class SPTAGParameterMgr {
public:
const std::vector<KDTParameter>&
const KDTConfig&
GetKDTParameters();
const BKTConfig&
GetBKTParameters();
public:
static KDTParameterMgr&
static SPTAGParameterMgr&
GetInstance() {
static KDTParameterMgr instance;
static SPTAGParameterMgr instance;
return instance;
}
KDTParameterMgr(const KDTParameterMgr&) = delete;
KDTParameterMgr&
operator=(const KDTParameterMgr&) = delete;
SPTAGParameterMgr(const SPTAGParameterMgr&) = delete;
SPTAGParameterMgr&
operator=(const SPTAGParameterMgr&) = delete;
private:
KDTParameterMgr();
SPTAGParameterMgr();
private:
std::vector<KDTParameter> kdt_parameters_;
KDTConfig kdt_config_;
BKTConfig bkt_config_;
};
} // namespace knowhere

View File

@ -195,7 +195,7 @@ namespace SPTAG
C = *((DimensionType*)pDataPointsMemFile);
pDataPointsMemFile += sizeof(DimensionType);
Initialize(R, C, (T*)pDataPointsMemFile);
Initialize(R, C, (T*)pDataPointsMemFile, false);
std::cout << "Load " << name << " (" << R << ", " << C << ") Finish!" << std::endl;
return true;
}

View File

@ -82,17 +82,17 @@ if (NOT TARGET test_idmap)
endif ()
target_link_libraries(test_idmap ${depend_libs} ${unittest_libs} ${basic_libs})
#<KDT-TEST>
set(kdt_srcs
#<SPTAG-TEST>
set(sptag_srcs
${INDEX_SOURCE_DIR}/knowhere/knowhere/adapter/SptagAdapter.cpp
${INDEX_SOURCE_DIR}/knowhere/knowhere/index/preprocessor/Normalize.cpp
${INDEX_SOURCE_DIR}/knowhere/knowhere/index/vector_index/helpers/KDTParameterMgr.cpp
${INDEX_SOURCE_DIR}/knowhere/knowhere/index/vector_index/IndexKDT.cpp
${INDEX_SOURCE_DIR}/knowhere/knowhere/index/vector_index/helpers/SPTAGParameterMgr.cpp
${INDEX_SOURCE_DIR}/knowhere/knowhere/index/vector_index/IndexSPTAG.cpp
)
if (NOT TARGET test_kdt)
add_executable(test_kdt test_kdt.cpp ${kdt_srcs} ${util_srcs})
if (NOT TARGET test_sptag)
add_executable(test_sptag test_sptag.cpp ${sptag_srcs} ${util_srcs})
endif ()
target_link_libraries(test_kdt
target_link_libraries(test_sptag
SPTAGLibStatic
${depend_libs} ${unittest_libs} ${basic_libs})
@ -106,7 +106,7 @@ endif ()
install(TARGETS test_ivf DESTINATION unittest)
install(TARGETS test_idmap DESTINATION unittest)
install(TARGETS test_kdt DESTINATION unittest)
install(TARGETS test_sptag DESTINATION unittest)
if (KNOWHERE_GPU_VERSION)
install(TARGETS test_gpuresource DESTINATION unittest)
install(TARGETS test_customized_index DESTINATION unittest)

View File

@ -1,144 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gtest/gtest.h>
#include <iostream>
#include <sstream>
#include "knowhere/adapter/SptagAdapter.h"
#include "knowhere/adapter/Structure.h"
#include "knowhere/common/Exception.h"
#include "knowhere/index/vector_index/IndexKDT.h"
#include "knowhere/index/vector_index/helpers/Definitions.h"
#include "unittest/utils.h"
using ::testing::Combine;
using ::testing::TestWithParam;
using ::testing::Values;
class KDTTest : public DataGen, public ::testing::Test {
protected:
void
SetUp() override {
Generate(96, 1000, 10);
index_ = std::make_shared<knowhere::CPUKDTRNG>();
auto tempconf = std::make_shared<knowhere::KDTCfg>();
tempconf->tptnubmber = 1;
tempconf->k = 10;
conf = tempconf;
Init_with_default();
}
protected:
knowhere::Config conf;
std::shared_ptr<knowhere::CPUKDTRNG> index_ = nullptr;
};
// TODO(lxj): add test about count() and dimension()
TEST_F(KDTTest, kdt_basic) {
assert(!xb.empty());
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
auto result = index_->Search(query_dataset, conf);
AssertAnns(result, nq, k);
{
// auto ids = result->array()[0];
// auto dists = result->array()[1];
auto ids = result->ids();
auto dists = result->dist();
std::stringstream ss_id;
std::stringstream ss_dist;
for (auto i = 0; i < nq; i++) {
for (auto j = 0; j < k; ++j) {
ss_id << *((int64_t*)(ids) + i * k + j) << " ";
ss_dist << *((float*)(dists) + i * k + j) << " ";
// ss_id << *ids->data()->GetValues<int64_t>(1, i * k + j) << " ";
// ss_dist << *dists->data()->GetValues<float>(1, i * k + j) << " ";
}
ss_id << std::endl;
ss_dist << std::endl;
}
std::cout << "id\n" << ss_id.str() << std::endl;
std::cout << "dist\n" << ss_dist.str() << std::endl;
}
}
// TODO(zirui): enable test
// TEST_F(KDTTest, kdt_serialize) {
// assert(!xb.empty());
//
// auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
// index_->set_preprocessor(preprocessor);
//
// auto model = index_->Train(base_dataset, conf);
// // index_->Add(base_dataset, conf);
// auto binaryset = index_->Serialize();
// auto new_index = std::make_shared<knowhere::CPUKDTRNG>();
// new_index->Load(binaryset);
// auto result = new_index->Search(query_dataset, conf);
// AssertAnns(result, nq, k);
// PrintResult(result, nq, k);
// ASSERT_EQ(new_index->Count(), nb);
// ASSERT_EQ(new_index->Dimension(), dim);
// ASSERT_THROW({ new_index->Clone(); }, knowhere::KnowhereException);
// ASSERT_NO_THROW({ new_index->Seal(); });
//
// {
// int fileno = 0;
// const std::string& base_name = "/tmp/kdt_serialize_test_bin_";
// std::vector<std::string> filename_list;
// std::vector<std::pair<std::string, size_t>> meta_list;
// for (auto& iter : binaryset.binary_map_) {
// const std::string& filename = base_name + std::to_string(fileno);
// FileIOWriter writer(filename);
// writer(iter.second->data.get(), iter.second->size);
//
// meta_list.emplace_back(std::make_pair(iter.first, iter.second->size));
// filename_list.push_back(filename);
// ++fileno;
// }
//
// knowhere::BinarySet load_data_list;
// for (int i = 0; i < filename_list.size() && i < meta_list.size(); ++i) {
// auto bin_size = meta_list[i].second;
// FileIOReader reader(filename_list[i]);
//
// auto load_data = new uint8_t[bin_size];
// reader(load_data, bin_size);
// auto data = std::make_shared<uint8_t>();
// data.reset(load_data);
// load_data_list.Append(meta_list[i].first, data, bin_size);
// }
//
// auto new_index = std::make_shared<knowhere::CPUKDTRNG>();
// new_index->Load(load_data_list);
// auto result = new_index->Search(query_dataset, conf);
// AssertAnns(result, nq, k);
// PrintResult(result, nq, k);
// }
//}

View File

@ -0,0 +1,154 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gtest/gtest.h>
#include <iostream>
#include <sstream>
#include "knowhere/adapter/SptagAdapter.h"
#include "knowhere/adapter/Structure.h"
#include "knowhere/common/Exception.h"
#include "knowhere/index/vector_index/IndexSPTAG.h"
#include "knowhere/index/vector_index/helpers/Definitions.h"
#include "unittest/utils.h"
using ::testing::Combine;
using ::testing::TestWithParam;
using ::testing::Values;
class SPTAGTest : public DataGen, public TestWithParam<std::string> {
protected:
void
SetUp() override {
IndexType = GetParam();
Generate(128, 100, 5);
index_ = std::make_shared<knowhere::CPUSPTAGRNG>(IndexType);
if (IndexType == "KDT") {
auto tempconf = std::make_shared<knowhere::KDTCfg>();
tempconf->tptnumber = 1;
tempconf->k = 10;
conf = tempconf;
} else {
auto tempconf = std::make_shared<knowhere::BKTCfg>();
tempconf->tptnumber = 1;
tempconf->k = 10;
conf = tempconf;
}
Init_with_default();
}
protected:
knowhere::Config conf;
std::shared_ptr<knowhere::CPUSPTAGRNG> index_ = nullptr;
std::string IndexType;
};
INSTANTIATE_TEST_CASE_P(SPTAGParameters, SPTAGTest, Values("KDT", "BKT"));
// TODO(lxj): add test about count() and dimension()
TEST_P(SPTAGTest, sptag_basic) {
assert(!xb.empty());
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
auto result = index_->Search(query_dataset, conf);
AssertAnns(result, nq, k);
{
// auto ids = result->array()[0];
// auto dists = result->array()[1];
auto ids = result->ids();
auto dists = result->dist();
std::stringstream ss_id;
std::stringstream ss_dist;
for (auto i = 0; i < nq; i++) {
for (auto j = 0; j < k; ++j) {
// ss_id << *ids->data()->GetValues<int64_t>(1, i * k + j) << " ";
// ss_dist << *dists->data()->GetValues<float>(1, i * k + j) << " ";
ss_id << *((int64_t*)(ids) + i * k + j) << " ";
ss_dist << *((float*)(dists) + i * k + j) << " ";
}
ss_id << std::endl;
ss_dist << std::endl;
}
std::cout << "id\n" << ss_id.str() << std::endl;
std::cout << "dist\n" << ss_dist.str() << std::endl;
}
}
TEST_P(SPTAGTest, sptag_serialize) {
assert(!xb.empty());
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->Add(base_dataset, conf);
auto binaryset = index_->Serialize();
auto new_index = std::make_shared<knowhere::CPUSPTAGRNG>(IndexType);
new_index->Load(binaryset);
auto result = new_index->Search(query_dataset, conf);
AssertAnns(result, nq, k);
PrintResult(result, nq, k);
ASSERT_EQ(new_index->Count(), nb);
ASSERT_EQ(new_index->Dimension(), dim);
// ASSERT_THROW({ new_index->Clone(); }, knowhere::KnowhereException);
// ASSERT_NO_THROW({ new_index->Seal(); });
{
int fileno = 0;
const std::string& base_name = "/tmp/sptag_serialize_test_bin_";
std::vector<std::string> filename_list;
std::vector<std::pair<std::string, size_t>> meta_list;
for (auto& iter : binaryset.binary_map_) {
const std::string& filename = base_name + std::to_string(fileno);
FileIOWriter writer(filename);
writer(iter.second->data.get(), iter.second->size);
meta_list.emplace_back(std::make_pair(iter.first, iter.second->size));
filename_list.push_back(filename);
++fileno;
}
knowhere::BinarySet load_data_list;
for (int i = 0; i < filename_list.size() && i < meta_list.size(); ++i) {
auto bin_size = meta_list[i].second;
FileIOReader reader(filename_list[i]);
auto load_data = new uint8_t[bin_size];
reader(load_data, bin_size);
auto data = std::make_shared<uint8_t>();
data.reset(load_data);
load_data_list.Append(meta_list[i].first, data, bin_size);
}
auto new_index = std::make_shared<knowhere::CPUSPTAGRNG>(IndexType);
new_index->Load(load_data_list);
auto result = new_index->Search(query_dataset, conf);
AssertAnns(result, nq, k);
PrintResult(result, nq, k);
}
}

View File

@ -160,15 +160,17 @@ AssertAnns(const knowhere::DatasetPtr& result, const int& nq, const int& k) {
void
PrintResult(const knowhere::DatasetPtr& result, const int& nq, const int& k) {
auto ids = result->array()[0];
auto dists = result->array()[1];
auto ids = result->ids();
auto dists = result->dist();
std::stringstream ss_id;
std::stringstream ss_dist;
for (auto i = 0; i < 10; i++) {
for (auto i = 0; i < nq; i++) {
for (auto j = 0; j < k; ++j) {
ss_id << *(ids->data()->GetValues<int64_t>(1, i * k + j)) << " ";
ss_dist << *(dists->data()->GetValues<float>(1, i * k + j)) << " ";
// ss_id << *(ids->data()->GetValues<int64_t>(1, i * k + j)) << " ";
// ss_dist << *(dists->data()->GetValues<float>(1, i * k + j)) << " ";
ss_id << *((int64_t*)(ids) + i * k + j) << " ";
ss_dist << *((float*)(dists) + i * k + j) << " ";
}
ss_id << std::endl;
ss_dist << std::endl;

View File

@ -146,8 +146,7 @@ XBuildIndexTask::Execute() {
status = meta_ptr->UpdateTableFile(table_file);
ENGINE_LOG_DEBUG << "Failed to update file to index, mark file: " << table_file.file_id_ << " to to_delete";
std::cout << "ERROR: failed to build index, index file is too large or gpu memory is not enough"
<< std::endl;
ENGINE_LOG_ERROR << "Failed to build index, index file is too large or gpu memory is not enough";
build_index_job->BuildIndexDone(to_index_id_);
build_index_job->GetStatus() = Status(DB_ERROR, msg);
@ -179,8 +178,8 @@ XBuildIndexTask::Execute() {
status = meta_ptr->UpdateTableFile(table_file);
ENGINE_LOG_DEBUG << "Failed to update file to index, mark file: " << table_file.file_id_ << " to to_delete";
std::cout << "ERROR: failed to persist index file: " << table_file.location_
<< ", possible out of disk space" << std::endl;
ENGINE_LOG_ERROR << "Failed to persist index file: " << table_file.location_
<< ", possible out of disk space";
build_index_job->BuildIndexDone(to_index_id_);
build_index_job->GetStatus() = Status(DB_ERROR, msg);

View File

@ -201,5 +201,35 @@ NSGConfAdapter::MatchSearch(const TempMetaConf& metaconf, const IndexType& type)
return conf;
}
knowhere::Config
SPTAGKDTConfAdapter::Match(const TempMetaConf& metaconf) {
auto conf = std::make_shared<knowhere::KDTCfg>();
conf->d = metaconf.dim;
conf->metric_type = metaconf.metric_type;
return conf;
}
knowhere::Config
SPTAGKDTConfAdapter::MatchSearch(const TempMetaConf& metaconf, const IndexType& type) {
auto conf = std::make_shared<knowhere::KDTCfg>();
conf->k = metaconf.k;
return conf;
}
knowhere::Config
SPTAGBKTConfAdapter::Match(const TempMetaConf& metaconf) {
auto conf = std::make_shared<knowhere::BKTCfg>();
conf->d = metaconf.dim;
conf->metric_type = metaconf.metric_type;
return conf;
}
knowhere::Config
SPTAGBKTConfAdapter::MatchSearch(const TempMetaConf& metaconf, const IndexType& type) {
auto conf = std::make_shared<knowhere::BKTCfg>();
conf->k = metaconf.k;
return conf;
}
} // namespace engine
} // namespace milvus

View File

@ -94,5 +94,23 @@ class NSGConfAdapter : public IVFConfAdapter {
MatchSearch(const TempMetaConf& metaconf, const IndexType& type) final;
};
class SPTAGKDTConfAdapter : public ConfAdapter {
public:
knowhere::Config
Match(const TempMetaConf& metaconf) override;
knowhere::Config
MatchSearch(const TempMetaConf& metaconf, const IndexType& type) override;
};
class SPTAGBKTConfAdapter : public ConfAdapter {
public:
knowhere::Config
Match(const TempMetaConf& metaconf) override;
knowhere::Config
MatchSearch(const TempMetaConf& metaconf, const IndexType& type) override;
};
} // namespace engine
} // namespace milvus

View File

@ -56,6 +56,9 @@ AdapterMgr::RegisterAdapter() {
REGISTER_CONF_ADAPTER(IVFPQConfAdapter, IndexType::FAISS_IVFPQ_MIX, ivfpq_mix);
REGISTER_CONF_ADAPTER(NSGConfAdapter, IndexType::NSG_MIX, nsg_mix);
REGISTER_CONF_ADAPTER(SPTAGKDTConfAdapter, IndexType::SPTAG_KDT_RNT_CPU, sptag_kdt);
REGISTER_CONF_ADAPTER(SPTAGBKTConfAdapter, IndexType::SPTAG_BKT_RNT_CPU, sptag_bkt);
}
} // namespace engine

View File

@ -21,17 +21,19 @@
#include "knowhere/index/vector_index/IndexIDMAP.h"
#include "utils/Log.h"
#include "wrapper/WrapperException.h"
#include "wrapper/gpu/GPUVecImpl.h"
#ifdef MILVUS_GPU_VERSION
#include <src/index/knowhere/knowhere/index/vector_index/IndexGPUIVF.h>
#include <src/index/knowhere/knowhere/index/vector_index/helpers/Cloner.h>
#include "knowhere/index/vector_index/IndexGPUIVF.h"
#include "knowhere/index/vector_index/IndexIVFSQHybrid.h"
#include "knowhere/index/vector_index/helpers/Cloner.h"
#endif
/*
* no parameter check in this layer.
* only responible for index combination
* only responsible for index combination
*/
namespace milvus {
@ -246,5 +248,130 @@ BFIndex::BuildAll(const int64_t& nb, const float* xb, const int64_t* ids, const
return Status::OK();
}
// TODO(linxj): add lock here.
Status
IVFMixIndex::BuildAll(const int64_t& nb, const float* xb, const int64_t* ids, const Config& cfg, const int64_t& nt,
const float* xt) {
try {
dim = cfg->d;
auto dataset = GenDatasetWithIds(nb, dim, xb, ids);
auto preprocessor = index_->BuildPreprocessor(dataset, cfg);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(dataset, cfg);
index_->set_index_model(model);
index_->Add(dataset, cfg);
if (auto device_index = std::dynamic_pointer_cast<knowhere::GPUIndex>(index_)) {
auto host_index = device_index->CopyGpuToCpu(Config());
index_ = host_index;
type = ConvertToCpuIndexType(type);
} else {
WRAPPER_LOG_ERROR << "Build IVFMIXIndex Failed";
return Status(KNOWHERE_ERROR, "Build IVFMIXIndex Failed");
}
} catch (knowhere::KnowhereException& e) {
WRAPPER_LOG_ERROR << e.what();
return Status(KNOWHERE_UNEXPECTED_ERROR, e.what());
} catch (std::exception& e) {
WRAPPER_LOG_ERROR << e.what();
return Status(KNOWHERE_ERROR, e.what());
}
return Status::OK();
}
Status
IVFMixIndex::Load(const knowhere::BinarySet& index_binary) {
index_->Load(index_binary);
dim = Dimension();
return Status::OK();
}
knowhere::QuantizerPtr
IVFHybridIndex::LoadQuantizer(const Config& conf) {
// TODO(linxj): Hardcode here
if (auto new_idx = std::dynamic_pointer_cast<knowhere::IVFSQHybrid>(index_)) {
return new_idx->LoadQuantizer(conf);
} else {
WRAPPER_LOG_ERROR << "Hybrid mode not supported for index type: " << int(type);
}
}
Status
IVFHybridIndex::SetQuantizer(const knowhere::QuantizerPtr& q) {
try {
// TODO(linxj): Hardcode here
if (auto new_idx = std::dynamic_pointer_cast<knowhere::IVFSQHybrid>(index_)) {
new_idx->SetQuantizer(q);
} else {
WRAPPER_LOG_ERROR << "Hybrid mode not supported for index type: " << int(type);
return Status(KNOWHERE_ERROR, "not supported");
}
} catch (knowhere::KnowhereException& e) {
WRAPPER_LOG_ERROR << e.what();
return Status(KNOWHERE_UNEXPECTED_ERROR, e.what());
} catch (std::exception& e) {
WRAPPER_LOG_ERROR << e.what();
return Status(KNOWHERE_ERROR, e.what());
}
return Status::OK();
}
Status
IVFHybridIndex::UnsetQuantizer() {
try {
// TODO(linxj): Hardcode here
if (auto new_idx = std::dynamic_pointer_cast<knowhere::IVFSQHybrid>(index_)) {
new_idx->UnsetQuantizer();
} else {
WRAPPER_LOG_ERROR << "Hybrid mode not supported for index type: " << int(type);
return Status(KNOWHERE_ERROR, "not supported");
}
} catch (knowhere::KnowhereException& e) {
WRAPPER_LOG_ERROR << e.what();
return Status(KNOWHERE_UNEXPECTED_ERROR, e.what());
} catch (std::exception& e) {
WRAPPER_LOG_ERROR << e.what();
return Status(KNOWHERE_ERROR, e.what());
}
return Status::OK();
}
VecIndexPtr
IVFHybridIndex::LoadData(const knowhere::QuantizerPtr& q, const Config& conf) {
try {
// TODO(linxj): Hardcode here
if (auto new_idx = std::dynamic_pointer_cast<knowhere::IVFSQHybrid>(index_)) {
return std::make_shared<IVFHybridIndex>(new_idx->LoadData(q, conf), type);
} else {
WRAPPER_LOG_ERROR << "Hybrid mode not supported for index type: " << int(type);
}
} catch (knowhere::KnowhereException& e) {
WRAPPER_LOG_ERROR << e.what();
} catch (std::exception& e) {
WRAPPER_LOG_ERROR << e.what();
}
return nullptr;
}
std::pair<VecIndexPtr, knowhere::QuantizerPtr>
IVFHybridIndex::CopyToGpuWithQuantizer(const int64_t& device_id, const Config& cfg) {
try {
// TODO(linxj): Hardcode here
if (auto hybrid_idx = std::dynamic_pointer_cast<knowhere::IVFSQHybrid>(index_)) {
auto pair = hybrid_idx->CopyCpuToGpuWithQuantizer(device_id, cfg);
auto new_idx = std::make_shared<IVFHybridIndex>(pair.first, type);
return std::make_pair(new_idx, pair.second);
} else {
WRAPPER_LOG_ERROR << "Hybrid mode not supported for index type: " << int(type);
}
} catch (knowhere::KnowhereException& e) {
WRAPPER_LOG_ERROR << e.what();
} catch (std::exception& e) {
WRAPPER_LOG_ERROR << e.what();
}
return std::make_pair(nullptr, nullptr);
}
} // namespace engine
} // namespace milvus

View File

@ -22,8 +22,8 @@
#include "knowhere/index/vector_index/IndexIVF.h"
#include "knowhere/index/vector_index/IndexIVFPQ.h"
#include "knowhere/index/vector_index/IndexIVFSQ.h"
#include "knowhere/index/vector_index/IndexKDT.h"
#include "knowhere/index/vector_index/IndexNSG.h"
#include "knowhere/index/vector_index/IndexSPTAG.h"
#include "utils/Log.h"
#ifdef MILVUS_GPU_VERSION
@ -128,7 +128,11 @@ GetVecIndexFactory(const IndexType& type, const Config& cfg) {
break;
}
case IndexType::SPTAG_KDT_RNT_CPU: {
index = std::make_shared<knowhere::CPUKDTRNG>();
index = std::make_shared<knowhere::CPUSPTAGRNG>("KDT");
break;
}
case IndexType::SPTAG_BKT_RNT_CPU: {
index = std::make_shared<knowhere::CPUSPTAGRNG>("BKT");
break;
}
case IndexType::FAISS_IVFSQ8_CPU: {

View File

@ -49,6 +49,7 @@ enum class IndexType {
FAISS_IVFSQ8_HYBRID, // only support build on gpu.
NSG_MIX,
FAISS_IVFPQ_MIX,
SPTAG_BKT_RNT_CPU,
};
class VecIndex;
@ -139,6 +140,9 @@ write_index(VecIndexPtr index, const std::string& location);
extern VecIndexPtr
read_index(const std::string& location);
VecIndexPtr
read_index(const std::string& location, knowhere::BinarySet& index_binary);
extern VecIndexPtr
GetVecIndexFactory(const IndexType& type, const Config& cfg = Config());

View File

@ -16,28 +16,29 @@
// under the License.
#include "easyloggingpp/easylogging++.h"
#include "wrapper/VecIndex.h"
#ifdef MILVUS_GPU_VERSION
#include "knowhere/index/vector_index/helpers/FaissGpuResourceMgr.h"
#endif
#include "knowhere/index/vector_index/helpers/IndexParameter.h"
#include "wrapper/VecIndex.h"
#include "wrapper/utils.h"
#include <gtest/gtest.h>
INITIALIZE_EASYLOGGINGPP
using ::testing::Combine;
using ::testing::TestWithParam;
using ::testing::Values;
using ::testing::Combine;
class KnowhereWrapperTest
: public DataGenBase,
public TestWithParam<::std::tuple<milvus::engine::IndexType, std::string, int, int, int, int>> {
: public DataGenBase,
public TestWithParam<::std::tuple<milvus::engine::IndexType, std::string, int, int, int, int>> {
protected:
void SetUp() override {
void
SetUp() override {
#ifdef MILVUS_GPU_VERSION
knowhere::FaissGpuResourceMgr::GetInstance().InitDevice(DEVICEID, PINMEM, TEMPMEM, RESNUM);
#endif
@ -58,7 +59,8 @@ class KnowhereWrapperTest
searchconf = ParamGenerator::GetInstance().GenSearchConf(index_type, tempconf);
}
void TearDown() override {
void
TearDown() override {
#ifdef MILVUS_GPU_VERSION
knowhere::FaissGpuResourceMgr::GetInstance().Free();
#endif
@ -71,22 +73,20 @@ class KnowhereWrapperTest
knowhere::Config searchconf;
};
INSTANTIATE_TEST_CASE_P(WrapperParam, KnowhereWrapperTest,
Values(
//["Index type", "Generator type", "dim", "nb", "nq", "k", "build config", "search config"]
INSTANTIATE_TEST_CASE_P(
WrapperParam, KnowhereWrapperTest,
Values(
//["Index type", "Generator type", "dim", "nb", "nq", "k", "build config", "search config"]
#ifdef MILVUS_GPU_VERSION
std::make_tuple(milvus::engine::IndexType::FAISS_IVFFLAT_GPU, "Default", DIM, NB, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFFLAT_MIX, "Default", 64, 1000, 10, 10),
// std::make_tuple(milvus::engine::IndexType::FAISS_IVFSQ8_GPU, "Default", DIM, NB,
// 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFSQ8_GPU, "Default", DIM, NB, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFSQ8_MIX, "Default", DIM, NB, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFPQ_MIX, "Default", 64, 1000, 10, 10),
// std::make_tuple(IndexType::NSG_MIX, "Default", 128, 250000, 10, 10),
// std::make_tuple(milvus::engine::IndexType::NSG_MIX, "Default", 128, 250000, 10, 10),
#endif
// std::make_tuple(IndexType::SPTAG_KDT_RNT_CPU, "Default", 128, 250000, 10, 10),
// std::make_tuple(milvus::engine::IndexType::SPTAG_KDT_RNT_CPU, "Default", 128, 100, 10, 10),
// std::make_tuple(milvus::engine::IndexType::SPTAG_BKT_RNT_CPU, "Default", 128, 100, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IDMAP, "Default", 64, 1000, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFFLAT_CPU, "Default", 64, 1000, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFSQ8_CPU, "Default", DIM, NB, 10, 10)));

View File

@ -9,3 +9,15 @@ The tests are run on [SIFT1B dataset](http://corpus-texmex.irisa.fr/), and provi
- Recall: The fraction of the total amount of relevant instances that were actually retrieved.
Test variables are `nq` and `topk`.
## Test reports
The following is a list of existing test reports:
- [IVF_SQ8](test_report/milvus_ivfsq8_test_report_detailed_version.md)
- [IVF_SQ8H](test_report/milvus_ivfsq8h_test_report_detailed_version.md)
To read the CN version of these reports:
- [IVF_SQ8_cn](test_report/milvus_ivfsq8_test_report_detailed_version_cn.md)
- [IVF_SQ8H_cn](test_report/milvus_ivfsq8h_test_report_detailed_version_cn.md)

View File

@ -0,0 +1,179 @@
# milvus_ivfsq8h_test_report_detailed_version
## Summary
This document contains the test reports of IVF_SQ8H index on Milvus single server.
## Test objectives
The time cost and recall when searching with different parameters.
## Test method
### Hardware/Software requirements
Operating System: CentOS Linux release 7.6.1810 (Core)
CPU: Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz
GPU0: GeForce GTX 1080
GPU1: GeForce GTX 1080
Memory: 503GB
Docker version: 18.09
NVIDIA Driver version: 430.34
Milvus version: 0.5.3
SDK interface: Python 3.6.8
pymilvus version: 0.2.5
### Data model
The data used in the tests are:
- Data source: sift1b
- Data type: hdf5
For details on this dataset, please check : http://corpus-texmex.irisa.fr/ .
### Measures
- Query Elapsed Time: Time cost (in seconds) to run a query. Variables that affect Query Elapsed Time:
- nq (Number of queried vectors)
> Note: In the query test of query elapsed time, we will test the following parameters with different values:
>
> nq - grouped by: [1, 5, 10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800].
>
- Recall: The fraction of the total amount of relevant instances that were actually retrieved . Variables that affect Recall:
- nq (Number of queried vectors)
- topk (Top k result of a query)
> Note: In the query test of recall, we will test the following parameters with different values:
>
> nq - grouped by: [10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800],
>
> topk - grouped by: [1, 10, 100]
## Test reports
### Test environment
Data base: sift1b-1,000,000,000 vectors, 128-dimension
Table Attributes
- nlist: 16384
- metric_type: L2
Query configuration
- nprobe: 32
Milvus configuration
- cpu_cache_capacity: 150
- gpu_cache_capacity: 6
- use_blas_threshold: 1100
- gpu_search_threshold: 1200
- search_resources: cpu, gpu0, gpu1
The definitions of Milvus configuration are on https://milvus.io/docs/en/reference/milvus_config/.
Test method
Test the query elapsed time and recall with several parameters, and once only change one parameter.
- Whether to restart Milvus after each query: No
### Performance test
#### Data query
**Test result**
Query Elapsed Time
topk = 100
| nq/topk | topk=100 |
| :-----: | :------: |
| nq=1 | 0.34 |
| nq=5 | 0.72 |
| nq=10 | 0.91 |
| nq=50 | 1.51 |
| nq=100 | 2.49 |
| nq=200 | 4.09 |
| nq=400 | 7.32 |
| nq=600 | 10.63 |
| nq=800 | 13.84 |
| nq=1000 | 16.83 |
| nq=1200 | 18.20 |
| nq=1400 | 20.1 |
| nq=1600 | 20.0 |
| nq=1800 | 19.86 |
When nq is 1800, the query time cost of a 128-dimension vector is around 11ms.
**Conclusion**
When nq < 1200, the query elapsed time increases quickly with nq; when nq > 1200, the query elapsed time increases much slower. It is because gpu_search_threshold is set to 1200, when nq < 1200, CPU is chosen to do the query, otherwise GPU is chosen. Compared with CPU, GPU has much more cores and stronger computing capability. When nq is large, it can better reflect GPU's advantages on computing.
The query elapsed time consists of two parts: (1) index CPU-to-GPU copy time; (2) nprobe buckets search time. When nq is larger enough, index CPU-to-GPU copy time can be amortized efficiently. So Milvus performs well through setting suitable gpu_search_threshold.
### Recall test
**Test result**
topk = 1 : recall - recall@1
topk = 10 : recall - recall@10
topk = 100 : recall - recall@100
We use the ground_truth in sift1b dataset to calculate the recall of query results.
| nq/topk | topk=1 | topk=10 | topk=100 |
| :-----: | :----: | :-----: | :------: |
| nq=10 | 0.900 | 0.910 | 0.939 |
| nq=50 | 0.980 | 0.950 | 0.941 |
| nq=100 | 0.970 | 0.937 | 0.931 |
| nq=200 | 0.955 | 0.941 | 0.929 |
| nq=400 | 0.958 | 0.944 | 0.932 |
| nq=600 | 0.952 | 0.946 | 0.934 |
| nq=800 | 0.941 | 0.943 | 0.930 |
| nq=1000 | 0.938 | 0.942 | 0.930 |
| nq=1200 | 0.937 | 0.943 | 0.931 |
| nq=1400 | 0.939 | 0.945 | 0.931 |
| nq=1600 | 0.936 | 0.945 | 0.931 |
| nq=1800 | 0.937 | 0.946 | 0.932 |
**Conclusion**
As nq increases, the recall gradually stabilizes to over 93%. The usage of CPU or GPU and different topk are not related to recall.

View File

@ -0,0 +1,180 @@
# milvus_ivfsq8h_test_report_detailed_version_cn
## 概述
本文描述了ivfsq8h索引在milvus单机部署方式下的测试结果。
## 测试目标
参数不同情况下的查询时间和召回率。
## 测试方法
### 软硬件环境
操作系统CentOS Linux release 7.6.1810 (Core)
CPUIntel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz
GPU0GeForce GTX 1080
GPU1GeForce GTX 1080
内存503GB
Docker版本18.09
NVIDIA Driver版本430.34
Milvus版本0.5.3
SDK接口Python 3.6.8
pymilvus版本0.2.5
### 数据模型
本测试中用到的主要数据:
- 数据来源sift1b
- 数据类型hdf5
关于该数据集的详细信息请参考http://corpus-texmex.irisa.fr/ 。
### 测试指标
- Query Elapsed Time: 数据库查询所有向量的时间以秒计。影响Query Elapsed Time的变量
- nq (被查询向量的数量)
> 备注:在向量查询测试中,我们会测试下面参数不同的取值来观察结果:
>
> 被查询向量的数量nq将按照 [1, 5, 10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800]的数量分组。
>
- Recall: 实际返回的正确结果占总数之比。影响Recall的变量
- nq (被查询向量的数量)
- topk (单条查询中最相似的K个结果)
> 备注:在向量准确性测试中,我们会测试下面参数不同的取值来观察结果:
>
> 被查询向量的数量nq将按照 [10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800]的数量分组,
>
> 单条查询中最相似的K个结果topk将按照[1, 10, 100]的数量分组。
## 测试报告
### 测试环境
数据集: sift1b-1,000,000,000向量, 128维
表格属性:
- nlist: 16384
- metric_type: L2
查询设置:
- nprobe: 32
Milvus设置
- cpu_cache_capacity: 150
- gpu_cache_capacity: 6
- use_blas_threshold: 1100
- gpu_search_threshold: 1200
- search_resources: cpu, gpu0, gpu1
Milvus设置的详细定义可以参考 https://milvus.io/docs/en/reference/milvus_config/ 。
测试方法
通过一次仅改变一个参数的值,测试查询向量时间和召回率。
- 查询后是否重启Milvus
### 性能测试
#### 数据查询
测试结果
Query Elapsed Time
topk = 100
| nq/topk | topk=100 |
| :-----: | :------: |
| nq=1 | 0.34 |
| nq=5 | 0.72 |
| nq=10 | 0.91 |
| nq=50 | 1.51 |
| nq=100 | 2.49 |
| nq=200 | 4.09 |
| nq=400 | 7.32 |
| nq=600 | 10.63 |
| nq=800 | 13.84 |
| nq=1000 | 16.83 |
| nq=1200 | 18.20 |
| nq=1400 | 20.1 |
| nq=1600 | 20.0 |
| nq=1800 | 19.86 |
当nq为1800时查询一条128维向量需要耗时约11毫秒。
**总结**
当nq小于1200时查询耗时随nq的增长快速增大当nq大于1200时查询耗时的增大则缓慢许多。这是因为gpu_search_threshold这一参数的值被设为1200当nq<1200CPUGPUCPU
在GPU模式下的查询耗时由两部分组成1索引从CPU到GPU的拷贝时间2所有分桶的查询时间。当nq小于500时索引从CPU到GPU 的拷贝时间无法被有效均摊此时CPU模式时一个更优的选择当nq大于500时选择GPU模式更合理。和CPU相比GPU具有更多的核数和更强的算力。当nq较大时GPU在计算上的优势能被更好地被体现。
### 召回率测试
**测试结果**
topk = 1 : recall - recall@1
topk = 10 : recall - recall@10
topk = 100 : recall - recall@100
我们利用sift1b数据集中的ground_truth来计算查询结果的召回率。
| nq/topk | topk=1 | topk=10 | topk=100 |
| :-----: | :----: | :-----: | :------: |
| nq=10 | 0.900 | 0.910 | 0.939 |
| nq=50 | 0.980 | 0.950 | 0.941 |
| nq=100 | 0.970 | 0.937 | 0.931 |
| nq=200 | 0.955 | 0.941 | 0.929 |
| nq=400 | 0.958 | 0.944 | 0.932 |
| nq=600 | 0.952 | 0.946 | 0.934 |
| nq=800 | 0.941 | 0.943 | 0.930 |
| nq=1000 | 0.938 | 0.942 | 0.930 |
| nq=1200 | 0.937 | 0.943 | 0.931 |
| nq=1400 | 0.939 | 0.945 | 0.931 |
| nq=1600 | 0.936 | 0.945 | 0.931 |
| nq=1800 | 0.937 | 0.946 | 0.932 |
**总结**
随着nq的增大召回率逐渐稳定至93%以上。CPU/GPU的使用以及topk的值与召回率的大小无关。