|
|
|
@ -17,35 +17,57 @@
|
|
|
|
|
|
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
|
|
|
|
|
|
#include <hdf5.h>
|
|
|
|
|
#include <sys/time.h>
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
|
#include <unistd.h>
|
|
|
|
|
#include <cassert>
|
|
|
|
|
#include <cmath>
|
|
|
|
|
#include <cstdio>
|
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
|
|
#define USE_FAISS_V1_5_3 0
|
|
|
|
|
|
|
|
|
|
#if USE_FAISS_V1_5_3
|
|
|
|
|
#include <faiss/gpu/GpuAutoTune.h>
|
|
|
|
|
#include <faiss/utils.h>
|
|
|
|
|
#include <sys/stat.h>
|
|
|
|
|
#include <cstdlib>
|
|
|
|
|
#include <cstring>
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
#include <faiss/gpu/GpuCloner.h>
|
|
|
|
|
#include <faiss/index_factory.h>
|
|
|
|
|
#include <faiss/utils/distances.h>
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#include <faiss/AutoTune.h>
|
|
|
|
|
#include <faiss/Index.h>
|
|
|
|
|
#include <faiss/IndexIVF.h>
|
|
|
|
|
#include <faiss/gpu/GpuAutoTune.h>
|
|
|
|
|
#include <faiss/gpu/GpuIndexFlat.h>
|
|
|
|
|
#include <faiss/gpu/GpuIndexIVFSQHybrid.h>
|
|
|
|
|
#include <faiss/gpu/StandardGpuResources.h>
|
|
|
|
|
#include <faiss/index_io.h>
|
|
|
|
|
#include <faiss/utils.h>
|
|
|
|
|
|
|
|
|
|
#include <hdf5.h>
|
|
|
|
|
|
|
|
|
|
#include <sys/stat.h>
|
|
|
|
|
#include <sys/time.h>
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
|
#include <unistd.h>
|
|
|
|
|
#include <vector>
|
|
|
|
|
#ifdef CUSTOMIZATION
|
|
|
|
|
#include <faiss/gpu/GpuIndexIVFSQHybrid.h>
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*****************************************************
|
|
|
|
|
* To run this test, please download the HDF5 from
|
|
|
|
|
* https://support.hdfgroup.org/ftp/HDF5/releases/
|
|
|
|
|
* and install it to /usr/local/hdf5 .
|
|
|
|
|
*****************************************************/
|
|
|
|
|
#define DEBUG_VERBOSE 0
|
|
|
|
|
|
|
|
|
|
const char HDF5_POSTFIX[] = ".hdf5";
|
|
|
|
|
const char HDF5_DATASET_TRAIN[] = "train";
|
|
|
|
|
const char HDF5_DATASET_TEST[] = "test";
|
|
|
|
|
const char HDF5_DATASET_NEIGHBORS[] = "neighbors";
|
|
|
|
|
const char HDF5_DATASET_DISTANCES[] = "distances";
|
|
|
|
|
|
|
|
|
|
const int32_t GPU_DEVICE_IDX = 0;
|
|
|
|
|
|
|
|
|
|
enum QueryMode { MODE_CPU = 0, MODE_MIX, MODE_GPU };
|
|
|
|
|
|
|
|
|
|
double
|
|
|
|
|
elapsed() {
|
|
|
|
@ -54,55 +76,48 @@ elapsed() {
|
|
|
|
|
return tv.tv_sec + tv.tv_usec * 1e-6;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
normalize(float* arr, size_t nq, size_t dim) {
|
|
|
|
|
for (size_t i = 0; i < nq; i++) {
|
|
|
|
|
double vecLen = 0.0, inv_vecLen = 0.0;
|
|
|
|
|
for (size_t j = 0; j < dim; j++) {
|
|
|
|
|
double val = arr[i * dim + j];
|
|
|
|
|
vecLen += val * val;
|
|
|
|
|
}
|
|
|
|
|
inv_vecLen = 1.0 / std::sqrt(vecLen);
|
|
|
|
|
for (size_t j = 0; j < dim; j++) {
|
|
|
|
|
arr[i * dim + j] = (float)(arr[i * dim + j] * inv_vecLen);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void*
|
|
|
|
|
hdf5_read(const char* file_name, const char* dataset_name, H5T_class_t dataset_class, size_t& d_out, size_t& n_out) {
|
|
|
|
|
hdf5_read(const std::string& file_name, const std::string& dataset_name, H5T_class_t dataset_class, size_t& d_out,
|
|
|
|
|
size_t& n_out) {
|
|
|
|
|
hid_t file, dataset, datatype, dataspace, memspace;
|
|
|
|
|
H5T_class_t t_class; /* data type class */
|
|
|
|
|
H5T_order_t order; /* data order */
|
|
|
|
|
size_t size; /* size of the data element stored in file */
|
|
|
|
|
hsize_t dimsm[3]; /* memory space dimensions */
|
|
|
|
|
hsize_t dims_out[2]; /* dataset dimensions */
|
|
|
|
|
hsize_t count[2]; /* size of the hyperslab in the file */
|
|
|
|
|
hsize_t offset[2]; /* hyperslab offset in the file */
|
|
|
|
|
hsize_t count_out[3]; /* size of the hyperslab in memory */
|
|
|
|
|
hsize_t offset_out[3]; /* hyperslab offset in memory */
|
|
|
|
|
int rank;
|
|
|
|
|
void* data_out; /* output buffer */
|
|
|
|
|
void* data_out; /* output buffer */
|
|
|
|
|
|
|
|
|
|
/* Open the file and the dataset. */
|
|
|
|
|
file = H5Fopen(file_name, H5F_ACC_RDONLY, H5P_DEFAULT);
|
|
|
|
|
dataset = H5Dopen2(file, dataset_name, H5P_DEFAULT);
|
|
|
|
|
file = H5Fopen(file_name.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT);
|
|
|
|
|
dataset = H5Dopen2(file, dataset_name.c_str(), H5P_DEFAULT);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Get datatype and dataspace handles and then query
|
|
|
|
|
* dataset class, order, size, rank and dimensions.
|
|
|
|
|
*/
|
|
|
|
|
/* Get datatype and dataspace handles and then query
|
|
|
|
|
* dataset class, order, size, rank and dimensions. */
|
|
|
|
|
datatype = H5Dget_type(dataset); /* datatype handle */
|
|
|
|
|
t_class = H5Tget_class(datatype);
|
|
|
|
|
assert(t_class == dataset_class || !"Illegal dataset class type");
|
|
|
|
|
|
|
|
|
|
order = H5Tget_order(datatype);
|
|
|
|
|
switch (order) {
|
|
|
|
|
case H5T_ORDER_LE:
|
|
|
|
|
printf("Little endian order \n");
|
|
|
|
|
break;
|
|
|
|
|
case H5T_ORDER_BE:
|
|
|
|
|
printf("Big endian order \n");
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
printf("Illegal endian order \n");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size = H5Tget_size(datatype);
|
|
|
|
|
printf("Data size is %d \n", (int)size);
|
|
|
|
|
|
|
|
|
|
dataspace = H5Dget_space(dataset); /* dataspace handle */
|
|
|
|
|
rank = H5Sget_simple_extent_ndims(dataspace);
|
|
|
|
|
H5Sget_simple_extent_dims(dataspace, dims_out, NULL);
|
|
|
|
|
n_out = dims_out[0];
|
|
|
|
|
d_out = dims_out[1];
|
|
|
|
|
printf("rank %d, dimensions %lu x %lu \n", rank, n_out, d_out);
|
|
|
|
|
|
|
|
|
|
/* Define hyperslab in the dataset. */
|
|
|
|
|
offset[0] = offset[1] = 0;
|
|
|
|
@ -192,10 +207,9 @@ GetResultHitCount(const faiss::Index::idx_t* ground_index, const faiss::Index::i
|
|
|
|
|
for (int i = 0; i < nq; i++) {
|
|
|
|
|
// count the num of results exist in ground truth result set
|
|
|
|
|
// each result replicates INDEX_ADD_LOOPS times
|
|
|
|
|
for (int j_c = 0; j_c < ground_k; j_c++) {
|
|
|
|
|
for (int j_c = 0; j_c < k; j_c++) {
|
|
|
|
|
int r_c = index[i * k + j_c];
|
|
|
|
|
int j_g = 0;
|
|
|
|
|
for (; j_g < ground_k / index_add_loops; j_g++) {
|
|
|
|
|
for (int j_g = 0; j_g < ground_k / index_add_loops; j_g++) {
|
|
|
|
|
if (ground_index[i * ground_k + j_g] == r_c) {
|
|
|
|
|
hit++;
|
|
|
|
|
continue;
|
|
|
|
@ -206,101 +220,229 @@ GetResultHitCount(const faiss::Index::idx_t* ground_index, const faiss::Index::i
|
|
|
|
|
return hit;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if DEBUG_VERBOSE
|
|
|
|
|
void
|
|
|
|
|
test_ann_hdf5(const std::string& ann_test_name, const std::string& index_key, int32_t index_add_loops,
|
|
|
|
|
const std::vector<size_t>& nprobes, int32_t search_loops) {
|
|
|
|
|
print_array(const char* header, bool is_integer, const void* arr, size_t nq, size_t k) {
|
|
|
|
|
const int ROW = 10;
|
|
|
|
|
const int COL = 10;
|
|
|
|
|
assert(ROW <= nq);
|
|
|
|
|
assert(COL <= k);
|
|
|
|
|
printf("%s\n", header);
|
|
|
|
|
printf("==============================================\n");
|
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
|
|
|
if (is_integer) {
|
|
|
|
|
printf("%7ld ", ((int64_t*)arr)[i * k + j]);
|
|
|
|
|
} else {
|
|
|
|
|
printf("%.6f ", ((float*)arr)[i * k + j]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
printf("\n");
|
|
|
|
|
}
|
|
|
|
|
printf("\n");
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
load_base_data(faiss::Index*& index, const std::string& ann_test_name, const std::string& index_key,
|
|
|
|
|
faiss::gpu::StandardGpuResources& res, const faiss::MetricType metric_type, const size_t dim,
|
|
|
|
|
int32_t index_add_loops, QueryMode mode = MODE_CPU) {
|
|
|
|
|
double t0 = elapsed();
|
|
|
|
|
|
|
|
|
|
const std::string ann_file_name = ann_test_name + ".hdf5";
|
|
|
|
|
const std::string ann_file_name = ann_test_name + HDF5_POSTFIX;
|
|
|
|
|
|
|
|
|
|
faiss::MetricType metric_type;
|
|
|
|
|
size_t dim;
|
|
|
|
|
|
|
|
|
|
if (!parse_ann_test_name(ann_test_name, dim, metric_type)) {
|
|
|
|
|
printf("Invalid ann test name: %s\n", ann_test_name.c_str());
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
faiss::Index* index;
|
|
|
|
|
size_t d;
|
|
|
|
|
faiss::Index *cpu_index = nullptr, *gpu_index = nullptr;
|
|
|
|
|
faiss::distance_compute_blas_threshold = 800;
|
|
|
|
|
|
|
|
|
|
std::string index_file_name = get_index_file_name(ann_test_name, index_key, index_add_loops);
|
|
|
|
|
|
|
|
|
|
try {
|
|
|
|
|
index = faiss::read_index(index_file_name.c_str());
|
|
|
|
|
d = dim;
|
|
|
|
|
printf("[%.3f s] Reading index file: %s\n", elapsed() - t0, index_file_name.c_str());
|
|
|
|
|
cpu_index = faiss::read_index(index_file_name.c_str());
|
|
|
|
|
} catch (...) {
|
|
|
|
|
printf("Cannot read index file: %s\n", index_file_name.c_str());
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Loading train set\n", elapsed() - t0);
|
|
|
|
|
|
|
|
|
|
size_t nb;
|
|
|
|
|
float* xb = (float*)hdf5_read(ann_file_name.c_str(), "train", H5T_FLOAT, d, nb);
|
|
|
|
|
size_t nb, d;
|
|
|
|
|
printf("[%.3f s] Loading HDF5 file: %s\n", elapsed() - t0, ann_file_name.c_str());
|
|
|
|
|
float* xb = (float*)hdf5_read(ann_file_name, HDF5_DATASET_TRAIN, H5T_FLOAT, d, nb);
|
|
|
|
|
assert(d == dim || !"dataset does not have correct dimension");
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Preparing index \"%s\" d=%ld\n", elapsed() - t0, index_key.c_str(), d);
|
|
|
|
|
if (metric_type == faiss::METRIC_INNER_PRODUCT) {
|
|
|
|
|
printf("[%.3f s] Normalizing base data set \n", elapsed() - t0);
|
|
|
|
|
normalize(xb, nb, d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
index = faiss::index_factory(d, index_key.c_str(), metric_type);
|
|
|
|
|
printf("[%.3f s] Creating CPU index \"%s\" d=%ld\n", elapsed() - t0, index_key.c_str(), d);
|
|
|
|
|
cpu_index = faiss::index_factory(d, index_key.c_str(), metric_type);
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Cloning CPU index to GPU\n", elapsed() - t0);
|
|
|
|
|
gpu_index = faiss::gpu::index_cpu_to_gpu(&res, GPU_DEVICE_IDX, cpu_index);
|
|
|
|
|
delete cpu_index;
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Training on %ld vectors\n", elapsed() - t0, nb);
|
|
|
|
|
|
|
|
|
|
index->train(nb, xb);
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Loading database\n", elapsed() - t0);
|
|
|
|
|
gpu_index->train(nb, xb);
|
|
|
|
|
|
|
|
|
|
// add index multiple times to get ~1G data set
|
|
|
|
|
for (int i = 0; i < index_add_loops; i++) {
|
|
|
|
|
printf("[%.3f s] Indexing database, size %ld*%ld\n", elapsed() - t0, nb, d);
|
|
|
|
|
index->add(nb, xb);
|
|
|
|
|
printf("[%.3f s] No.%d Indexing database, size %ld*%ld\n", elapsed() - t0, i, nb, d);
|
|
|
|
|
gpu_index->add(nb, xb);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
faiss::write_index(index, index_file_name.c_str());
|
|
|
|
|
printf("[%.3f s] Coping GPU index to CPU\n", elapsed() - t0);
|
|
|
|
|
|
|
|
|
|
cpu_index = faiss::gpu::index_gpu_to_cpu(gpu_index);
|
|
|
|
|
delete gpu_index;
|
|
|
|
|
|
|
|
|
|
faiss::IndexIVF* cpu_ivf_index = dynamic_cast<faiss::IndexIVF*>(cpu_index);
|
|
|
|
|
if (cpu_ivf_index != nullptr) {
|
|
|
|
|
cpu_ivf_index->to_readonly();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Writing index file: %s\n", elapsed() - t0, index_file_name.c_str());
|
|
|
|
|
faiss::write_index(cpu_index, index_file_name.c_str());
|
|
|
|
|
|
|
|
|
|
delete[] xb;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t nq;
|
|
|
|
|
float* xq;
|
|
|
|
|
{
|
|
|
|
|
printf("[%.3f s] Loading queries\n", elapsed() - t0);
|
|
|
|
|
index = cpu_index;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t d2;
|
|
|
|
|
xq = (float*)hdf5_read(ann_file_name.c_str(), "test", H5T_FLOAT, d2, nq);
|
|
|
|
|
assert(d == d2 || !"query does not have same dimension as train set");
|
|
|
|
|
void
|
|
|
|
|
load_query_data(faiss::Index::distance_t*& xq, size_t& nq, const std::string& ann_test_name,
|
|
|
|
|
const faiss::MetricType metric_type, const size_t dim) {
|
|
|
|
|
double t0 = elapsed();
|
|
|
|
|
size_t d;
|
|
|
|
|
|
|
|
|
|
const std::string ann_file_name = ann_test_name + HDF5_POSTFIX;
|
|
|
|
|
|
|
|
|
|
xq = (float*)hdf5_read(ann_file_name, HDF5_DATASET_TEST, H5T_FLOAT, d, nq);
|
|
|
|
|
assert(d == dim || !"query does not have same dimension as train set");
|
|
|
|
|
|
|
|
|
|
if (metric_type == faiss::METRIC_INNER_PRODUCT) {
|
|
|
|
|
printf("[%.3f s] Normalizing query data \n", elapsed() - t0);
|
|
|
|
|
normalize(xq, nq, d);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t k; // nb of results per query in the GT
|
|
|
|
|
faiss::Index::idx_t* gt; // nq * k matrix of ground-truth nearest-neighbors
|
|
|
|
|
{
|
|
|
|
|
printf("[%.3f s] Loading ground truth for %ld queries\n", elapsed() - t0, nq);
|
|
|
|
|
void
|
|
|
|
|
load_ground_truth(faiss::Index::idx_t*& gt, size_t& k, const std::string& ann_test_name, const size_t nq) {
|
|
|
|
|
const std::string ann_file_name = ann_test_name + HDF5_POSTFIX;
|
|
|
|
|
|
|
|
|
|
// load ground-truth and convert int to long
|
|
|
|
|
size_t nq2;
|
|
|
|
|
int* gt_int = (int*)hdf5_read(ann_file_name.c_str(), "neighbors", H5T_INTEGER, k, nq2);
|
|
|
|
|
assert(nq2 == nq || !"incorrect nb of ground truth entries");
|
|
|
|
|
// load ground-truth and convert int to long
|
|
|
|
|
size_t nq2;
|
|
|
|
|
int* gt_int = (int*)hdf5_read(ann_file_name, HDF5_DATASET_NEIGHBORS, H5T_INTEGER, k, nq2);
|
|
|
|
|
assert(nq2 == nq || !"incorrect nb of ground truth index");
|
|
|
|
|
|
|
|
|
|
gt = new faiss::Index::idx_t[k * nq];
|
|
|
|
|
for (int i = 0; i < k * nq; i++) {
|
|
|
|
|
gt[i] = gt_int[i];
|
|
|
|
|
gt = new faiss::Index::idx_t[k * nq];
|
|
|
|
|
for (int i = 0; i < k * nq; i++) {
|
|
|
|
|
gt[i] = gt_int[i];
|
|
|
|
|
}
|
|
|
|
|
delete[] gt_int;
|
|
|
|
|
|
|
|
|
|
#if DEBUG_VERBOSE
|
|
|
|
|
faiss::Index::distance_t* gt_dist; // nq * k matrix of ground-truth nearest-neighbors distances
|
|
|
|
|
gt_dist = (float*)hdf5_read(ann_file_name, HDF5_DATASET_DISTANCES, H5T_FLOAT, k, nq2);
|
|
|
|
|
assert(nq2 == nq || !"incorrect nb of ground truth distance");
|
|
|
|
|
|
|
|
|
|
std::string str;
|
|
|
|
|
str = ann_test_name + " ground truth index";
|
|
|
|
|
print_array(str.c_str(), true, gt, nq, k);
|
|
|
|
|
str = ann_test_name + " ground truth distance";
|
|
|
|
|
print_array(str.c_str(), false, gt_dist, nq, k);
|
|
|
|
|
|
|
|
|
|
delete gt_dist;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
test_with_nprobes(const std::string& ann_test_name, const std::string& index_key, faiss::Index* cpu_index,
|
|
|
|
|
faiss::gpu::StandardGpuResources& res, const QueryMode query_mode, const faiss::Index::distance_t* xq,
|
|
|
|
|
const faiss::Index::idx_t* gt, const std::vector<size_t> nprobes, const int32_t index_add_loops,
|
|
|
|
|
const int32_t search_loops) {
|
|
|
|
|
double t0 = elapsed();
|
|
|
|
|
|
|
|
|
|
const size_t NQ = 1000, NQ_START = 10, NQ_STEP = 10;
|
|
|
|
|
const size_t K = 1000, K_START = 100, K_STEP = 10;
|
|
|
|
|
const size_t GK = 100; // topk of ground truth
|
|
|
|
|
|
|
|
|
|
std::unordered_map<size_t, std::string> mode_str_map = {
|
|
|
|
|
{MODE_CPU, "MODE_CPU"}, {MODE_MIX, "MODE_MIX"}, {MODE_GPU, "MODE_GPU"}};
|
|
|
|
|
|
|
|
|
|
faiss::Index *gpu_index, *index;
|
|
|
|
|
if (query_mode != MODE_CPU) {
|
|
|
|
|
faiss::gpu::GpuClonerOptions option;
|
|
|
|
|
option.allInGpu = true;
|
|
|
|
|
|
|
|
|
|
faiss::IndexComposition index_composition;
|
|
|
|
|
index_composition.index = cpu_index;
|
|
|
|
|
index_composition.quantizer = nullptr;
|
|
|
|
|
|
|
|
|
|
double copy_time;
|
|
|
|
|
switch (query_mode) {
|
|
|
|
|
case MODE_MIX: {
|
|
|
|
|
index_composition.mode = 1; // 0: all data, 1: copy quantizer, 2: copy data
|
|
|
|
|
|
|
|
|
|
// warm up the transmission
|
|
|
|
|
gpu_index = faiss::gpu::index_cpu_to_gpu(&res, GPU_DEVICE_IDX, &index_composition, &option);
|
|
|
|
|
delete gpu_index;
|
|
|
|
|
|
|
|
|
|
copy_time = elapsed();
|
|
|
|
|
gpu_index = faiss::gpu::index_cpu_to_gpu(&res, GPU_DEVICE_IDX, &index_composition, &option);
|
|
|
|
|
delete gpu_index;
|
|
|
|
|
copy_time = elapsed() - copy_time;
|
|
|
|
|
printf("[%.3f s] Copy quantizer completed, cost %f s\n", elapsed() - t0, copy_time);
|
|
|
|
|
|
|
|
|
|
auto ivf_index = dynamic_cast<faiss::IndexIVF*>(cpu_index);
|
|
|
|
|
auto is_gpu_flat_index = dynamic_cast<faiss::gpu::GpuIndexFlat*>(ivf_index->quantizer);
|
|
|
|
|
if (is_gpu_flat_index == nullptr) {
|
|
|
|
|
delete ivf_index->quantizer;
|
|
|
|
|
ivf_index->quantizer = index_composition.quantizer;
|
|
|
|
|
}
|
|
|
|
|
index = cpu_index;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
case MODE_GPU:
|
|
|
|
|
index_composition.mode = 0; // 0: all data, 1: copy quantizer, 2: copy data
|
|
|
|
|
|
|
|
|
|
// warm up the transmission
|
|
|
|
|
gpu_index = faiss::gpu::index_cpu_to_gpu(&res, GPU_DEVICE_IDX, &index_composition, &option);
|
|
|
|
|
delete gpu_index;
|
|
|
|
|
|
|
|
|
|
copy_time = elapsed();
|
|
|
|
|
gpu_index = faiss::gpu::index_cpu_to_gpu(&res, GPU_DEVICE_IDX, &index_composition, &option);
|
|
|
|
|
copy_time = elapsed() - copy_time;
|
|
|
|
|
printf("[%.3f s] Copy data completed, cost %f s\n", elapsed() - t0, copy_time);
|
|
|
|
|
|
|
|
|
|
delete cpu_index;
|
|
|
|
|
index = gpu_index;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
delete[] gt_int;
|
|
|
|
|
} else {
|
|
|
|
|
index = cpu_index;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (auto nprobe : nprobes) {
|
|
|
|
|
faiss::ParameterSpace params;
|
|
|
|
|
|
|
|
|
|
std::string nprobe_str = "nprobe=" + std::to_string(nprobe);
|
|
|
|
|
params.set_index_parameters(index, nprobe_str.c_str());
|
|
|
|
|
switch (query_mode) {
|
|
|
|
|
case MODE_CPU:
|
|
|
|
|
case MODE_MIX: {
|
|
|
|
|
faiss::ParameterSpace params;
|
|
|
|
|
std::string nprobe_str = "nprobe=" + std::to_string(nprobe);
|
|
|
|
|
params.set_index_parameters(index, nprobe_str.c_str());
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
case MODE_GPU: {
|
|
|
|
|
faiss::gpu::GpuIndexIVF* gpu_index_ivf = dynamic_cast<faiss::gpu::GpuIndexIVF*>(index);
|
|
|
|
|
gpu_index_ivf->setNumProbes(nprobe);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// output buffers
|
|
|
|
|
#if 1
|
|
|
|
|
const size_t NQ = 1000, K = 1000;
|
|
|
|
|
faiss::Index::idx_t* I = new faiss::Index::idx_t[NQ * K];
|
|
|
|
|
float* D = new float[NQ * K];
|
|
|
|
|
faiss::Index::distance_t* D = new faiss::Index::distance_t[NQ * K];
|
|
|
|
|
|
|
|
|
|
printf("\n%s | %s | nprobe=%lu\n", ann_test_name.c_str(), index_key.c_str(), nprobe);
|
|
|
|
|
printf("\n%s | %s - %s | nprobe=%lu\n", ann_test_name.c_str(), index_key.c_str(),
|
|
|
|
|
mode_str_map[query_mode].c_str(), nprobe);
|
|
|
|
|
printf("======================================================================================\n");
|
|
|
|
|
for (size_t t_nq = 10; t_nq <= NQ; t_nq *= 10) { // nq = {10, 100, 1000}
|
|
|
|
|
for (size_t t_k = 100; t_k <= K; t_k *= 10) { // k = {100, 1000}
|
|
|
|
|
for (size_t t_nq = NQ_START; t_nq <= NQ; t_nq *= NQ_STEP) { // nq = {10, 100, 1000}
|
|
|
|
|
for (size_t t_k = K_START; t_k <= K; t_k *= K_STEP) { // k = {100, 1000}
|
|
|
|
|
faiss::indexIVF_stats.quantization_time = 0.0;
|
|
|
|
|
faiss::indexIVF_stats.search_time = 0.0;
|
|
|
|
|
|
|
|
|
@ -310,271 +452,74 @@ test_ann_hdf5(const std::string& ann_test_name, const std::string& index_key, in
|
|
|
|
|
}
|
|
|
|
|
t_end = elapsed();
|
|
|
|
|
|
|
|
|
|
#if DEBUG_VERBOSE
|
|
|
|
|
std::string str;
|
|
|
|
|
str = "I (" + index_key + ", nq=" + std::to_string(t_nq) + ", k=" + std::to_string(t_k) + ")";
|
|
|
|
|
print_array(str.c_str(), true, I, t_nq, t_k);
|
|
|
|
|
str = "D (" + index_key + ", nq=" + std::to_string(t_nq) + ", k=" + std::to_string(t_k) + ")";
|
|
|
|
|
print_array(str.c_str(), false, D, t_nq, t_k);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// k = 100 for ground truth
|
|
|
|
|
int32_t hit = GetResultHitCount(gt, I, k, t_k, t_nq, index_add_loops);
|
|
|
|
|
int32_t hit = GetResultHitCount(gt, I, GK, t_k, t_nq, index_add_loops);
|
|
|
|
|
|
|
|
|
|
printf("nq = %4ld, k = %4ld, elapse = %.4fs (quant = %.4fs, search = %.4fs), R@ = %.4f\n", t_nq, t_k,
|
|
|
|
|
(t_end - t_start) / search_loops, faiss::indexIVF_stats.quantization_time / 1000 / search_loops,
|
|
|
|
|
faiss::indexIVF_stats.search_time / 1000 / search_loops,
|
|
|
|
|
(hit / float(t_nq * k / index_add_loops)));
|
|
|
|
|
(hit / float(t_nq * GK / index_add_loops)));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
printf("======================================================================================\n");
|
|
|
|
|
#else
|
|
|
|
|
printf("[%.3f s] Perform a search on %ld queries\n", elapsed() - t0, nq);
|
|
|
|
|
|
|
|
|
|
faiss::Index::idx_t* I = new faiss::Index::idx_t[nq * k];
|
|
|
|
|
float* D = new float[nq * k];
|
|
|
|
|
|
|
|
|
|
index->search(nq, xq, k, D, I);
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Compute recalls\n", elapsed() - t0);
|
|
|
|
|
|
|
|
|
|
// evaluate result by hand.
|
|
|
|
|
int n_1 = 0, n_10 = 0, n_100 = 0;
|
|
|
|
|
for (int i = 0; i < nq; i++) {
|
|
|
|
|
int gt_nn = gt[i * k];
|
|
|
|
|
for (int j = 0; j < k; j++) {
|
|
|
|
|
if (I[i * k + j] == gt_nn) {
|
|
|
|
|
if (j < 1)
|
|
|
|
|
n_1++;
|
|
|
|
|
if (j < 10)
|
|
|
|
|
n_10++;
|
|
|
|
|
if (j < 100)
|
|
|
|
|
n_100++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
printf("R@1 = %.4f\n", n_1 / float(nq));
|
|
|
|
|
printf("R@10 = %.4f\n", n_10 / float(nq));
|
|
|
|
|
printf("R@100 = %.4f\n", n_100 / float(nq));
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Search test done\n\n", elapsed() - t0);
|
|
|
|
|
|
|
|
|
|
delete[] I;
|
|
|
|
|
delete[] D;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
delete[] xq;
|
|
|
|
|
delete[] gt;
|
|
|
|
|
delete index;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef CUSTOMIZATION
|
|
|
|
|
void
|
|
|
|
|
test_ivfsq8h(const std::string& ann_test_name, int32_t index_add_loops, const std::vector<size_t>& nprobes,
|
|
|
|
|
bool pure_gpu_mode, int32_t search_loops) {
|
|
|
|
|
test_ann_hdf5(const std::string& ann_test_name, const std::string& index_type, const QueryMode query_mode,
|
|
|
|
|
int32_t index_add_loops, const std::vector<size_t>& nprobes, int32_t search_loops) {
|
|
|
|
|
double t0 = elapsed();
|
|
|
|
|
|
|
|
|
|
const std::string ann_file_name = ann_test_name + ".hdf5";
|
|
|
|
|
faiss::gpu::StandardGpuResources res;
|
|
|
|
|
|
|
|
|
|
faiss::MetricType metric_type;
|
|
|
|
|
size_t dim;
|
|
|
|
|
|
|
|
|
|
if (query_mode == MODE_MIX && index_type != "SQ8Hybrid") {
|
|
|
|
|
assert(index_type == "SQ8Hybrid" || !"Only SQ8Hybrid support MODE_MIX");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::string index_key = "IVF16384," + index_type;
|
|
|
|
|
|
|
|
|
|
if (!parse_ann_test_name(ann_test_name, dim, metric_type)) {
|
|
|
|
|
printf("Invalid ann test name: %s\n", ann_test_name.c_str());
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
faiss::distance_compute_blas_threshold = 800;
|
|
|
|
|
faiss::gpu::StandardGpuResources res;
|
|
|
|
|
|
|
|
|
|
const std::string index_key = "IVF16384,SQ8Hybrid";
|
|
|
|
|
|
|
|
|
|
faiss::Index* cpu_index = nullptr;
|
|
|
|
|
size_t d;
|
|
|
|
|
|
|
|
|
|
std::string index_file_name = get_index_file_name(ann_test_name, index_key, index_add_loops);
|
|
|
|
|
try {
|
|
|
|
|
cpu_index = faiss::read_index(index_file_name.c_str());
|
|
|
|
|
d = dim;
|
|
|
|
|
} catch (...) {
|
|
|
|
|
printf("Cannot read index file: %s\n", index_file_name.c_str());
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Loading train set\n", elapsed() - t0);
|
|
|
|
|
|
|
|
|
|
size_t nb;
|
|
|
|
|
float* xb = (float*)hdf5_read(ann_file_name.c_str(), "train", H5T_FLOAT, d, nb);
|
|
|
|
|
assert(d == dim || !"dataset does not have correct dimension");
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Preparing index \"%s\" d=%ld\n", elapsed() - t0, index_key.c_str(), d);
|
|
|
|
|
|
|
|
|
|
faiss::Index* ori_index = faiss::index_factory(d, index_key.c_str(), metric_type);
|
|
|
|
|
|
|
|
|
|
auto device_index = faiss::gpu::index_cpu_to_gpu(&res, 0, ori_index);
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Training on %ld vectors\n", elapsed() - t0, nb);
|
|
|
|
|
|
|
|
|
|
device_index->train(nb, xb);
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Loading database\n", elapsed() - t0);
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < index_add_loops; i++) {
|
|
|
|
|
printf("[%.3f s] Indexing database, size %ld*%ld\n", elapsed() - t0, nb, d);
|
|
|
|
|
device_index->add(nb, xb);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cpu_index = faiss::gpu::index_gpu_to_cpu(device_index);
|
|
|
|
|
faiss::write_index(cpu_index, index_file_name.c_str());
|
|
|
|
|
|
|
|
|
|
delete[] xb;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
faiss::IndexIVF* cpu_ivf_index = dynamic_cast<faiss::IndexIVF*>(cpu_index);
|
|
|
|
|
if (cpu_ivf_index != nullptr) {
|
|
|
|
|
cpu_ivf_index->to_readonly();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t nq;
|
|
|
|
|
float* xq;
|
|
|
|
|
{
|
|
|
|
|
printf("[%.3f s] Loading queries\n", elapsed() - t0);
|
|
|
|
|
|
|
|
|
|
size_t d2;
|
|
|
|
|
xq = (float*)hdf5_read(ann_file_name.c_str(), "test", H5T_FLOAT, d2, nq);
|
|
|
|
|
assert(d == d2 || !"query does not have same dimension as train set");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t k;
|
|
|
|
|
faiss::Index::idx_t* gt;
|
|
|
|
|
{
|
|
|
|
|
printf("[%.3f s] Loading ground truth for %ld queries\n", elapsed() - t0, nq);
|
|
|
|
|
|
|
|
|
|
size_t nq2;
|
|
|
|
|
int* gt_int = (int*)hdf5_read(ann_file_name.c_str(), "neighbors", H5T_INTEGER, k, nq2);
|
|
|
|
|
assert(nq2 == nq || !"incorrect nb of ground truth entries");
|
|
|
|
|
|
|
|
|
|
gt = new faiss::Index::idx_t[k * nq];
|
|
|
|
|
for (uint64_t i = 0; i < k * nq; ++i) {
|
|
|
|
|
gt[i] = gt_int[i];
|
|
|
|
|
}
|
|
|
|
|
delete[] gt_int;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
faiss::gpu::GpuClonerOptions option;
|
|
|
|
|
option.allInGpu = true;
|
|
|
|
|
|
|
|
|
|
faiss::IndexComposition index_composition;
|
|
|
|
|
index_composition.index = cpu_index;
|
|
|
|
|
index_composition.quantizer = nullptr;
|
|
|
|
|
|
|
|
|
|
size_t nq, k;
|
|
|
|
|
faiss::Index* index;
|
|
|
|
|
double copy_time;
|
|
|
|
|
faiss::Index::distance_t* xq;
|
|
|
|
|
faiss::Index::idx_t* gt; // ground-truth index
|
|
|
|
|
|
|
|
|
|
if (!pure_gpu_mode) {
|
|
|
|
|
index_composition.mode = 1; // 0: all data, 1: copy quantizer, 2: copy data
|
|
|
|
|
index = faiss::gpu::index_cpu_to_gpu(&res, 0, &index_composition, &option);
|
|
|
|
|
delete index;
|
|
|
|
|
printf("[%.3f s] Loading base data\n", elapsed() - t0);
|
|
|
|
|
load_base_data(index, ann_test_name, index_key, res, metric_type, dim, index_add_loops, query_mode);
|
|
|
|
|
|
|
|
|
|
copy_time = elapsed();
|
|
|
|
|
index = faiss::gpu::index_cpu_to_gpu(&res, 0, &index_composition, &option);
|
|
|
|
|
delete index;
|
|
|
|
|
} else {
|
|
|
|
|
index_composition.mode = 2;
|
|
|
|
|
index = faiss::gpu::index_cpu_to_gpu(&res, 0, &index_composition, &option);
|
|
|
|
|
delete index;
|
|
|
|
|
printf("[%.3f s] Loading queries\n", elapsed() - t0);
|
|
|
|
|
load_query_data(xq, nq, ann_test_name, metric_type, dim);
|
|
|
|
|
|
|
|
|
|
copy_time = elapsed();
|
|
|
|
|
index = faiss::gpu::index_cpu_to_gpu(&res, 0, &index_composition, &option);
|
|
|
|
|
}
|
|
|
|
|
printf("[%.3f s] Loading ground truth for %ld queries\n", elapsed() - t0, nq);
|
|
|
|
|
load_ground_truth(gt, k, ann_test_name, nq);
|
|
|
|
|
|
|
|
|
|
copy_time = elapsed() - copy_time;
|
|
|
|
|
printf("[%.3f s] Copy quantizer completed, cost %f s\n", elapsed() - t0, copy_time);
|
|
|
|
|
|
|
|
|
|
const size_t NQ = 1000, K = 1000;
|
|
|
|
|
if (!pure_gpu_mode) {
|
|
|
|
|
for (auto nprobe : nprobes) {
|
|
|
|
|
auto ivf_index = dynamic_cast<faiss::IndexIVF*>(cpu_index);
|
|
|
|
|
ivf_index->nprobe = nprobe;
|
|
|
|
|
|
|
|
|
|
auto is_gpu_flat_index = dynamic_cast<faiss::gpu::GpuIndexFlat*>(ivf_index->quantizer);
|
|
|
|
|
if (is_gpu_flat_index == nullptr) {
|
|
|
|
|
delete ivf_index->quantizer;
|
|
|
|
|
ivf_index->quantizer = index_composition.quantizer;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int64_t* I = new faiss::Index::idx_t[NQ * K];
|
|
|
|
|
float* D = new float[NQ * K];
|
|
|
|
|
|
|
|
|
|
printf("\n%s | %s-MIX | nprobe=%lu\n", ann_test_name.c_str(), index_key.c_str(), nprobe);
|
|
|
|
|
printf("======================================================================================\n");
|
|
|
|
|
for (size_t t_nq = 10; t_nq <= NQ; t_nq *= 10) { // nq = {10, 100, 1000}
|
|
|
|
|
for (size_t t_k = 100; t_k <= K; t_k *= 10) { // k = {100, 1000}
|
|
|
|
|
faiss::indexIVF_stats.quantization_time = 0.0;
|
|
|
|
|
faiss::indexIVF_stats.search_time = 0.0;
|
|
|
|
|
|
|
|
|
|
double t_start = elapsed(), t_end;
|
|
|
|
|
for (int32_t i = 0; i < search_loops; i++) {
|
|
|
|
|
cpu_index->search(t_nq, xq, t_k, D, I);
|
|
|
|
|
}
|
|
|
|
|
t_end = elapsed();
|
|
|
|
|
|
|
|
|
|
// k = 100 for ground truth
|
|
|
|
|
int32_t hit = GetResultHitCount(gt, I, k, t_k, t_nq, index_add_loops);
|
|
|
|
|
|
|
|
|
|
printf("nq = %4ld, k = %4ld, elapse = %.4fs (quant = %.4fs, search = %.4fs), R@ = %.4f\n", t_nq,
|
|
|
|
|
t_k, (t_end - t_start) / search_loops,
|
|
|
|
|
faiss::indexIVF_stats.quantization_time / 1000 / search_loops,
|
|
|
|
|
faiss::indexIVF_stats.search_time / 1000 / search_loops,
|
|
|
|
|
(hit / float(t_nq * k / index_add_loops)));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
printf("======================================================================================\n");
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Search test done\n\n", elapsed() - t0);
|
|
|
|
|
|
|
|
|
|
delete[] I;
|
|
|
|
|
delete[] D;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
std::shared_ptr<faiss::Index> gpu_index_ivf_ptr = std::shared_ptr<faiss::Index>(index);
|
|
|
|
|
|
|
|
|
|
for (auto nprobe : nprobes) {
|
|
|
|
|
faiss::gpu::GpuIndexIVFSQHybrid* gpu_index_ivf_hybrid =
|
|
|
|
|
dynamic_cast<faiss::gpu::GpuIndexIVFSQHybrid*>(gpu_index_ivf_ptr.get());
|
|
|
|
|
gpu_index_ivf_hybrid->setNumProbes(nprobe);
|
|
|
|
|
|
|
|
|
|
int64_t* I = new faiss::Index::idx_t[NQ * K];
|
|
|
|
|
float* D = new float[NQ * K];
|
|
|
|
|
|
|
|
|
|
printf("\n%s | %s-GPU | nprobe=%lu\n", ann_test_name.c_str(), index_key.c_str(), nprobe);
|
|
|
|
|
printf("======================================================================================\n");
|
|
|
|
|
for (size_t t_nq = 10; t_nq <= NQ; t_nq *= 10) { // nq = {10, 100, 1000}
|
|
|
|
|
for (size_t t_k = 100; t_k <= K; t_k *= 10) { // k = {100, 1000}
|
|
|
|
|
faiss::indexIVF_stats.quantization_time = 0.0;
|
|
|
|
|
faiss::indexIVF_stats.search_time = 0.0;
|
|
|
|
|
|
|
|
|
|
double t_start = elapsed(), t_end;
|
|
|
|
|
for (int32_t i = 0; i < search_loops; i++) {
|
|
|
|
|
gpu_index_ivf_ptr->search(nq, xq, k, D, I);
|
|
|
|
|
}
|
|
|
|
|
t_end = elapsed();
|
|
|
|
|
|
|
|
|
|
// k = 100 for ground truth
|
|
|
|
|
int32_t hit = GetResultHitCount(gt, I, k, t_k, t_nq, index_add_loops);
|
|
|
|
|
|
|
|
|
|
printf("nq = %4ld, k = %4ld, elapse = %.4fs (quant = %.4fs, search = %.4fs), R@ = %.4f\n", t_nq,
|
|
|
|
|
t_k, (t_end - t_start) / search_loops,
|
|
|
|
|
faiss::indexIVF_stats.quantization_time / 1000 / search_loops,
|
|
|
|
|
faiss::indexIVF_stats.search_time / 1000 / search_loops,
|
|
|
|
|
(hit / float(t_nq * k / index_add_loops)));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
printf("======================================================================================\n");
|
|
|
|
|
|
|
|
|
|
printf("[%.3f s] Search test done\n\n", elapsed() - t0);
|
|
|
|
|
|
|
|
|
|
delete[] I;
|
|
|
|
|
delete[] D;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
test_with_nprobes(ann_test_name, index_key, index, res, query_mode, xq, gt, nprobes, index_add_loops, search_loops);
|
|
|
|
|
printf("[%.3f s] Search test done\n\n", elapsed() - t0);
|
|
|
|
|
|
|
|
|
|
delete[] xq;
|
|
|
|
|
delete[] gt;
|
|
|
|
|
delete cpu_index;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/************************************************************************************
|
|
|
|
|
* https://github.com/erikbern/ann-benchmarks
|
|
|
|
@ -593,22 +538,34 @@ test_ivfsq8h(const std::string& ann_test_name, int32_t index_add_loops, const st
|
|
|
|
|
TEST(FAISSTEST, BENCHMARK) {
|
|
|
|
|
std::vector<size_t> param_nprobes = {8, 128};
|
|
|
|
|
const int32_t SEARCH_LOOPS = 5;
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
const int32_t SIFT_INSERT_LOOPS = 2; // insert twice to get ~1G data set
|
|
|
|
|
|
|
|
|
|
test_ann_hdf5("sift-128-euclidean", "Flat", MODE_CPU, SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("sift-128-euclidean", "Flat", MODE_GPU, SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
|
|
|
|
|
test_ann_hdf5("sift-128-euclidean", "SQ8", MODE_CPU, SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("sift-128-euclidean", "SQ8", MODE_GPU, SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
|
|
|
|
|
#ifdef CUSTOMIZATION
|
|
|
|
|
test_ann_hdf5("sift-128-euclidean", "SQ8Hybrid", MODE_CPU, SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("sift-128-euclidean", "SQ8Hybrid", MODE_MIX, SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("sift-128-euclidean", "SQ8Hybrid", MODE_GPU, SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
const int32_t GLOVE_INSERT_LOOPS = 1;
|
|
|
|
|
|
|
|
|
|
test_ann_hdf5("sift-128-euclidean", "IVF4096,Flat", SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("sift-128-euclidean", "IVF16384,SQ8", SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
#ifdef CUSTOMIZATION
|
|
|
|
|
test_ann_hdf5("sift-128-euclidean", "IVF16384,SQ8Hybrid", SIFT_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ivfsq8h("sift-128-euclidean", SIFT_INSERT_LOOPS, param_nprobes, false, SEARCH_LOOPS);
|
|
|
|
|
test_ivfsq8h("sift-128-euclidean", SIFT_INSERT_LOOPS, param_nprobes, true, SEARCH_LOOPS);
|
|
|
|
|
#endif
|
|
|
|
|
test_ann_hdf5("glove-200-angular", "Flat", MODE_CPU, GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("glove-200-angular", "Flat", MODE_GPU, GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
|
|
|
|
|
test_ann_hdf5("glove-200-angular", "SQ8", MODE_CPU, GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("glove-200-angular", "SQ8", MODE_GPU, GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
|
|
|
|
|
test_ann_hdf5("glove-200-angular", "IVF4096,Flat", GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("glove-200-angular", "IVF16384,SQ8", GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
#ifdef CUSTOMIZATION
|
|
|
|
|
test_ann_hdf5("glove-200-angular", "IVF16384,SQ8Hybrid", GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ivfsq8h("glove-200-angular", GLOVE_INSERT_LOOPS, param_nprobes, false, SEARCH_LOOPS);
|
|
|
|
|
test_ivfsq8h("glove-200-angular", GLOVE_INSERT_LOOPS, param_nprobes, true, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("glove-200-angular", "SQ8Hybrid", MODE_CPU, GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("glove-200-angular", "SQ8Hybrid", MODE_MIX, GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
test_ann_hdf5("glove-200-angular", "SQ8Hybrid", MODE_GPU, GLOVE_INSERT_LOOPS, param_nprobes, SEARCH_LOOPS);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|