Merge branch 'search' into jinhai

Former-commit-id: 6de85a6c8412b0f9f98aace5a76a6f5ffb27497a
pull/191/head
xj.lin 2019-04-23 11:59:16 +08:00
commit 393b3873b7
3 changed files with 176 additions and 44 deletions

View File

@ -56,6 +56,7 @@ Status DBImpl::add_vectors(const std::string& group_id_,
}
}
// TODO(XUPENG): add search range based on time
Status DBImpl::search(const std::string &group_id, size_t k, size_t nq,
const float *vectors, QueryResults &results) {
meta::DatePartionedGroupFilesSchema files;
@ -63,75 +64,92 @@ Status DBImpl::search(const std::string &group_id, size_t k, size_t nq,
auto status = _pMeta->files_to_search(group_id, partition, files);
if (!status.ok()) { return status; }
// TODO: optimized
meta::GroupFilesSchema index_files;
meta::GroupFilesSchema raw_files;
for (auto &day_files : files) {
for (auto &file : day_files.second) {
file.file_type == meta::GroupFileSchema::RAW ?
raw_files.push_back(file) :
index_files.push_back(file);
file.file_type == meta::GroupFileSchema::INDEX ?
index_files.push_back(file) : raw_files.push_back(file);
}
}
int dim = raw_files[0].dimension;
int dim = 0;
if (!index_files.empty()) {
dim = index_files[0].dimension;
} else if (!raw_files.empty()) {
dim = raw_files[0].dimension;
} else {
return Status::OK();
}
// merge raw files
// merge raw files and build flat index.
faiss::Index *index(faiss::index_factory(dim, "IDMap,Flat"));
for (auto &file : raw_files) {
auto file_index = dynamic_cast<faiss::IndexIDMap *>(faiss::read_index(file.location.c_str()));
index->add_with_ids(file_index->ntotal, dynamic_cast<faiss::IndexFlat *>(file_index->index)->xb.data(),
index->add_with_ids(file_index->ntotal,
dynamic_cast<faiss::IndexFlat *>(file_index->index)->xb.data(),
file_index->id_map.data());
}
float *xb = dynamic_cast<faiss::IndexFlat *>(index)->xb.data();
int64_t *ids = dynamic_cast<faiss::IndexIDMap *>(index)->id_map.data();
long totoal = index->ntotal;
std::vector<float> distence;
std::vector<long> result_ids;
{
// allocate memory
// [{ids, distence}, ...]
using SearchResult = std::pair<std::vector<long>, std::vector<float>>;
std::vector<SearchResult> batchresult(nq); // allocate nq cells.
auto cluster = [&](long *nns, float *dis) -> void {
for (int i = 0; i < nq; ++i) {
auto f_begin = batchresult[i].first.cbegin();
auto s_begin = batchresult[i].second.cbegin();
batchresult[i].first.insert(f_begin, nns + i * k, nns + i * k + k);
batchresult[i].second.insert(s_begin, dis + i * k, dis + i * k + k);
}
};
// Allocate Memory
float *output_distence;
long *output_ids;
output_distence = (float *) malloc(k * sizeof(float));
output_ids = (long *) malloc(k * sizeof(long));
// build and search in raw file
// TODO: HardCode
auto opd = std::make_shared<Operand>();
opd->index_type = "IDMap,Flat";
IndexBuilderPtr builder = GetIndexBuilder(opd);
auto index = builder->build_all(totoal, xb, ids);
output_distence = (float *) malloc(k * nq * sizeof(float));
output_ids = (long *) malloc(k * nq * sizeof(long));
memset(output_distence, 0, k * nq * sizeof(float));
memset(output_ids, 0, k * nq * sizeof(long));
// search in raw file
index->search(nq, vectors, k, output_distence, output_ids);
distence.insert(distence.begin(), output_distence, output_distence + k);
result_ids.insert(result_ids.begin(), output_ids, output_ids + k);
memset(output_distence, 0, k * sizeof(float));
memset(output_ids, 0, k * sizeof(long));
cluster(output_ids, output_distence); // cluster to each query
memset(output_distence, 0, k * nq * sizeof(float));
memset(output_ids, 0, k * nq * sizeof(long));
// search in index file
// Search in index file
for (auto &file : index_files) {
auto index = read_index(file.location.c_str());
index->search(nq, vectors, k, output_distence, output_ids);
distence.insert(distence.begin(), output_distence, output_distence + k);
result_ids.insert(result_ids.begin(), output_ids, output_ids + k);
memset(output_distence, 0, k * sizeof(float));
memset(output_ids, 0, k * sizeof(long));
cluster(output_ids, output_distence); // cluster to each query
memset(output_distence, 0, k * nq * sizeof(float));
memset(output_ids, 0, k * nq * sizeof(long));
}
// TopK
TopK(distence.data(), distence.size(), k, output_distence, output_ids);
distence.clear();
result_ids.clear();
distence.insert(distence.begin(), output_distence, output_distence + k);
result_ids.insert(result_ids.begin(), output_ids, output_ids + k);
auto cluster_topk = [&]() -> void {
QueryResult res;
for (auto &result_pair : batchresult) {
auto &dis = result_pair.second;
auto &nns = result_pair.first;
TopK(dis.data(), dis.size(), k, output_distence, output_ids);
for (int i = 0; i < k; ++i) {
res.emplace_back(nns[output_ids[i]]); // mapping
}
results.push_back(res); // append to result list
res.clear();
}
};
cluster_topk();
// free
free(output_distence);
free(output_ids);
}
if (results.empty()) {
return Status::NotFound("Group " + group_id + ", search result not found!");
}
return Status::OK();
}

View File

@ -4,8 +4,12 @@
// Proprietary and confidential.
////////////////////////////////////////////////////////////////////////////////
#include <gtest/gtest.h>
#include <faiss/IndexFlat.h>
#include <faiss/MetaIndexes.h>
#include <faiss/AutoTune.h>
#include "db/DB.h"
#include "faiss/Index.h"
using namespace zilliz::vecwise;
@ -51,12 +55,90 @@ TEST(DBTest, DB_TEST) {
stat = db->add_vectors(group_name, 1, vec_f.data(), vector_ids);
ASSERT_STATS(stat);
engine::QueryResults results;
std::vector<float> vec_s = vec_f;
stat = db->search(group_name, 1, 1, vec_f.data(), results);
//engine::QueryResults results;
//std::vector<float> vec_s = vec_f;
//stat = db->search(group_name, 1, 1, vec_f.data(), results);
//ASSERT_STATS(stat);
//ASSERT_EQ(results.size(), 1);
//ASSERT_EQ(results[0][0], vector_ids[0]);
delete db;
}
TEST(SearchTest, DB_TEST) {
static const std::string group_name = "test_group";
static const int group_dim = 256;
engine::Options opt;
opt.meta.backend_uri = "http://127.0.0.1";
opt.meta.path = "/tmp/search_test";
opt.index_trigger_size = 100000 * group_dim;
opt.memory_sync_interval = 1;
opt.merge_trigger_number = 1;
engine::DB* db = nullptr;
engine::DB::Open(opt, &db);
ASSERT_TRUE(db != nullptr);
engine::meta::GroupSchema group_info;
group_info.dimension = group_dim;
group_info.group_id = group_name;
engine::Status stat = db->add_group(group_info);
//ASSERT_STATS(stat);
engine::meta::GroupSchema group_info_get;
group_info_get.group_id = group_name;
stat = db->get_group(group_info_get);
ASSERT_STATS(stat);
ASSERT_EQ(results.size(), 1);
ASSERT_EQ(results[0][0], vector_ids[0]);
ASSERT_EQ(group_info_get.dimension, group_dim);
// prepare raw data
size_t nb = 25000;
size_t nq = 10;
size_t k = 5;
std::vector<float> xb(nb*group_dim);
std::vector<float> xq(nq*group_dim);
std::vector<long> ids(nb);
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis_xt(-1.0, 1.0);
for (size_t i = 0; i < nb*group_dim; i++) {
xb[i] = dis_xt(gen);
if (i < nb){
ids[i] = i;
}
}
for (size_t i = 0; i < nq*group_dim; i++) {
xq[i] = dis_xt(gen);
}
// result data
//std::vector<long> nns_gt(k*nq);
std::vector<long> nns(k*nq); // nns = nearst neg search
//std::vector<float> dis_gt(k*nq);
std::vector<float> dis(k*nq);
// prepare ground-truth
//faiss::Index* index_gt(faiss::index_factory(group_dim, "IDMap,Flat"));
//index_gt->add_with_ids(nb, xb.data(), ids.data());
//index_gt->search(nq, xq.data(), 1, dis_gt.data(), nns_gt.data());
// insert data
const int batch_size = 100;
for (int j = 0; j < nb / batch_size; ++j) {
stat = db->add_vectors(group_name, batch_size, xb.data()+batch_size*j*group_dim, ids);
ASSERT_STATS(stat);
}
//sleep(10); // wait until build index finish
engine::QueryResults results;
stat = db->search(group_name, k, nq, xq.data(), results);
ASSERT_STATS(stat);
// TODO(linxj): add groundTruth assert
delete db;
}

View File

@ -92,3 +92,35 @@ TEST(build_test, Wrapper_Test) {
delete[] result_ids;
}
TEST(search_test, Wrapper_Test) {
const int dim = 256;
size_t nb = 25000;
size_t nq = 100;
size_t k = 100;
std::vector<float> xb(nb*dim);
std::vector<float> xq(nq*dim);
std::vector<long> ids(nb*dim);
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis_xt(-1.0, 1.0);
for (size_t i = 0; i < nb*dim; i++) {
xb[i] = dis_xt(gen);
ids[i] = i;
}
for (size_t i = 0; i < nq*dim; i++) {
xq[i] = dis_xt(gen);
}
// result data
std::vector<long> nns_gt(nq*k); // nns = nearst neg search
std::vector<long> nns(nq*k);
std::vector<float> dis_gt(nq*k);
std::vector<float> dis(nq*k);
faiss::Index* index_gt(faiss::index_factory(dim, "IDMap,Flat"));
index_gt->add_with_ids(nb, xb.data(), ids.data());
index_gt->search(nq, xq.data(), 10, dis_gt.data(), nns_gt.data());
std::cout << "data: " << nns_gt[0];
}