fix conflict

pull/443/head
fishpenguin 2019-11-20 19:00:56 +08:00
commit 29006f3cb5
65 changed files with 1575 additions and 680 deletions

View File

@ -12,7 +12,11 @@ Please mark all change in change log and use the ticket from JIRA.
- \#340 - Test cases run failed on 0.6.0
- \#353 - Rename config.h.in to version.h.in
- \#374 - sdk_simple return empty result
- \#377 - Create partition success if tag name only contains spaces
- \#397 - sdk_simple return incorrect result
- \#399 - Create partition should be failed if partition tag existed
- \#412 - Message returned is confused when partition created with null partition name
- \#416 - Drop the same partition success repeatally
- \#440 - Query API in customization still uses old version
## Feature
@ -20,18 +24,20 @@ Please mark all change in change log and use the ticket from JIRA.
- \#77 - Support table partition
- \#127 - Support new Index type IVFPQ
- \#226 - Experimental shards middleware for Milvus
- \#227 - Support new index types SPTAG-KDT and SPTAG-BKT
- \#346 - Support build index with multiple gpu
## Improvement
- \#275 - Rename C++ SDK IndexType
- \#284 - Change C++ SDK to shared library
- \#255 - Add ivfsq8 test report detailed version
- \#260 - C++ SDK README
- \#266 - Rpc request source code refactor
- \#314 - add Find FAISS in CMake
- \#275 - Rename C++ SDK IndexType
- \#284 - Change C++ SDK to shared library
- \#306 - Use int64 for all config integer
- \#310 - Add Q&A for 'protocol https not supported or disable in libcurl' issue
- \#314 - add Find FAISS in CMake
- \#322 - Add option to enable / disable prometheus
- \#358 - Add more information in build.sh and install.md
- \#255 - Add ivfsq8 test report detailed version
- \#404 - Add virtual method Init() in Pass abstract class
- \#409 - Add a Fallback pass in optimizer

View File

@ -16,7 +16,7 @@ Milvus is the world's fastest similarity search engine for massive-scale feature
For more detailed introduction of Milvus and its architecture, see [Milvus overview](https://www.milvus.io/docs/en/aboutmilvus/overview/).
Milvus provides stable [Python](https://github.com/milvus-io/pymilvus), [Java](https://github.com/milvus-io/milvus-sdk-java) and C++ APIs.
Milvus provides stable [Python](https://github.com/milvus-io/pymilvus), [Java](https://github.com/milvus-io/milvus-sdk-java) and [C++](https://github.com/milvus-io/milvus/tree/master/core/src/sdk) APIs.
Keep up-to-date with newest releases and latest updates by reading Milvus [release notes](https://www.milvus.io/docs/en/release/v0.5.0/).

View File

@ -20,7 +20,7 @@
Milvus 是一款开源的、针对海量特征向量的相似性搜索引擎。基于异构众核计算框架设计,成本更低,性能更好。在有限的计算资源下,十亿向量搜索仅毫秒响应。
Milvus 提供稳定的 Python、Java 以及 C++ 的 API 接口。
Milvus 提供稳定的 [Python](https://github.com/milvus-io/pymilvus)[Java](https://github.com/milvus-io/milvus-sdk-java) 以及 [C++](https://github.com/milvus-io/milvus/tree/master/core/src/sdk) 的 API 接口。
通过 [版本发布说明](https://milvus.io/docs/zh-CN/release/v0.5.0/) 获取最新发行版本的 Milvus。

View File

@ -50,7 +50,7 @@ pipeline {
}
stages {
stage("Run Build") {
stage("Run GPU Version Build") {
agent {
kubernetes {
label "${BINRARY_VERSION}-build"
@ -60,7 +60,7 @@ pipeline {
}
stages {
stage('Build') {
stage('GPU Version Build') {
steps {
container('milvus-build-env') {
script {
@ -69,7 +69,7 @@ pipeline {
}
}
}
stage('Code Coverage') {
stage('GPU Version Code Coverage') {
steps {
container('milvus-build-env') {
script {
@ -78,7 +78,7 @@ pipeline {
}
}
}
stage('Upload Package') {
stage('Upload GPU Version Package') {
steps {
container('milvus-build-env') {
script {
@ -90,7 +90,7 @@ pipeline {
}
}
stage("Publish docker images") {
stage("Publish GPU Version docker images") {
agent {
kubernetes {
label "${BINRARY_VERSION}-publish"
@ -100,7 +100,7 @@ pipeline {
}
stages {
stage('Publish') {
stage('Publish GPU Version') {
steps {
container('publish-images'){
script {
@ -112,7 +112,7 @@ pipeline {
}
}
stage("Deploy to Development") {
stage("Deploy GPU Version to Development") {
agent {
kubernetes {
label "${BINRARY_VERSION}-dev-test"
@ -122,7 +122,7 @@ pipeline {
}
stages {
stage("Deploy to Dev") {
stage("Deploy GPU Version to Dev") {
steps {
container('milvus-test-env') {
script {
@ -132,7 +132,7 @@ pipeline {
}
}
stage("Dev Test") {
stage("GPU Version Dev Test") {
steps {
container('milvus-test-env') {
script {
@ -147,7 +147,7 @@ pipeline {
}
}
stage ("Cleanup Dev") {
stage ("Cleanup GPU Version Dev") {
steps {
container('milvus-test-env') {
script {
@ -180,7 +180,7 @@ pipeline {
}
stages {
stage("Run Build") {
stage("Run CPU Version Build") {
agent {
kubernetes {
label "${BINRARY_VERSION}-build"
@ -190,7 +190,7 @@ pipeline {
}
stages {
stage('Build') {
stage('Build CPU Version') {
steps {
container('milvus-build-env') {
script {
@ -199,7 +199,7 @@ pipeline {
}
}
}
stage('Code Coverage') {
stage('CPU Version Code Coverage') {
steps {
container('milvus-build-env') {
script {
@ -208,7 +208,7 @@ pipeline {
}
}
}
stage('Upload Package') {
stage('Upload CPU Version Package') {
steps {
container('milvus-build-env') {
script {
@ -220,7 +220,7 @@ pipeline {
}
}
stage("Publish docker images") {
stage("Publish CPU Version docker images") {
agent {
kubernetes {
label "${BINRARY_VERSION}-publish"
@ -230,7 +230,7 @@ pipeline {
}
stages {
stage('Publish') {
stage('Publish CPU Version') {
steps {
container('publish-images'){
script {
@ -242,7 +242,7 @@ pipeline {
}
}
stage("Deploy to Development") {
stage("Deploy CPU Version to Development") {
agent {
kubernetes {
label "${BINRARY_VERSION}-dev-test"
@ -252,7 +252,7 @@ pipeline {
}
stages {
stage("Deploy to Dev") {
stage("Deploy CPU Version to Dev") {
steps {
container('milvus-test-env') {
script {
@ -262,7 +262,7 @@ pipeline {
}
}
stage("Dev Test") {
stage("CPU Version Dev Test") {
steps {
container('milvus-test-env') {
script {
@ -277,7 +277,7 @@ pipeline {
}
}
stage ("Cleanup Dev") {
stage ("Cleanup CPU Version Dev") {
steps {
container('milvus-test-env') {
script {

View File

@ -16,6 +16,7 @@ BUILD_TYPE="Debug"
BUILD_UNITTEST="OFF"
INSTALL_PREFIX="/opt/milvus"
FAISS_ROOT=""
CUSTOMIZATION="OFF" # default use origin faiss
BUILD_COVERAGE="OFF"
USE_JFROG_CACHE="OFF"
RUN_CPPLINT="OFF"
@ -23,7 +24,7 @@ GPU_VERSION="OFF"
WITH_MKL="OFF"
CUDA_COMPILER=/usr/local/cuda/bin/nvcc
while getopts "o:t:b:f:gulcjmh" arg
while getopts "o:t:b:f:gxulcjmh" arg
do
case $arg in
o)
@ -41,6 +42,9 @@ do
g)
GPU_VERSION="ON";
;;
x)
CUSTOMIZATION="ON";
;;
u)
echo "Build and run unittest cases" ;
BUILD_UNITTEST="ON";
@ -66,6 +70,7 @@ parameter:
-b: core code build directory
-f: faiss root path
-g: gpu version
-x: milvus customization (default: OFF)
-u: building unit test options(default: OFF)
-l: run cpplint, clang-format and clang-tidy(default: OFF)
-c: code coverage(default: OFF)
@ -74,7 +79,7 @@ parameter:
-h: help
usage:
./build.sh -o \${INSTALL_PREFIX} -t \${BUILD_TYPE} -b \${CORE_BUILD_DIR} -f \${FAISS_ROOT} [-u] [-l] [-c] [-j] [-m] [-h]
./build.sh -o \${INSTALL_PREFIX} -t \${BUILD_TYPE} -b \${CORE_BUILD_DIR} -f \${FAISS_ROOT} [-g] [-x] [-u] [-l] [-c] [-j] [-m] [-h]
"
exit 0
;;
@ -96,6 +101,7 @@ CMAKE_CMD="cmake \
-DCMAKE_BUILD_TYPE=${BUILD_TYPE} \
-DCMAKE_CUDA_COMPILER=${CUDA_COMPILER} \
-DMILVUS_GPU_VERSION=${GPU_VERSION} \
-DCUSTOMIZATION=${CUSTOMIZATION} \
-DBUILD_UNIT_TEST=${BUILD_UNITTEST} \
-DBUILD_COVERAGE=${BUILD_COVERAGE} \
-DUSE_JFROG_CACHE=${USE_JFROG_CACHE} \

2
core/.gitignore vendored
View File

@ -9,3 +9,5 @@ output.info
output_new.info
server.info
*.pyc
src/grpc/python_gen.h
src/grpc/python/

View File

@ -36,7 +36,7 @@ engine_config:
gpu_search_threshold: 1000 # threshold beyond which the search computation is executed on GPUs only
gpu_resource_config:
enable_gpu: false # whether to enable GPU resources
enable: false # whether to enable GPU resources
cache_capacity: 4 # GB, size of GPU memory per card used for cache, must be a positive integer
search_resources: # define the GPU devices used for search computation, must be in format gpux
- gpu0

View File

@ -36,7 +36,7 @@ engine_config:
gpu_search_threshold: 1000 # threshold beyond which the search computation is executed on GPUs only
gpu_resource_config:
enable_gpu: true # whether to enable GPU resources
enable: true # whether to enable GPU resources
cache_capacity: 4 # GB, size of GPU memory per card used for cache, must be a positive integer
search_resources: # define the GPU devices used for search computation, must be in format gpux
- gpu0

View File

@ -84,12 +84,12 @@ DBImpl::Start() {
return Status::OK();
}
ENGINE_LOG_TRACE << "DB service start";
// ENGINE_LOG_TRACE << "DB service start";
shutting_down_.store(false, std::memory_order_release);
// for distribute version, some nodes are read only
if (options_.mode_ != DBOptions::MODE::CLUSTER_READONLY) {
ENGINE_LOG_TRACE << "StartTimerTasks";
// ENGINE_LOG_TRACE << "StartTimerTasks";
bg_timer_thread_ = std::thread(&DBImpl::BackgroundTimerTask, this);
}
@ -114,7 +114,7 @@ DBImpl::Stop() {
meta_ptr_->CleanUp();
}
ENGINE_LOG_TRACE << "DB service stop";
// ENGINE_LOG_TRACE << "DB service stop";
return Status::OK();
}
@ -279,6 +279,11 @@ DBImpl::DropPartitionByTag(const std::string& table_id, const std::string& parti
std::string partition_name;
auto status = meta_ptr_->GetPartitionName(table_id, partition_tag, partition_name);
if (!status.ok()) {
ENGINE_LOG_ERROR << status.message();
return status;
}
return DropPartition(partition_name);
}
@ -553,7 +558,7 @@ DBImpl::StartMetricTask() {
return;
}
ENGINE_LOG_TRACE << "Start metric task";
// ENGINE_LOG_TRACE << "Start metric task";
server::Metrics::GetInstance().KeepingAliveCounterIncrement(METRIC_ACTION_INTERVAL);
int64_t cache_usage = cache::CpuCacheMgr::GetInstance()->CacheUsage();
@ -579,7 +584,7 @@ DBImpl::StartMetricTask() {
server::Metrics::GetInstance().GPUTemperature();
server::Metrics::GetInstance().CPUTemperature();
ENGINE_LOG_TRACE << "Metric task finished";
// ENGINE_LOG_TRACE << "Metric task finished";
}
Status
@ -751,7 +756,7 @@ DBImpl::BackgroundMergeFiles(const std::string& table_id) {
void
DBImpl::BackgroundCompaction(std::set<std::string> table_ids) {
ENGINE_LOG_TRACE << "Background compaction thread start";
// ENGINE_LOG_TRACE << " Background compaction thread start";
Status status;
for (auto& table_id : table_ids) {
@ -774,7 +779,7 @@ DBImpl::BackgroundCompaction(std::set<std::string> table_ids) {
}
meta_ptr_->CleanUpFilesWithTTL(ttl);
ENGINE_LOG_TRACE << "Background compaction thread exit";
// ENGINE_LOG_TRACE << " Background compaction thread exit";
}
void
@ -807,7 +812,7 @@ DBImpl::StartBuildIndexTask(bool force) {
void
DBImpl::BackgroundBuildIndex() {
ENGINE_LOG_TRACE << "Background build index thread start";
// ENGINE_LOG_TRACE << "Background build index thread start";
std::unique_lock<std::mutex> lock(build_index_mutex_);
meta::TableFilesSchema to_index_files;
@ -830,7 +835,7 @@ DBImpl::BackgroundBuildIndex() {
}
}
ENGINE_LOG_TRACE << "Background build index thread exit";
// ENGINE_LOG_TRACE << "Background build index thread exit";
}
Status
@ -853,8 +858,12 @@ DBImpl::GetPartitionsByTags(const std::string& table_id, const std::vector<std::
auto status = meta_ptr_->ShowPartitions(table_id, partiton_array);
for (auto& tag : partition_tags) {
// trim side-blank of tag, only compare valid characters
// for example: " ab cd " is treated as "ab cd"
std::string valid_tag = tag;
server::StringHelpFunctions::TrimStringBlank(valid_tag);
for (auto& schema : partiton_array) {
if (server::StringHelpFunctions::IsRegexMatch(schema.partition_tag_, tag)) {
if (server::StringHelpFunctions::IsRegexMatch(schema.partition_tag_, valid_tag)) {
partition_name_array.insert(schema.table_id_);
}
}

View File

@ -33,7 +33,7 @@ static const char* ARCHIVE_CONF_DISK = "disk";
static const char* ARCHIVE_CONF_DAYS = "days";
struct ArchiveConf {
using CriteriaT = std::map<std::string, int>;
using CriteriaT = std::map<std::string, int64_t>;
explicit ArchiveConf(const std::string& type, const std::string& criterias = std::string());

View File

@ -35,7 +35,9 @@ enum class EngineType {
NSG_MIX,
FAISS_IVFSQ8H,
FAISS_PQ,
MAX_VALUE = FAISS_PQ,
SPTAG_KDT,
SPTAG_BKT,
MAX_VALUE = SPTAG_BKT,
};
enum class MetricType {

View File

@ -124,6 +124,14 @@ ExecutionEngineImpl::CreatetVecIndex(EngineType type) {
#endif
break;
}
case EngineType::SPTAG_KDT: {
index = GetVecIndexFactory(IndexType::SPTAG_KDT_RNT_CPU);
break;
}
case EngineType::SPTAG_BKT: {
index = GetVecIndexFactory(IndexType::SPTAG_BKT_RNT_CPU);
break;
}
default: {
ENGINE_LOG_ERROR << "Unsupported index type";
return nullptr;
@ -146,7 +154,7 @@ ExecutionEngineImpl::HybridLoad() const {
const std::string key = location_ + ".quantizer";
server::Config& config = server::Config::GetInstance();
std::vector<int32_t> gpus;
std::vector<int64_t> gpus;
Status s = config.GetGpuResourceConfigSearchResources(gpus);
if (!s.ok()) {
ENGINE_LOG_ERROR << s.message();
@ -586,7 +594,7 @@ ExecutionEngineImpl::GpuCache(uint64_t gpu_id) {
Status
ExecutionEngineImpl::Init() {
server::Config& config = server::Config::GetInstance();
std::vector<int32_t> gpu_ids;
std::vector<int64_t> gpu_ids;
Status s = config.GetGpuResourceConfigBuildIndexResources(gpu_ids);
for (auto id : gpu_ids) {
if (gpu_num_ == id) {

View File

@ -122,8 +122,8 @@ class ExecutionEngineImpl : public ExecutionEngine {
int64_t dim_;
std::string location_;
int32_t nlist_ = 0;
int32_t gpu_num_ = 0;
int64_t nlist_ = 0;
int64_t gpu_num_ = 0;
};
} // namespace engine

View File

@ -22,6 +22,7 @@
#include "metrics/Metrics.h"
#include "utils/Exception.h"
#include "utils/Log.h"
#include "utils/StringHelpFunctions.h"
#include <mysql++/mysql++.h>
#include <string.h>
@ -1162,17 +1163,23 @@ MySQLMetaImpl::CreatePartition(const std::string& table_id, const std::string& p
// not allow create partition under partition
if (!table_schema.owner_table_.empty()) {
return Status(DB_ERROR, "Nested partition is not allow");
return Status(DB_ERROR, "Nested partition is not allowed");
}
// trim side-blank of tag, only compare valid characters
// for example: " ab cd " is treated as "ab cd"
std::string valid_tag = tag;
server::StringHelpFunctions::TrimStringBlank(valid_tag);
// not allow duplicated partition
std::string exist_partition;
GetPartitionName(table_id, valid_tag, exist_partition);
if (!exist_partition.empty()) {
return Status(DB_ERROR, "Duplicate partition is not allowed");
}
if (partition_name == "") {
// not allow duplicated partition
std::string exist_partition;
GetPartitionName(table_id, tag, exist_partition);
if (!exist_partition.empty()) {
return Status(DB_ERROR, "Duplicated partition is not allow");
}
// generate unique partition name
NextTableId(table_schema.table_id_);
} else {
table_schema.table_id_ = partition_name;
@ -1182,9 +1189,14 @@ MySQLMetaImpl::CreatePartition(const std::string& table_id, const std::string& p
table_schema.flag_ = 0;
table_schema.created_on_ = utils::GetMicroSecTimeStamp();
table_schema.owner_table_ = table_id;
table_schema.partition_tag_ = tag;
table_schema.partition_tag_ = valid_tag;
return CreateTable(table_schema);
status = CreateTable(table_schema);
if (status.code() == DB_ALREADY_EXIST) {
return Status(DB_ALREADY_EXIST, "Partition already exists");
}
return status;
}
Status
@ -1231,6 +1243,12 @@ MySQLMetaImpl::GetPartitionName(const std::string& table_id, const std::string&
try {
server::MetricCollector metric;
mysqlpp::StoreQueryResult res;
// trim side-blank of tag, only compare valid characters
// for example: " ab cd " is treated as "ab cd"
std::string valid_tag = tag;
server::StringHelpFunctions::TrimStringBlank(valid_tag);
{
mysqlpp::ScopedConnection connectionPtr(*mysql_connection_pool_, safe_grab_);
@ -1240,7 +1258,7 @@ MySQLMetaImpl::GetPartitionName(const std::string& table_id, const std::string&
mysqlpp::Query allPartitionsQuery = connectionPtr->query();
allPartitionsQuery << "SELECT table_id FROM " << META_TABLES << " WHERE owner_table = " << mysqlpp::quote
<< table_id << " AND partition_tag = " << mysqlpp::quote << tag << " AND state <> "
<< table_id << " AND partition_tag = " << mysqlpp::quote << valid_tag << " AND state <> "
<< std::to_string(TableSchema::TO_DELETE) << ";";
ENGINE_LOG_DEBUG << "MySQLMetaImpl::AllTables: " << allPartitionsQuery.str();
@ -1252,7 +1270,7 @@ MySQLMetaImpl::GetPartitionName(const std::string& table_id, const std::string&
const mysqlpp::Row& resRow = res[0];
resRow["table_id"].to_string(partition_name);
} else {
return Status(DB_NOT_FOUND, "Partition " + tag + " of table " + table_id + " not found");
return Status(DB_NOT_FOUND, "Partition " + valid_tag + " of table " + table_id + " not found");
}
} catch (std::exception& e) {
return HandleException("GENERAL ERROR WHEN GET PARTITION NAME", e.what());

View File

@ -22,6 +22,7 @@
#include "metrics/Metrics.h"
#include "utils/Exception.h"
#include "utils/Log.h"
#include "utils/StringHelpFunctions.h"
#include <sqlite_orm.h>
#include <unistd.h>
@ -757,17 +758,23 @@ SqliteMetaImpl::CreatePartition(const std::string& table_id, const std::string&
// not allow create partition under partition
if(!table_schema.owner_table_.empty()) {
return Status(DB_ERROR, "Nested partition is not allow");
return Status(DB_ERROR, "Nested partition is not allowed");
}
// trim side-blank of tag, only compare valid characters
// for example: " ab cd " is treated as "ab cd"
std::string valid_tag = tag;
server::StringHelpFunctions::TrimStringBlank(valid_tag);
// not allow duplicated partition
std::string exist_partition;
GetPartitionName(table_id, valid_tag, exist_partition);
if(!exist_partition.empty()) {
return Status(DB_ERROR, "Duplicate partition is not allowed");
}
if (partition_name == "") {
// not allow duplicated partition
std::string exist_partition;
GetPartitionName(table_id, tag, exist_partition);
if(!exist_partition.empty()) {
return Status(DB_ERROR, "Duplicated partition is not allow");
}
// generate unique partition name
NextTableId(table_schema.table_id_);
} else {
table_schema.table_id_ = partition_name;
@ -777,9 +784,14 @@ SqliteMetaImpl::CreatePartition(const std::string& table_id, const std::string&
table_schema.flag_ = 0;
table_schema.created_on_ = utils::GetMicroSecTimeStamp();
table_schema.owner_table_ = table_id;
table_schema.partition_tag_ = tag;
table_schema.partition_tag_ = valid_tag;
return CreateTable(table_schema);
status = CreateTable(table_schema);
if (status.code() == DB_ALREADY_EXIST) {
return Status(DB_ALREADY_EXIST, "Partition already exists");
}
return status;
}
Status
@ -814,13 +826,18 @@ SqliteMetaImpl::GetPartitionName(const std::string& table_id, const std::string&
try {
server::MetricCollector metric;
// trim side-blank of tag, only compare valid characters
// for example: " ab cd " is treated as "ab cd"
std::string valid_tag = tag;
server::StringHelpFunctions::TrimStringBlank(valid_tag);
auto name = ConnectorPtr->select(columns(&TableSchema::table_id_),
where(c(&TableSchema::owner_table_) == table_id
and c(&TableSchema::partition_tag_) == tag));
and c(&TableSchema::partition_tag_) == valid_tag));
if (name.size() > 0) {
partition_name = std::get<0>(name[0]);
} else {
return Status(DB_NOT_FOUND, "Table " + table_id + "'s partition " + tag + " not found");
return Status(DB_NOT_FOUND, "Table " + table_id + "'s partition " + valid_tag + " not found");
}
} catch (std::exception &e) {
return HandleException("Encounter exception when get partition name", e.what());

View File

@ -30,10 +30,10 @@ set(external_srcs
set(index_srcs
knowhere/index/preprocessor/Normalize.cpp
knowhere/index/vector_index/IndexKDT.cpp
knowhere/index/vector_index/IndexSPTAG.cpp
knowhere/index/vector_index/IndexIDMAP.cpp
knowhere/index/vector_index/IndexIVF.cpp
knowhere/index/vector_index/helpers/KDTParameterMgr.cpp
knowhere/index/vector_index/helpers/SPTAGParameterMgr.cpp
knowhere/index/vector_index/IndexNSG.cpp
knowhere/index/vector_index/nsg/NSG.cpp
knowhere/index/vector_index/nsg/NSGIO.cpp

View File

@ -1,180 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <SPTAG/AnnService/inc/Core/Common.h>
#include <SPTAG/AnnService/inc/Core/VectorSet.h>
#include <SPTAG/AnnService/inc/Server/QueryParser.h>
#include <sstream>
#include <vector>
#undef mkdir
#include "knowhere/index/vector_index/IndexKDT.h"
#include "knowhere/index/vector_index/helpers/Definitions.h"
//#include "knowhere/index/preprocessor/normalize.h"
#include "knowhere/adapter/SptagAdapter.h"
#include "knowhere/common/Exception.h"
#include "knowhere/index/vector_index/helpers/KDTParameterMgr.h"
namespace knowhere {
BinarySet
CPUKDTRNG::Serialize() {
std::vector<void*> index_blobs;
std::vector<int64_t> index_len;
// TODO(zirui): dev
// index_ptr_->SaveIndexToMemory(index_blobs, index_len);
BinarySet binary_set;
//
// auto sample = std::make_shared<uint8_t>();
// sample.reset(static_cast<uint8_t*>(index_blobs[0]));
// auto tree = std::make_shared<uint8_t>();
// tree.reset(static_cast<uint8_t*>(index_blobs[1]));
// auto graph = std::make_shared<uint8_t>();
// graph.reset(static_cast<uint8_t*>(index_blobs[2]));
// auto metadata = std::make_shared<uint8_t>();
// metadata.reset(static_cast<uint8_t*>(index_blobs[3]));
//
// binary_set.Append("samples", sample, index_len[0]);
// binary_set.Append("tree", tree, index_len[1]);
// binary_set.Append("graph", graph, index_len[2]);
// binary_set.Append("metadata", metadata, index_len[3]);
return binary_set;
}
void
CPUKDTRNG::Load(const BinarySet& binary_set) {
// TODO(zirui): dev
// std::vector<void*> index_blobs;
//
// auto samples = binary_set.GetByName("samples");
// index_blobs.push_back(samples->data.get());
//
// auto tree = binary_set.GetByName("tree");
// index_blobs.push_back(tree->data.get());
//
// auto graph = binary_set.GetByName("graph");
// index_blobs.push_back(graph->data.get());
//
// auto metadata = binary_set.GetByName("metadata");
// index_blobs.push_back(metadata->data.get());
//
// index_ptr_->LoadIndexFromMemory(index_blobs);
}
// PreprocessorPtr
// CPUKDTRNG::BuildPreprocessor(const DatasetPtr &dataset, const Config &config) {
// return std::make_shared<NormalizePreprocessor>();
//}
IndexModelPtr
CPUKDTRNG::Train(const DatasetPtr& origin, const Config& train_config) {
SetParameters(train_config);
DatasetPtr dataset = origin->Clone();
// if (index_ptr_->GetDistCalcMethod() == SPTAG::DistCalcMethod::Cosine
// && preprocessor_) {
// preprocessor_->Preprocess(dataset);
//}
auto vectorset = ConvertToVectorSet(dataset);
auto metaset = ConvertToMetadataSet(dataset);
index_ptr_->BuildIndex(vectorset, metaset);
// TODO: return IndexModelPtr
return nullptr;
}
void
CPUKDTRNG::Add(const DatasetPtr& origin, const Config& add_config) {
SetParameters(add_config);
DatasetPtr dataset = origin->Clone();
// if (index_ptr_->GetDistCalcMethod() == SPTAG::DistCalcMethod::Cosine
// && preprocessor_) {
// preprocessor_->Preprocess(dataset);
//}
auto vectorset = ConvertToVectorSet(dataset);
auto metaset = ConvertToMetadataSet(dataset);
index_ptr_->AddIndex(vectorset, metaset);
}
void
CPUKDTRNG::SetParameters(const Config& config) {
for (auto& para : KDTParameterMgr::GetInstance().GetKDTParameters()) {
// auto value = config.get_with_default(para.first, para.second);
index_ptr_->SetParameter(para.first, para.second);
}
}
DatasetPtr
CPUKDTRNG::Search(const DatasetPtr& dataset, const Config& config) {
SetParameters(config);
auto tensor = dataset->tensor()[0];
auto p = (float*)tensor->raw_mutable_data();
for (auto i = 0; i < 10; ++i) {
for (auto j = 0; j < 10; ++j) {
std::cout << p[i * 10 + j] << " ";
}
std::cout << std::endl;
}
std::vector<SPTAG::QueryResult> query_results = ConvertToQueryResult(dataset, config);
#pragma omp parallel for
for (auto i = 0; i < query_results.size(); ++i) {
auto target = (float*)query_results[i].GetTarget();
std::cout << target[0] << ", " << target[1] << ", " << target[2] << std::endl;
index_ptr_->SearchIndex(query_results[i]);
}
return ConvertToDataset(query_results);
}
int64_t
CPUKDTRNG::Count() {
index_ptr_->GetNumSamples();
}
int64_t
CPUKDTRNG::Dimension() {
index_ptr_->GetFeatureDim();
}
VectorIndexPtr
CPUKDTRNG::Clone() {
KNOWHERE_THROW_MSG("not support");
}
void
CPUKDTRNG::Seal() {
// do nothing
}
// TODO(linxj):
BinarySet
CPUKDTRNGIndexModel::Serialize() {
}
void
CPUKDTRNGIndexModel::Load(const BinarySet& binary) {
}
} // namespace knowhere

View File

@ -0,0 +1,348 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <SPTAG/AnnService/inc/Core/Common.h>
#include <SPTAG/AnnService/inc/Core/VectorSet.h>
#include <SPTAG/AnnService/inc/Server/QueryParser.h>
#include <array>
#include <sstream>
#include <vector>
#undef mkdir
#include "knowhere/adapter/SptagAdapter.h"
#include "knowhere/common/Exception.h"
#include "knowhere/index/vector_index/IndexSPTAG.h"
#include "knowhere/index/vector_index/helpers/Definitions.h"
#include "knowhere/index/vector_index/helpers/SPTAGParameterMgr.h"
namespace knowhere {
CPUSPTAGRNG::CPUSPTAGRNG(const std::string& IndexType) {
if (IndexType == "KDT") {
index_ptr_ = SPTAG::VectorIndex::CreateInstance(SPTAG::IndexAlgoType::KDT, SPTAG::VectorValueType::Float);
index_ptr_->SetParameter("DistCalcMethod", "L2");
index_type_ = SPTAG::IndexAlgoType::KDT;
} else {
index_ptr_ = SPTAG::VectorIndex::CreateInstance(SPTAG::IndexAlgoType::BKT, SPTAG::VectorValueType::Float);
index_ptr_->SetParameter("DistCalcMethod", "L2");
index_type_ = SPTAG::IndexAlgoType::BKT;
}
}
BinarySet
CPUSPTAGRNG::Serialize() {
std::string index_config;
std::vector<SPTAG::ByteArray> index_blobs;
std::shared_ptr<std::vector<std::uint64_t>> buffersize = index_ptr_->CalculateBufferSize();
std::vector<char*> res(buffersize->size() + 1);
for (uint64_t i = 1; i < res.size(); i++) {
res[i] = new char[buffersize->at(i - 1)];
auto ptr = &res[i][0];
index_blobs.emplace_back(SPTAG::ByteArray((std::uint8_t*)ptr, buffersize->at(i - 1), false));
}
index_ptr_->SaveIndex(index_config, index_blobs);
size_t length = index_config.length();
char* cstr = new char[length];
snprintf(cstr, length, "%s", index_config.c_str());
BinarySet binary_set;
auto sample = std::make_shared<uint8_t>();
sample.reset(static_cast<uint8_t*>(index_blobs[0].Data()));
auto tree = std::make_shared<uint8_t>();
tree.reset(static_cast<uint8_t*>(index_blobs[1].Data()));
auto graph = std::make_shared<uint8_t>();
graph.reset(static_cast<uint8_t*>(index_blobs[2].Data()));
auto deleteid = std::make_shared<uint8_t>();
deleteid.reset(static_cast<uint8_t*>(index_blobs[3].Data()));
auto metadata1 = std::make_shared<uint8_t>();
metadata1.reset(static_cast<uint8_t*>(index_blobs[4].Data()));
auto metadata2 = std::make_shared<uint8_t>();
metadata2.reset(static_cast<uint8_t*>(index_blobs[5].Data()));
auto config = std::make_shared<uint8_t>();
config.reset(static_cast<uint8_t*>((void*)cstr));
binary_set.Append("samples", sample, index_blobs[0].Length());
binary_set.Append("tree", tree, index_blobs[1].Length());
binary_set.Append("deleteid", deleteid, index_blobs[3].Length());
binary_set.Append("metadata1", metadata1, index_blobs[4].Length());
binary_set.Append("metadata2", metadata2, index_blobs[5].Length());
binary_set.Append("config", config, length);
binary_set.Append("graph", graph, index_blobs[2].Length());
// MemoryIOWriter writer;
// size_t len = 0;
// for (int i = 0; i < 6; ++i) {
// len = index_blobs[i].Length();
// assert(len != 0);
// writer(&len, sizeof(size_t), 1);
// writer(index_blobs[i].Data(), len, 1);
// len = 0;
// }
// writer(&length, sizeof(size_t), 1);
// writer(cstr, length, 1);
// auto data = std::make_shared<uint8_t>();
// data.reset(writer.data_);
// BinarySet binary_set;
// binary_set.Append("sptag", data, writer.total);
// MemoryIOWriter writer;
// size_t len = 0;
// for (int i = 0; i < 6; ++i) {
// if (i == 2) continue;
// len = index_blobs[i].Length();
// assert(len != 0);
// writer(&len, sizeof(size_t), 1);
// writer(index_blobs[i].Data(), len, 1);
// len = 0;
// }
// writer(&length, sizeof(size_t), 1);
// writer(cstr, length, 1);
// auto data = std::make_shared<uint8_t>();
// data.reset(writer.data_);
// BinarySet binary_set;
// binary_set.Append("sptag", data, writer.total);
// auto graph = std::make_shared<uint8_t>();
// graph.reset(static_cast<uint8_t*>(index_blobs[2].Data()));
// binary_set.Append("graph", graph, index_blobs[2].Length());
return binary_set;
}
void
CPUSPTAGRNG::Load(const BinarySet& binary_set) {
std::string index_config;
std::vector<SPTAG::ByteArray> index_blobs;
auto samples = binary_set.GetByName("samples");
index_blobs.push_back(SPTAG::ByteArray(samples->data.get(), samples->size, false));
auto tree = binary_set.GetByName("tree");
index_blobs.push_back(SPTAG::ByteArray(tree->data.get(), tree->size, false));
auto graph = binary_set.GetByName("graph");
index_blobs.push_back(SPTAG::ByteArray(graph->data.get(), graph->size, false));
auto deleteid = binary_set.GetByName("deleteid");
index_blobs.push_back(SPTAG::ByteArray(deleteid->data.get(), deleteid->size, false));
auto metadata1 = binary_set.GetByName("metadata1");
index_blobs.push_back(SPTAG::ByteArray(metadata1->data.get(), metadata1->size, false));
auto metadata2 = binary_set.GetByName("metadata2");
index_blobs.push_back(SPTAG::ByteArray(metadata2->data.get(), metadata2->size, false));
auto config = binary_set.GetByName("config");
index_config = reinterpret_cast<char*>(config->data.get());
// std::vector<SPTAG::ByteArray> index_blobs;
// auto data = binary_set.GetByName("sptag");
// MemoryIOReader reader;
// reader.total = data->size;
// reader.data_ = data->data.get();
// size_t len = 0;
// for (int i = 0; i < 6; ++i) {
// reader(&len, sizeof(size_t), 1);
// assert(len != 0);
// auto binary = new uint8_t[len];
// reader(binary, len, 1);
// index_blobs.emplace_back(SPTAG::ByteArray(binary, len, true));
// len = 0;
// }
// reader(&len, sizeof(size_t), 1);
// assert(len != 0);
// auto config = new char[len];
// reader(config, len, 1);
// std::string index_config = config;
// delete[] config;
// std::vector<SPTAG::ByteArray> index_blobs;
// auto data = binary_set.GetByName("sptag");
// MemoryIOReader reader;
// reader.total = data->size;
// reader.data_ = data->data.get();
// size_t len = 0;
// for (int i = 0; i < 6; ++i) {
// if (i == 2) {
// auto graph = binary_set.GetByName("graph");
// index_blobs.emplace_back(SPTAG::ByteArray(graph->data.get(), graph->size, false));
// continue;
// }
// reader(&len, sizeof(size_t), 1);
// assert(len != 0);
// auto binary = new uint8_t[len];
// reader(binary, len, 1);
// index_blobs.emplace_back(SPTAG::ByteArray(binary, len, true));
// len = 0;
// }
// reader(&len, sizeof(size_t), 1);
// assert(len != 0);
// auto config = new char[len];
// reader(config, len, 1);
// std::string index_config = config;
// delete[] config;
index_ptr_->LoadIndex(index_config, index_blobs);
}
// PreprocessorPtr
// CPUKDTRNG::BuildPreprocessor(const DatasetPtr &dataset, const Config &config) {
// return std::make_shared<NormalizePreprocessor>();
//}
IndexModelPtr
CPUSPTAGRNG::Train(const DatasetPtr& origin, const Config& train_config) {
SetParameters(train_config);
DatasetPtr dataset = origin->Clone();
// if (index_ptr_->GetDistCalcMethod() == SPTAG::DistCalcMethod::Cosine
// && preprocessor_) {
// preprocessor_->Preprocess(dataset);
//}
auto vectorset = ConvertToVectorSet(dataset);
auto metaset = ConvertToMetadataSet(dataset);
index_ptr_->BuildIndex(vectorset, metaset);
// TODO: return IndexModelPtr
return nullptr;
}
void
CPUSPTAGRNG::Add(const DatasetPtr& origin, const Config& add_config) {
// SetParameters(add_config);
// DatasetPtr dataset = origin->Clone();
//
// // if (index_ptr_->GetDistCalcMethod() == SPTAG::DistCalcMethod::Cosine
// // && preprocessor_) {
// // preprocessor_->Preprocess(dataset);
// //}
//
// auto vectorset = ConvertToVectorSet(dataset);
// auto metaset = ConvertToMetadataSet(dataset);
// index_ptr_->AddIndex(vectorset, metaset);
}
void
CPUSPTAGRNG::SetParameters(const Config& config) {
#define Assign(param_name, str_name) \
conf->param_name == INVALID_VALUE ? index_ptr_->SetParameter(str_name, std::to_string(build_cfg->param_name)) \
: index_ptr_->SetParameter(str_name, std::to_string(conf->param_name))
if (index_type_ == SPTAG::IndexAlgoType::KDT) {
auto conf = std::dynamic_pointer_cast<KDTCfg>(config);
auto build_cfg = SPTAGParameterMgr::GetInstance().GetKDTParameters();
Assign(kdtnumber, "KDTNumber");
Assign(numtopdimensionkdtsplit, "NumTopDimensionKDTSplit");
Assign(samples, "Samples");
Assign(tptnumber, "TPTNumber");
Assign(tptleafsize, "TPTLeafSize");
Assign(numtopdimensiontptsplit, "NumTopDimensionTPTSplit");
Assign(neighborhoodsize, "NeighborhoodSize");
Assign(graphneighborhoodscale, "GraphNeighborhoodScale");
Assign(graphcefscale, "GraphCEFScale");
Assign(refineiterations, "RefineIterations");
Assign(cef, "CEF");
Assign(maxcheckforrefinegraph, "MaxCheckForRefineGraph");
Assign(numofthreads, "NumberOfThreads");
Assign(maxcheck, "MaxCheck");
Assign(thresholdofnumberofcontinuousnobetterpropagation, "ThresholdOfNumberOfContinuousNoBetterPropagation");
Assign(numberofinitialdynamicpivots, "NumberOfInitialDynamicPivots");
Assign(numberofotherdynamicpivots, "NumberOfOtherDynamicPivots");
} else {
auto conf = std::dynamic_pointer_cast<BKTCfg>(config);
auto build_cfg = SPTAGParameterMgr::GetInstance().GetBKTParameters();
Assign(bktnumber, "BKTNumber");
Assign(bktkmeansk, "BKTKMeansK");
Assign(bktleafsize, "BKTLeafSize");
Assign(samples, "Samples");
Assign(tptnumber, "TPTNumber");
Assign(tptleafsize, "TPTLeafSize");
Assign(numtopdimensiontptsplit, "NumTopDimensionTPTSplit");
Assign(neighborhoodsize, "NeighborhoodSize");
Assign(graphneighborhoodscale, "GraphNeighborhoodScale");
Assign(graphcefscale, "GraphCEFScale");
Assign(refineiterations, "RefineIterations");
Assign(cef, "CEF");
Assign(maxcheckforrefinegraph, "MaxCheckForRefineGraph");
Assign(numofthreads, "NumberOfThreads");
Assign(maxcheck, "MaxCheck");
Assign(thresholdofnumberofcontinuousnobetterpropagation, "ThresholdOfNumberOfContinuousNoBetterPropagation");
Assign(numberofinitialdynamicpivots, "NumberOfInitialDynamicPivots");
Assign(numberofotherdynamicpivots, "NumberOfOtherDynamicPivots");
}
}
DatasetPtr
CPUSPTAGRNG::Search(const DatasetPtr& dataset, const Config& config) {
SetParameters(config);
auto tensor = dataset->tensor()[0];
auto p = (float*)tensor->raw_mutable_data();
for (auto i = 0; i < 10; ++i) {
for (auto j = 0; j < 10; ++j) {
std::cout << p[i * 10 + j] << " ";
}
std::cout << std::endl;
}
std::vector<SPTAG::QueryResult> query_results = ConvertToQueryResult(dataset, config);
#pragma omp parallel for
for (auto i = 0; i < query_results.size(); ++i) {
auto target = (float*)query_results[i].GetTarget();
std::cout << target[0] << ", " << target[1] << ", " << target[2] << std::endl;
index_ptr_->SearchIndex(query_results[i]);
}
return ConvertToDataset(query_results);
}
int64_t
CPUSPTAGRNG::Count() {
return index_ptr_->GetNumSamples();
}
int64_t
CPUSPTAGRNG::Dimension() {
return index_ptr_->GetFeatureDim();
}
VectorIndexPtr
CPUSPTAGRNG::Clone() {
KNOWHERE_THROW_MSG("not support");
}
void
CPUSPTAGRNG::Seal() {
return; // do nothing
}
BinarySet
CPUSPTAGRNGIndexModel::Serialize() {
// KNOWHERE_THROW_MSG("not support"); // not support
}
void
CPUSPTAGRNGIndexModel::Load(const BinarySet& binary) {
// KNOWHERE_THROW_MSG("not support"); // not support
}
} // namespace knowhere

View File

@ -18,33 +18,37 @@
#pragma once
#include <SPTAG/AnnService/inc/Core/VectorIndex.h>
#include <cstdint>
#include <memory>
#include <string>
#include "VectorIndex.h"
#include "knowhere/index/IndexModel.h"
namespace knowhere {
class CPUKDTRNG : public VectorIndex {
class CPUSPTAGRNG : public VectorIndex {
public:
CPUKDTRNG() {
index_ptr_ = SPTAG::VectorIndex::CreateInstance(SPTAG::IndexAlgoType::KDT, SPTAG::VectorValueType::Float);
index_ptr_->SetParameter("DistCalcMethod", "L2");
}
explicit CPUSPTAGRNG(const std::string& IndexType);
public:
BinarySet
Serialize() override;
VectorIndexPtr
Clone() override;
void
Load(const BinarySet& index_array) override;
public:
// PreprocessorPtr
// BuildPreprocessor(const DatasetPtr &dataset, const Config &config) override;
int64_t
Count() override;
int64_t
Dimension() override;
@ -56,6 +60,7 @@ class CPUKDTRNG : public VectorIndex {
DatasetPtr
Search(const DatasetPtr& dataset, const Config& config) override;
void
Seal() override;
@ -66,11 +71,12 @@ class CPUKDTRNG : public VectorIndex {
private:
PreprocessorPtr preprocessor_;
std::shared_ptr<SPTAG::VectorIndex> index_ptr_;
SPTAG::IndexAlgoType index_type_;
};
using CPUKDTRNGPtr = std::shared_ptr<CPUKDTRNG>;
using CPUSPTAGRNGPtr = std::shared_ptr<CPUSPTAGRNG>;
class CPUKDTRNGIndexModel : public IndexModel {
class CPUSPTAGRNGIndexModel : public IndexModel {
public:
BinarySet
Serialize() override;
@ -82,6 +88,6 @@ class CPUKDTRNGIndexModel : public IndexModel {
std::shared_ptr<SPTAG::VectorIndex> index_;
};
using CPUKDTRNGIndexModelPtr = std::shared_ptr<CPUKDTRNGIndexModel>;
using CPUSPTAGRNGIndexModelPtr = std::shared_ptr<CPUSPTAGRNGIndexModel>;
} // namespace knowhere

View File

@ -42,6 +42,32 @@ constexpr int64_t DEFAULT_OUT_DEGREE = INVALID_VALUE;
constexpr int64_t DEFAULT_CANDIDATE_SISE = INVALID_VALUE;
constexpr int64_t DEFAULT_NNG_K = INVALID_VALUE;
// SPTAG Config
constexpr int64_t DEFAULT_SAMPLES = INVALID_VALUE;
constexpr int64_t DEFAULT_TPTNUMBER = INVALID_VALUE;
constexpr int64_t DEFAULT_TPTLEAFSIZE = INVALID_VALUE;
constexpr int64_t DEFAULT_NUMTOPDIMENSIONTPTSPLIT = INVALID_VALUE;
constexpr int64_t DEFAULT_NEIGHBORHOODSIZE = INVALID_VALUE;
constexpr int64_t DEFAULT_GRAPHNEIGHBORHOODSCALE = INVALID_VALUE;
constexpr int64_t DEFAULT_GRAPHCEFSCALE = INVALID_VALUE;
constexpr int64_t DEFAULT_REFINEITERATIONS = INVALID_VALUE;
constexpr int64_t DEFAULT_CEF = INVALID_VALUE;
constexpr int64_t DEFAULT_MAXCHECKFORREFINEGRAPH = INVALID_VALUE;
constexpr int64_t DEFAULT_NUMOFTHREADS = INVALID_VALUE;
constexpr int64_t DEFAULT_MAXCHECK = INVALID_VALUE;
constexpr int64_t DEFAULT_THRESHOLDOFNUMBEROFCONTINUOUSNOBETTERPROPAGATION = INVALID_VALUE;
constexpr int64_t DEFAULT_NUMBEROFINITIALDYNAMICPIVOTS = INVALID_VALUE;
constexpr int64_t DEFAULT_NUMBEROFOTHERDYNAMICPIVOTS = INVALID_VALUE;
// KDT Config
constexpr int64_t DEFAULT_KDTNUMBER = INVALID_VALUE;
constexpr int64_t DEFAULT_NUMTOPDIMENSIONKDTSPLIT = INVALID_VALUE;
// BKT Config
constexpr int64_t DEFAULT_BKTNUMBER = INVALID_VALUE;
constexpr int64_t DEFAULT_BKTKMEANSK = INVALID_VALUE;
constexpr int64_t DEFAULT_BKTLEAFSIZE = INVALID_VALUE;
struct IVFCfg : public Cfg {
int64_t nlist = DEFAULT_NLIST;
int64_t nprobe = DEFAULT_NPROBE;
@ -135,8 +161,57 @@ struct NSGCfg : public IVFCfg {
};
using NSGConfig = std::shared_ptr<NSGCfg>;
struct KDTCfg : public Cfg {
int64_t tptnubmber = -1;
struct SPTAGCfg : public Cfg {
int64_t samples = DEFAULT_SAMPLES;
int64_t tptnumber = DEFAULT_TPTNUMBER;
int64_t tptleafsize = DEFAULT_TPTLEAFSIZE;
int64_t numtopdimensiontptsplit = DEFAULT_NUMTOPDIMENSIONTPTSPLIT;
int64_t neighborhoodsize = DEFAULT_NEIGHBORHOODSIZE;
int64_t graphneighborhoodscale = DEFAULT_GRAPHNEIGHBORHOODSCALE;
int64_t graphcefscale = DEFAULT_GRAPHCEFSCALE;
int64_t refineiterations = DEFAULT_REFINEITERATIONS;
int64_t cef = DEFAULT_CEF;
int64_t maxcheckforrefinegraph = DEFAULT_MAXCHECKFORREFINEGRAPH;
int64_t numofthreads = DEFAULT_NUMOFTHREADS;
int64_t maxcheck = DEFAULT_MAXCHECK;
int64_t thresholdofnumberofcontinuousnobetterpropagation = DEFAULT_THRESHOLDOFNUMBEROFCONTINUOUSNOBETTERPROPAGATION;
int64_t numberofinitialdynamicpivots = DEFAULT_NUMBEROFINITIALDYNAMICPIVOTS;
int64_t numberofotherdynamicpivots = DEFAULT_NUMBEROFOTHERDYNAMICPIVOTS;
SPTAGCfg() = default;
bool
CheckValid() override {
return true;
};
};
using SPTAGConfig = std::shared_ptr<SPTAGCfg>;
struct KDTCfg : public SPTAGCfg {
int64_t kdtnumber = DEFAULT_KDTNUMBER;
int64_t numtopdimensionkdtsplit = DEFAULT_NUMTOPDIMENSIONKDTSPLIT;
KDTCfg() = default;
bool
CheckValid() override {
return true;
};
};
using KDTConfig = std::shared_ptr<KDTCfg>;
struct BKTCfg : public SPTAGCfg {
int64_t bktnumber = DEFAULT_BKTNUMBER;
int64_t bktkmeansk = DEFAULT_BKTKMEANSK;
int64_t bktleafsize = DEFAULT_BKTLEAFSIZE;
BKTCfg() = default;
bool
CheckValid() override {
return true;
};
};
using BKTConfig = std::shared_ptr<BKTCfg>;
} // namespace knowhere

View File

@ -1,55 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <mutex>
#include "knowhere/index/vector_index/helpers/KDTParameterMgr.h"
namespace knowhere {
const std::vector<KDTParameter>&
KDTParameterMgr::GetKDTParameters() {
return kdt_parameters_;
}
KDTParameterMgr::KDTParameterMgr() {
kdt_parameters_ = std::vector<KDTParameter>{
{"KDTNumber", "1"},
{"NumTopDimensionKDTSplit", "5"},
{"NumSamplesKDTSplitConsideration", "100"},
{"TPTNumber", "1"},
{"TPTLeafSize", "2000"},
{"NumTopDimensionTPTSplit", "5"},
{"NeighborhoodSize", "32"},
{"GraphNeighborhoodScale", "2"},
{"GraphCEFScale", "2"},
{"RefineIterations", "0"},
{"CEF", "1000"},
{"MaxCheckForRefineGraph", "10000"},
{"NumberOfThreads", "1"},
{"MaxCheck", "8192"},
{"ThresholdOfNumberOfContinuousNoBetterPropagation", "3"},
{"NumberOfInitialDynamicPivots", "50"},
{"NumberOfOtherDynamicPivots", "4"},
};
}
} // namespace knowhere

View File

@ -0,0 +1,75 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <mutex>
#include "knowhere/index/vector_index/helpers/SPTAGParameterMgr.h"
namespace knowhere {
const KDTConfig&
SPTAGParameterMgr::GetKDTParameters() {
return kdt_config_;
}
const BKTConfig&
SPTAGParameterMgr::GetBKTParameters() {
return bkt_config_;
}
SPTAGParameterMgr::SPTAGParameterMgr() {
kdt_config_ = std::make_shared<KDTCfg>();
kdt_config_->kdtnumber = 1;
kdt_config_->numtopdimensionkdtsplit = 5;
kdt_config_->samples = 100;
kdt_config_->tptnumber = 1;
kdt_config_->tptleafsize = 2000;
kdt_config_->numtopdimensiontptsplit = 5;
kdt_config_->neighborhoodsize = 32;
kdt_config_->graphneighborhoodscale = 2;
kdt_config_->graphcefscale = 2;
kdt_config_->refineiterations = 0;
kdt_config_->cef = 1000;
kdt_config_->maxcheckforrefinegraph = 10000;
kdt_config_->numofthreads = 1;
kdt_config_->maxcheck = 8192;
kdt_config_->thresholdofnumberofcontinuousnobetterpropagation = 3;
kdt_config_->numberofinitialdynamicpivots = 50;
kdt_config_->numberofotherdynamicpivots = 4;
bkt_config_ = std::make_shared<BKTCfg>();
bkt_config_->bktnumber = 1;
bkt_config_->bktkmeansk = 32;
bkt_config_->bktleafsize = 8;
bkt_config_->samples = 100;
bkt_config_->tptnumber = 1;
bkt_config_->tptleafsize = 2000;
bkt_config_->numtopdimensiontptsplit = 5;
bkt_config_->neighborhoodsize = 32;
bkt_config_->graphneighborhoodscale = 2;
bkt_config_->graphcefscale = 2;
bkt_config_->refineiterations = 0;
bkt_config_->cef = 1000;
bkt_config_->maxcheckforrefinegraph = 10000;
bkt_config_->numofthreads = 1;
bkt_config_->maxcheck = 8192;
bkt_config_->thresholdofnumberofcontinuousnobetterpropagation = 3;
bkt_config_->numberofinitialdynamicpivots = 50;
bkt_config_->numberofotherdynamicpivots = 4;
}
} // namespace knowhere

View File

@ -22,31 +22,40 @@
#include <utility>
#include <vector>
#include <SPTAG/AnnService/inc/Core/Common.h>
#include "IndexParameter.h"
namespace knowhere {
using KDTParameter = std::pair<std::string, std::string>;
using KDTConfig = std::shared_ptr<KDTCfg>;
using BKTConfig = std::shared_ptr<BKTCfg>;
class KDTParameterMgr {
class SPTAGParameterMgr {
public:
const std::vector<KDTParameter>&
const KDTConfig&
GetKDTParameters();
const BKTConfig&
GetBKTParameters();
public:
static KDTParameterMgr&
static SPTAGParameterMgr&
GetInstance() {
static KDTParameterMgr instance;
static SPTAGParameterMgr instance;
return instance;
}
KDTParameterMgr(const KDTParameterMgr&) = delete;
KDTParameterMgr&
operator=(const KDTParameterMgr&) = delete;
SPTAGParameterMgr(const SPTAGParameterMgr&) = delete;
SPTAGParameterMgr&
operator=(const SPTAGParameterMgr&) = delete;
private:
KDTParameterMgr();
SPTAGParameterMgr();
private:
std::vector<KDTParameter> kdt_parameters_;
KDTConfig kdt_config_;
BKTConfig bkt_config_;
};
} // namespace knowhere

View File

@ -195,7 +195,7 @@ namespace SPTAG
C = *((DimensionType*)pDataPointsMemFile);
pDataPointsMemFile += sizeof(DimensionType);
Initialize(R, C, (T*)pDataPointsMemFile);
Initialize(R, C, (T*)pDataPointsMemFile, false);
std::cout << "Load " << name << " (" << R << ", " << C << ") Finish!" << std::endl;
return true;
}

View File

@ -82,17 +82,17 @@ if (NOT TARGET test_idmap)
endif ()
target_link_libraries(test_idmap ${depend_libs} ${unittest_libs} ${basic_libs})
#<KDT-TEST>
set(kdt_srcs
#<SPTAG-TEST>
set(sptag_srcs
${INDEX_SOURCE_DIR}/knowhere/knowhere/adapter/SptagAdapter.cpp
${INDEX_SOURCE_DIR}/knowhere/knowhere/index/preprocessor/Normalize.cpp
${INDEX_SOURCE_DIR}/knowhere/knowhere/index/vector_index/helpers/KDTParameterMgr.cpp
${INDEX_SOURCE_DIR}/knowhere/knowhere/index/vector_index/IndexKDT.cpp
${INDEX_SOURCE_DIR}/knowhere/knowhere/index/vector_index/helpers/SPTAGParameterMgr.cpp
${INDEX_SOURCE_DIR}/knowhere/knowhere/index/vector_index/IndexSPTAG.cpp
)
if (NOT TARGET test_kdt)
add_executable(test_kdt test_kdt.cpp ${kdt_srcs} ${util_srcs})
if (NOT TARGET test_sptag)
add_executable(test_sptag test_sptag.cpp ${sptag_srcs} ${util_srcs})
endif ()
target_link_libraries(test_kdt
target_link_libraries(test_sptag
SPTAGLibStatic
${depend_libs} ${unittest_libs} ${basic_libs})
@ -106,7 +106,7 @@ endif ()
install(TARGETS test_ivf DESTINATION unittest)
install(TARGETS test_idmap DESTINATION unittest)
install(TARGETS test_kdt DESTINATION unittest)
install(TARGETS test_sptag DESTINATION unittest)
if (KNOWHERE_GPU_VERSION)
install(TARGETS test_gpuresource DESTINATION unittest)
install(TARGETS test_customized_index DESTINATION unittest)

View File

@ -1,144 +0,0 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gtest/gtest.h>
#include <iostream>
#include <sstream>
#include "knowhere/adapter/SptagAdapter.h"
#include "knowhere/adapter/Structure.h"
#include "knowhere/common/Exception.h"
#include "knowhere/index/vector_index/IndexKDT.h"
#include "knowhere/index/vector_index/helpers/Definitions.h"
#include "unittest/utils.h"
using ::testing::Combine;
using ::testing::TestWithParam;
using ::testing::Values;
class KDTTest : public DataGen, public ::testing::Test {
protected:
void
SetUp() override {
Generate(96, 1000, 10);
index_ = std::make_shared<knowhere::CPUKDTRNG>();
auto tempconf = std::make_shared<knowhere::KDTCfg>();
tempconf->tptnubmber = 1;
tempconf->k = 10;
conf = tempconf;
Init_with_default();
}
protected:
knowhere::Config conf;
std::shared_ptr<knowhere::CPUKDTRNG> index_ = nullptr;
};
// TODO(lxj): add test about count() and dimension()
TEST_F(KDTTest, kdt_basic) {
assert(!xb.empty());
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
auto result = index_->Search(query_dataset, conf);
AssertAnns(result, nq, k);
{
// auto ids = result->array()[0];
// auto dists = result->array()[1];
auto ids = result->ids();
auto dists = result->dist();
std::stringstream ss_id;
std::stringstream ss_dist;
for (auto i = 0; i < nq; i++) {
for (auto j = 0; j < k; ++j) {
ss_id << *((int64_t*)(ids) + i * k + j) << " ";
ss_dist << *((float*)(dists) + i * k + j) << " ";
// ss_id << *ids->data()->GetValues<int64_t>(1, i * k + j) << " ";
// ss_dist << *dists->data()->GetValues<float>(1, i * k + j) << " ";
}
ss_id << std::endl;
ss_dist << std::endl;
}
std::cout << "id\n" << ss_id.str() << std::endl;
std::cout << "dist\n" << ss_dist.str() << std::endl;
}
}
// TODO(zirui): enable test
// TEST_F(KDTTest, kdt_serialize) {
// assert(!xb.empty());
//
// auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
// index_->set_preprocessor(preprocessor);
//
// auto model = index_->Train(base_dataset, conf);
// // index_->Add(base_dataset, conf);
// auto binaryset = index_->Serialize();
// auto new_index = std::make_shared<knowhere::CPUKDTRNG>();
// new_index->Load(binaryset);
// auto result = new_index->Search(query_dataset, conf);
// AssertAnns(result, nq, k);
// PrintResult(result, nq, k);
// ASSERT_EQ(new_index->Count(), nb);
// ASSERT_EQ(new_index->Dimension(), dim);
// ASSERT_THROW({ new_index->Clone(); }, knowhere::KnowhereException);
// ASSERT_NO_THROW({ new_index->Seal(); });
//
// {
// int fileno = 0;
// const std::string& base_name = "/tmp/kdt_serialize_test_bin_";
// std::vector<std::string> filename_list;
// std::vector<std::pair<std::string, size_t>> meta_list;
// for (auto& iter : binaryset.binary_map_) {
// const std::string& filename = base_name + std::to_string(fileno);
// FileIOWriter writer(filename);
// writer(iter.second->data.get(), iter.second->size);
//
// meta_list.emplace_back(std::make_pair(iter.first, iter.second->size));
// filename_list.push_back(filename);
// ++fileno;
// }
//
// knowhere::BinarySet load_data_list;
// for (int i = 0; i < filename_list.size() && i < meta_list.size(); ++i) {
// auto bin_size = meta_list[i].second;
// FileIOReader reader(filename_list[i]);
//
// auto load_data = new uint8_t[bin_size];
// reader(load_data, bin_size);
// auto data = std::make_shared<uint8_t>();
// data.reset(load_data);
// load_data_list.Append(meta_list[i].first, data, bin_size);
// }
//
// auto new_index = std::make_shared<knowhere::CPUKDTRNG>();
// new_index->Load(load_data_list);
// auto result = new_index->Search(query_dataset, conf);
// AssertAnns(result, nq, k);
// PrintResult(result, nq, k);
// }
//}

View File

@ -0,0 +1,154 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gtest/gtest.h>
#include <iostream>
#include <sstream>
#include "knowhere/adapter/SptagAdapter.h"
#include "knowhere/adapter/Structure.h"
#include "knowhere/common/Exception.h"
#include "knowhere/index/vector_index/IndexSPTAG.h"
#include "knowhere/index/vector_index/helpers/Definitions.h"
#include "unittest/utils.h"
using ::testing::Combine;
using ::testing::TestWithParam;
using ::testing::Values;
class SPTAGTest : public DataGen, public TestWithParam<std::string> {
protected:
void
SetUp() override {
IndexType = GetParam();
Generate(128, 100, 5);
index_ = std::make_shared<knowhere::CPUSPTAGRNG>(IndexType);
if (IndexType == "KDT") {
auto tempconf = std::make_shared<knowhere::KDTCfg>();
tempconf->tptnumber = 1;
tempconf->k = 10;
conf = tempconf;
} else {
auto tempconf = std::make_shared<knowhere::BKTCfg>();
tempconf->tptnumber = 1;
tempconf->k = 10;
conf = tempconf;
}
Init_with_default();
}
protected:
knowhere::Config conf;
std::shared_ptr<knowhere::CPUSPTAGRNG> index_ = nullptr;
std::string IndexType;
};
INSTANTIATE_TEST_CASE_P(SPTAGParameters, SPTAGTest, Values("KDT", "BKT"));
// TODO(lxj): add test about count() and dimension()
TEST_P(SPTAGTest, sptag_basic) {
assert(!xb.empty());
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
auto result = index_->Search(query_dataset, conf);
AssertAnns(result, nq, k);
{
// auto ids = result->array()[0];
// auto dists = result->array()[1];
auto ids = result->ids();
auto dists = result->dist();
std::stringstream ss_id;
std::stringstream ss_dist;
for (auto i = 0; i < nq; i++) {
for (auto j = 0; j < k; ++j) {
// ss_id << *ids->data()->GetValues<int64_t>(1, i * k + j) << " ";
// ss_dist << *dists->data()->GetValues<float>(1, i * k + j) << " ";
ss_id << *((int64_t*)(ids) + i * k + j) << " ";
ss_dist << *((float*)(dists) + i * k + j) << " ";
}
ss_id << std::endl;
ss_dist << std::endl;
}
std::cout << "id\n" << ss_id.str() << std::endl;
std::cout << "dist\n" << ss_dist.str() << std::endl;
}
}
TEST_P(SPTAGTest, sptag_serialize) {
assert(!xb.empty());
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->Add(base_dataset, conf);
auto binaryset = index_->Serialize();
auto new_index = std::make_shared<knowhere::CPUSPTAGRNG>(IndexType);
new_index->Load(binaryset);
auto result = new_index->Search(query_dataset, conf);
AssertAnns(result, nq, k);
PrintResult(result, nq, k);
ASSERT_EQ(new_index->Count(), nb);
ASSERT_EQ(new_index->Dimension(), dim);
// ASSERT_THROW({ new_index->Clone(); }, knowhere::KnowhereException);
// ASSERT_NO_THROW({ new_index->Seal(); });
{
int fileno = 0;
const std::string& base_name = "/tmp/sptag_serialize_test_bin_";
std::vector<std::string> filename_list;
std::vector<std::pair<std::string, size_t>> meta_list;
for (auto& iter : binaryset.binary_map_) {
const std::string& filename = base_name + std::to_string(fileno);
FileIOWriter writer(filename);
writer(iter.second->data.get(), iter.second->size);
meta_list.emplace_back(std::make_pair(iter.first, iter.second->size));
filename_list.push_back(filename);
++fileno;
}
knowhere::BinarySet load_data_list;
for (int i = 0; i < filename_list.size() && i < meta_list.size(); ++i) {
auto bin_size = meta_list[i].second;
FileIOReader reader(filename_list[i]);
auto load_data = new uint8_t[bin_size];
reader(load_data, bin_size);
auto data = std::make_shared<uint8_t>();
data.reset(load_data);
load_data_list.Append(meta_list[i].first, data, bin_size);
}
auto new_index = std::make_shared<knowhere::CPUSPTAGRNG>(IndexType);
new_index->Load(load_data_list);
auto result = new_index->Search(query_dataset, conf);
AssertAnns(result, nq, k);
PrintResult(result, nq, k);
}
}

View File

@ -160,15 +160,17 @@ AssertAnns(const knowhere::DatasetPtr& result, const int& nq, const int& k) {
void
PrintResult(const knowhere::DatasetPtr& result, const int& nq, const int& k) {
auto ids = result->array()[0];
auto dists = result->array()[1];
auto ids = result->ids();
auto dists = result->dist();
std::stringstream ss_id;
std::stringstream ss_dist;
for (auto i = 0; i < 10; i++) {
for (auto i = 0; i < nq; i++) {
for (auto j = 0; j < k; ++j) {
ss_id << *(ids->data()->GetValues<int64_t>(1, i * k + j)) << " ";
ss_dist << *(dists->data()->GetValues<float>(1, i * k + j)) << " ";
// ss_id << *(ids->data()->GetValues<int64_t>(1, i * k + j)) << " ";
// ss_dist << *(dists->data()->GetValues<float>(1, i * k + j)) << " ";
ss_id << *((int64_t*)(ids) + i * k + j) << " ";
ss_dist << *((float*)(dists) + i * k + j) << " ";
}
ss_id << std::endl;
ss_dist << std::endl;

View File

@ -55,9 +55,9 @@ load_simple_config() {
// get resources
#ifdef MILVUS_GPU_VERSION
server::Config& config = server::Config::GetInstance();
std::vector<int32_t> gpu_ids;
std::vector<int64_t> gpu_ids;
config.GetGpuResourceConfigSearchResources(gpu_ids);
std::vector<int32_t> build_gpu_ids;
std::vector<int64_t> build_gpu_ids;
config.GetGpuResourceConfigBuildIndexResources(build_gpu_ids);
auto pcie = Connection("pcie", 12000);

View File

@ -26,7 +26,7 @@ namespace scheduler {
void
BuildIndexPass::Init() {
server::Config& config = server::Config::GetInstance();
std::vector<int32_t> build_resources;
std::vector<int64_t> build_resources;
Status s = config.GetGpuResourceConfigBuildIndexResources(build_resources);
if (!s.ok()) {
throw;

View File

@ -45,9 +45,9 @@ class FaissFlatPass : public Pass {
Run(const TaskPtr& task) override;
private:
int32_t threshold_ = std::numeric_limits<int32_t>::max();
int64_t threshold_ = std::numeric_limits<int64_t>::max();
int64_t count_ = 0;
std::vector<int32_t> gpus;
std::vector<int64_t> gpus;
};
using FaissFlatPassPtr = std::shared_ptr<FaissFlatPass>;

View File

@ -45,9 +45,9 @@ class FaissIVFFlatPass : public Pass {
Run(const TaskPtr& task) override;
private:
int32_t threshold_ = std::numeric_limits<int32_t>::max();
int64_t threshold_ = std::numeric_limits<int64_t>::max();
int64_t count_ = 0;
std::vector<int32_t> gpus;
std::vector<int64_t> gpus;
};
using FaissIVFFlatPassPtr = std::shared_ptr<FaissIVFFlatPass>;

View File

@ -32,7 +32,7 @@ FaissIVFSQ8HPass::Init() {
server::Config& config = server::Config::GetInstance();
Status s = config.GetEngineConfigGpuSearchThreshold(threshold_);
if (!s.ok()) {
threshold_ = std::numeric_limits<int32_t>::max();
threshold_ = std::numeric_limits<int64_t>::max();
}
s = config.GetGpuResourceConfigSearchResources(gpus);
}

View File

@ -45,9 +45,9 @@ class FaissIVFSQ8HPass : public Pass {
Run(const TaskPtr& task) override;
private:
int32_t threshold_ = std::numeric_limits<int32_t>::max();
int64_t threshold_ = std::numeric_limits<int64_t>::max();
int64_t count_ = 0;
std::vector<int32_t> gpus;
std::vector<int64_t> gpus;
};
using FaissIVFSQ8HPassPtr = std::shared_ptr<FaissIVFSQ8HPass>;

View File

@ -45,9 +45,9 @@ class FaissIVFSQ8Pass : public Pass {
Run(const TaskPtr& task) override;
private:
int32_t threshold_ = std::numeric_limits<int32_t>::max();
int64_t threshold_ = std::numeric_limits<int64_t>::max();
int64_t count_ = 0;
std::vector<int32_t> gpus;
std::vector<int64_t> gpus;
};
using FaissIVFSQ8PassPtr = std::shared_ptr<FaissIVFSQ8Pass>;

View File

@ -146,8 +146,7 @@ XBuildIndexTask::Execute() {
status = meta_ptr->UpdateTableFile(table_file);
ENGINE_LOG_DEBUG << "Failed to update file to index, mark file: " << table_file.file_id_ << " to to_delete";
std::cout << "ERROR: failed to build index, index file is too large or gpu memory is not enough"
<< std::endl;
ENGINE_LOG_ERROR << "Failed to build index, index file is too large or gpu memory is not enough";
build_index_job->BuildIndexDone(to_index_id_);
build_index_job->GetStatus() = Status(DB_ERROR, msg);
@ -179,8 +178,8 @@ XBuildIndexTask::Execute() {
status = meta_ptr->UpdateTableFile(table_file);
ENGINE_LOG_DEBUG << "Failed to update file to index, mark file: " << table_file.file_id_ << " to to_delete";
std::cout << "ERROR: failed to persist index file: " << table_file.location_
<< ", possible out of disk space" << std::endl;
ENGINE_LOG_ERROR << "Failed to persist index file: " << table_file.location_
<< ", possible out of disk space";
build_index_job->BuildIndexDone(to_index_id_);
build_index_job->GetStatus() = Status(DB_ERROR, msg);

View File

@ -113,19 +113,19 @@ Config::ValidateConfig() {
return s;
}
int32_t db_archive_disk_threshold;
int64_t db_archive_disk_threshold;
s = GetDBConfigArchiveDiskThreshold(db_archive_disk_threshold);
if (!s.ok()) {
return s;
}
int32_t db_archive_days_threshold;
int64_t db_archive_days_threshold;
s = GetDBConfigArchiveDaysThreshold(db_archive_days_threshold);
if (!s.ok()) {
return s;
}
int32_t db_insert_buffer_size;
int64_t db_insert_buffer_size;
s = GetDBConfigInsertBufferSize(db_insert_buffer_size);
if (!s.ok()) {
return s;
@ -170,19 +170,19 @@ Config::ValidateConfig() {
}
/* engine config */
int32_t engine_use_blas_threshold;
int64_t engine_use_blas_threshold;
s = GetEngineConfigUseBlasThreshold(engine_use_blas_threshold);
if (!s.ok()) {
return s;
}
int32_t engine_omp_thread_num;
int64_t engine_omp_thread_num;
s = GetEngineConfigOmpThreadNum(engine_omp_thread_num);
if (!s.ok()) {
return s;
}
int32_t engine_gpu_search_threshold;
int64_t engine_gpu_search_threshold;
s = GetEngineConfigGpuSearchThreshold(engine_gpu_search_threshold);
if (!s.ok()) {
return s;
@ -190,8 +190,8 @@ Config::ValidateConfig() {
/* gpu resource config */
#ifdef MILVUS_GPU_VERSION
bool resource_enable_gpu;
s = GetGpuResourceConfigEnableGpu(resource_enable_gpu);
bool gpu_resource_enable;
s = GetGpuResourceConfigEnable(gpu_resource_enable);
if (!s.ok()) {
return s;
}
@ -208,13 +208,13 @@ Config::ValidateConfig() {
return s;
}
std::vector<int32_t> search_resources;
std::vector<int64_t> search_resources;
s = GetGpuResourceConfigSearchResources(search_resources);
if (!s.ok()) {
return s;
}
std::vector<int32_t> index_build_resources;
std::vector<int64_t> index_build_resources;
s = GetGpuResourceConfigBuildIndexResources(index_build_resources);
if (!s.ok()) {
return s;
@ -330,7 +330,7 @@ Config::ResetDefaultConfig() {
/* gpu resource config */
#ifdef MILVUS_GPU_VERSION
s = SetGpuResourceConfigEnableGpu(CONFIG_GPU_RESOURCE_ENABLE_GPU_DEFAULT);
s = SetGpuResourceConfigEnable(CONFIG_GPU_RESOURCE_ENABLE_DEFAULT);
if (!s.ok()) {
return s;
}
@ -485,7 +485,7 @@ Config::CheckDBConfigInsertBufferSize(const std::string& value) {
". Possible reason: db_config.insert_buffer_size is not a positive integer.";
return Status(SERVER_INVALID_ARGUMENT, msg);
} else {
int64_t buffer_size = std::stoi(value) * GB;
int64_t buffer_size = std::stoll(value) * GB;
if (buffer_size <= 0) {
std::string msg = "Invalid insert buffer size: " + value +
". Possible reason: db_config.insert_buffer_size is not a positive integer.";
@ -540,7 +540,7 @@ Config::CheckCacheConfigCpuCacheCapacity(const std::string& value) {
". Possible reason: cache_config.cpu_cache_capacity is not a positive integer.";
return Status(SERVER_INVALID_ARGUMENT, msg);
} else {
int64_t cpu_cache_capacity = std::stoi(value) * GB;
int64_t cpu_cache_capacity = std::stoll(value) * GB;
if (cpu_cache_capacity <= 0) {
std::string msg = "Invalid cpu cache capacity: " + value +
". Possible reason: cache_config.cpu_cache_capacity is not a positive integer.";
@ -557,7 +557,7 @@ Config::CheckCacheConfigCpuCacheCapacity(const std::string& value) {
std::cerr << "WARNING: cpu cache capacity value is too big" << std::endl;
}
int32_t buffer_value;
int64_t buffer_value;
Status s = GetDBConfigInsertBufferSize(buffer_value);
if (!s.ok()) {
return s;
@ -619,10 +619,10 @@ Config::CheckEngineConfigOmpThreadNum(const std::string& value) {
return Status(SERVER_INVALID_ARGUMENT, msg);
}
int32_t omp_thread = std::stoi(value);
uint32_t sys_thread_cnt = 8;
int64_t omp_thread = std::stoll(value);
int64_t sys_thread_cnt = 8;
CommonUtil::GetSystemAvailableThreads(sys_thread_cnt);
if (omp_thread > static_cast<int32_t>(sys_thread_cnt)) {
if (omp_thread > sys_thread_cnt) {
std::string msg = "Invalid omp thread num: " + value +
". Possible reason: engine_config.omp_thread_num exceeds system cpu cores.";
return Status(SERVER_INVALID_ARGUMENT, msg);
@ -641,10 +641,10 @@ Config::CheckEngineConfigGpuSearchThreshold(const std::string& value) {
}
Status
Config::CheckGpuResourceConfigEnableGpu(const std::string& value) {
Config::CheckGpuResourceConfigEnable(const std::string& value) {
if (!ValidationUtil::ValidateStringIsBool(value).ok()) {
std::string msg = "Invalid gpu resource config: " + value +
". Possible reason: gpu_resource_config.enable_gpu is not a boolean.";
std::string msg =
"Invalid gpu resource config: " + value + ". Possible reason: gpu_resource_config.enable is not a boolean.";
return Status(SERVER_INVALID_ARGUMENT, msg);
}
return Status::OK();
@ -657,14 +657,14 @@ Config::CheckGpuResourceConfigCacheCapacity(const std::string& value) {
". Possible reason: gpu_resource_config.cache_capacity is not a positive integer.";
return Status(SERVER_INVALID_ARGUMENT, msg);
} else {
uint64_t gpu_cache_capacity = std::stoi(value) * GB;
std::vector<int32_t> gpu_ids;
int64_t gpu_cache_capacity = std::stoll(value) * GB;
std::vector<int64_t> gpu_ids;
Status s = GetGpuResourceConfigBuildIndexResources(gpu_ids);
if (!s.ok()) {
return s;
}
for (int32_t gpu_id : gpu_ids) {
for (int64_t gpu_id : gpu_ids) {
size_t gpu_memory;
if (!ValidationUtil::GetGpuMemory(gpu_id, gpu_memory).ok()) {
std::string msg = "Fail to get GPU memory for GPU device: " + std::to_string(gpu_id);
@ -855,37 +855,37 @@ Config::GetDBConfigBackendUrl(std::string& value) {
}
Status
Config::GetDBConfigArchiveDiskThreshold(int32_t& value) {
Config::GetDBConfigArchiveDiskThreshold(int64_t& value) {
std::string str =
GetConfigStr(CONFIG_DB, CONFIG_DB_ARCHIVE_DISK_THRESHOLD, CONFIG_DB_ARCHIVE_DISK_THRESHOLD_DEFAULT);
Status s = CheckDBConfigArchiveDiskThreshold(str);
if (!s.ok()) {
return s;
}
value = std::stoi(str);
value = std::stoll(str);
return Status::OK();
}
Status
Config::GetDBConfigArchiveDaysThreshold(int32_t& value) {
Config::GetDBConfigArchiveDaysThreshold(int64_t& value) {
std::string str =
GetConfigStr(CONFIG_DB, CONFIG_DB_ARCHIVE_DAYS_THRESHOLD, CONFIG_DB_ARCHIVE_DAYS_THRESHOLD_DEFAULT);
Status s = CheckDBConfigArchiveDaysThreshold(str);
if (!s.ok()) {
return s;
}
value = std::stoi(str);
value = std::stoll(str);
return Status::OK();
}
Status
Config::GetDBConfigInsertBufferSize(int32_t& value) {
Config::GetDBConfigInsertBufferSize(int64_t& value) {
std::string str = GetConfigStr(CONFIG_DB, CONFIG_DB_INSERT_BUFFER_SIZE, CONFIG_DB_INSERT_BUFFER_SIZE_DEFAULT);
Status s = CheckDBConfigInsertBufferSize(str);
if (!s.ok()) {
return s;
}
value = std::stoi(str);
value = std::stoll(str);
return Status::OK();
}
@ -927,7 +927,7 @@ Config::GetCacheConfigCpuCacheCapacity(int64_t& value) {
if (!s.ok()) {
return s;
}
value = std::stoi(str);
value = std::stoll(str);
return Status::OK();
}
@ -957,45 +957,44 @@ Config::GetCacheConfigCacheInsertData(bool& value) {
}
Status
Config::GetEngineConfigUseBlasThreshold(int32_t& value) {
Config::GetEngineConfigUseBlasThreshold(int64_t& value) {
std::string str =
GetConfigStr(CONFIG_ENGINE, CONFIG_ENGINE_USE_BLAS_THRESHOLD, CONFIG_ENGINE_USE_BLAS_THRESHOLD_DEFAULT);
Status s = CheckEngineConfigUseBlasThreshold(str);
if (!s.ok()) {
return s;
}
value = std::stoi(str);
value = std::stoll(str);
return Status::OK();
}
Status
Config::GetEngineConfigOmpThreadNum(int32_t& value) {
Config::GetEngineConfigOmpThreadNum(int64_t& value) {
std::string str = GetConfigStr(CONFIG_ENGINE, CONFIG_ENGINE_OMP_THREAD_NUM, CONFIG_ENGINE_OMP_THREAD_NUM_DEFAULT);
Status s = CheckEngineConfigOmpThreadNum(str);
if (!s.ok()) {
return s;
}
value = std::stoi(str);
value = std::stoll(str);
return Status::OK();
}
Status
Config::GetEngineConfigGpuSearchThreshold(int32_t& value) {
Config::GetEngineConfigGpuSearchThreshold(int64_t& value) {
std::string str =
GetConfigStr(CONFIG_ENGINE, CONFIG_ENGINE_GPU_SEARCH_THRESHOLD, CONFIG_ENGINE_GPU_SEARCH_THRESHOLD_DEFAULT);
Status s = CheckEngineConfigGpuSearchThreshold(str);
if (!s.ok()) {
return s;
}
value = std::stoi(str);
value = std::stoll(str);
return Status::OK();
}
Status
Config::GetGpuResourceConfigEnableGpu(bool& value) {
std::string str =
GetConfigStr(CONFIG_GPU_RESOURCE, CONFIG_GPU_RESOURCE_ENABLE_GPU, CONFIG_GPU_RESOURCE_ENABLE_GPU_DEFAULT);
Status s = CheckGpuResourceConfigEnableGpu(str);
Config::GetGpuResourceConfigEnable(bool& value) {
std::string str = GetConfigStr(CONFIG_GPU_RESOURCE, CONFIG_GPU_RESOURCE_ENABLE, CONFIG_GPU_RESOURCE_ENABLE_DEFAULT);
Status s = CheckGpuResourceConfigEnable(str);
if (!s.ok()) {
return s;
}
@ -1006,13 +1005,13 @@ Config::GetGpuResourceConfigEnableGpu(bool& value) {
Status
Config::GetGpuResourceConfigCacheCapacity(int64_t& value) {
bool enable_gpu = false;
Status s = GetGpuResourceConfigEnableGpu(enable_gpu);
bool gpu_resource_enable = false;
Status s = GetGpuResourceConfigEnable(gpu_resource_enable);
if (!s.ok()) {
return s;
}
if (!enable_gpu) {
std::string msg = "GPU not supported. Possible reason: gpu_resource_config.enable_gpu is set to false.";
if (!gpu_resource_enable) {
std::string msg = "GPU not supported. Possible reason: gpu_resource_config.enable is set to false.";
return Status(SERVER_UNSUPPORTED_ERROR, msg);
}
std::string str = GetConfigStr(CONFIG_GPU_RESOURCE, CONFIG_GPU_RESOURCE_CACHE_CAPACITY,
@ -1021,19 +1020,19 @@ Config::GetGpuResourceConfigCacheCapacity(int64_t& value) {
if (!s.ok()) {
return s;
}
value = std::stoi(str);
value = std::stoll(str);
return Status::OK();
}
Status
Config::GetGpuResourceConfigCacheThreshold(float& value) {
bool enable_gpu = false;
Status s = GetGpuResourceConfigEnableGpu(enable_gpu);
bool gpu_resource_enable = false;
Status s = GetGpuResourceConfigEnable(gpu_resource_enable);
if (!s.ok()) {
return s;
}
if (!enable_gpu) {
std::string msg = "GPU not supported. Possible reason: gpu_resource_config.enable_gpu is set to false.";
if (!gpu_resource_enable) {
std::string msg = "GPU not supported. Possible reason: gpu_resource_config.enable is set to false.";
return Status(SERVER_UNSUPPORTED_ERROR, msg);
}
std::string str = GetConfigStr(CONFIG_GPU_RESOURCE, CONFIG_GPU_RESOURCE_CACHE_THRESHOLD,
@ -1047,14 +1046,14 @@ Config::GetGpuResourceConfigCacheThreshold(float& value) {
}
Status
Config::GetGpuResourceConfigSearchResources(std::vector<int32_t>& value) {
bool enable_gpu = false;
Status s = GetGpuResourceConfigEnableGpu(enable_gpu);
Config::GetGpuResourceConfigSearchResources(std::vector<int64_t>& value) {
bool gpu_resource_enable = false;
Status s = GetGpuResourceConfigEnable(gpu_resource_enable);
if (!s.ok()) {
return s;
}
if (!enable_gpu) {
std::string msg = "GPU not supported. Possible reason: gpu_resource_config.enable_gpu is set to false.";
if (!gpu_resource_enable) {
std::string msg = "GPU not supported. Possible reason: gpu_resource_config.enable is set to false.";
return Status(SERVER_UNSUPPORTED_ERROR, msg);
}
std::string str = GetConfigSequenceStr(CONFIG_GPU_RESOURCE, CONFIG_GPU_RESOURCE_SEARCH_RESOURCES,
@ -1066,20 +1065,20 @@ Config::GetGpuResourceConfigSearchResources(std::vector<int32_t>& value) {
return s;
}
for (std::string& res : res_vec) {
value.push_back(std::stoi(res.substr(3)));
value.push_back(std::stoll(res.substr(3)));
}
return Status::OK();
}
Status
Config::GetGpuResourceConfigBuildIndexResources(std::vector<int32_t>& value) {
bool enable_gpu = false;
Status s = GetGpuResourceConfigEnableGpu(enable_gpu);
Config::GetGpuResourceConfigBuildIndexResources(std::vector<int64_t>& value) {
bool gpu_resource_enable = false;
Status s = GetGpuResourceConfigEnable(gpu_resource_enable);
if (!s.ok()) {
return s;
}
if (!enable_gpu) {
std::string msg = "GPU not supported. Possible reason: gpu_resource_config.enable_gpu is set to false.";
if (!gpu_resource_enable) {
std::string msg = "GPU not supported. Possible reason: gpu_resource_config.enable is set to false.";
return Status(SERVER_UNSUPPORTED_ERROR, msg);
}
std::string str =
@ -1092,7 +1091,7 @@ Config::GetGpuResourceConfigBuildIndexResources(std::vector<int32_t>& value) {
return s;
}
for (std::string& res : res_vec) {
value.push_back(std::stoi(res.substr(3)));
value.push_back(std::stoll(res.substr(3)));
}
return Status::OK();
}
@ -1295,12 +1294,12 @@ Config::SetEngineConfigGpuSearchThreshold(const std::string& value) {
/* gpu resource config */
Status
Config::SetGpuResourceConfigEnableGpu(const std::string& value) {
Status s = CheckGpuResourceConfigEnableGpu(value);
Config::SetGpuResourceConfigEnable(const std::string& value) {
Status s = CheckGpuResourceConfigEnable(value);
if (!s.ok()) {
return s;
}
SetConfigValueInMem(CONFIG_GPU_RESOURCE, CONFIG_GPU_RESOURCE_ENABLE_GPU, value);
SetConfigValueInMem(CONFIG_GPU_RESOURCE, CONFIG_GPU_RESOURCE_ENABLE, value);
return Status::OK();
}

View File

@ -85,11 +85,11 @@ static const char* CONFIG_ENGINE_GPU_SEARCH_THRESHOLD_DEFAULT = "1000";
/* gpu resource config */
static const char* CONFIG_GPU_RESOURCE = "gpu_resource_config";
static const char* CONFIG_GPU_RESOURCE_ENABLE_GPU = "enable_gpu";
static const char* CONFIG_GPU_RESOURCE_ENABLE = "enable";
#ifdef MILVUS_GPU_VERSION
static const char* CONFIG_GPU_RESOURCE_ENABLE_GPU_DEFAULT = "true";
static const char* CONFIG_GPU_RESOURCE_ENABLE_DEFAULT = "true";
#else
static const char* CONFIG_GPU_RESOURCE_ENABLE_GPU_DEFAULT = "false";
static const char* CONFIG_GPU_RESOURCE_ENABLE_DEFAULT = "false";
#endif
static const char* CONFIG_GPU_RESOURCE_CACHE_CAPACITY = "cache_capacity";
static const char* CONFIG_GPU_RESOURCE_CACHE_CAPACITY_DEFAULT = "4";
@ -175,7 +175,7 @@ class Config {
/* gpu resource config */
Status
CheckGpuResourceConfigEnableGpu(const std::string& value);
CheckGpuResourceConfigEnable(const std::string& value);
Status
CheckGpuResourceConfigCacheCapacity(const std::string& value);
Status
@ -210,11 +210,11 @@ class Config {
Status
GetDBConfigBackendUrl(std::string& value);
Status
GetDBConfigArchiveDiskThreshold(int32_t& value);
GetDBConfigArchiveDiskThreshold(int64_t& value);
Status
GetDBConfigArchiveDaysThreshold(int32_t& value);
GetDBConfigArchiveDaysThreshold(int64_t& value);
Status
GetDBConfigInsertBufferSize(int32_t& value);
GetDBConfigInsertBufferSize(int64_t& value);
Status
GetDBConfigPreloadTable(std::string& value);
@ -236,23 +236,23 @@ class Config {
/* engine config */
Status
GetEngineConfigUseBlasThreshold(int32_t& value);
GetEngineConfigUseBlasThreshold(int64_t& value);
Status
GetEngineConfigOmpThreadNum(int32_t& value);
GetEngineConfigOmpThreadNum(int64_t& value);
Status
GetEngineConfigGpuSearchThreshold(int32_t& value);
GetEngineConfigGpuSearchThreshold(int64_t& value);
/* gpu resource config */
Status
GetGpuResourceConfigEnableGpu(bool& value);
GetGpuResourceConfigEnable(bool& value);
Status
GetGpuResourceConfigCacheCapacity(int64_t& value);
Status
GetGpuResourceConfigCacheThreshold(float& value);
Status
GetGpuResourceConfigSearchResources(std::vector<int32_t>& value);
GetGpuResourceConfigSearchResources(std::vector<int64_t>& value);
Status
GetGpuResourceConfigBuildIndexResources(std::vector<int32_t>& value);
GetGpuResourceConfigBuildIndexResources(std::vector<int64_t>& value);
public:
/* server config */
@ -305,7 +305,7 @@ class Config {
/* gpu resource config */
Status
SetGpuResourceConfigEnableGpu(const std::string& value);
SetGpuResourceConfigEnable(const std::string& value);
Status
SetGpuResourceConfigCacheCapacity(const std::string& value);
Status

View File

@ -89,7 +89,7 @@ DBWrapper::StartService() {
}
// engine config
int32_t omp_thread;
int64_t omp_thread;
s = config.GetEngineConfigOmpThreadNum(omp_thread);
if (!s.ok()) {
std::cerr << s.ToString() << std::endl;
@ -100,7 +100,7 @@ DBWrapper::StartService() {
omp_set_num_threads(omp_thread);
SERVER_LOG_DEBUG << "Specify openmp thread number: " << omp_thread;
} else {
uint32_t sys_thread_cnt = 8;
int64_t sys_thread_cnt = 8;
if (CommonUtil::GetSystemAvailableThreads(sys_thread_cnt)) {
omp_thread = static_cast<int32_t>(ceil(sys_thread_cnt * 0.5));
omp_set_num_threads(omp_thread);
@ -108,7 +108,7 @@ DBWrapper::StartService() {
}
// init faiss global variable
int32_t use_blas_threshold;
int64_t use_blas_threshold;
s = config.GetEngineConfigUseBlasThreshold(use_blas_threshold);
if (!s.ok()) {
std::cerr << s.ToString() << std::endl;
@ -119,7 +119,7 @@ DBWrapper::StartService() {
// set archive config
engine::ArchiveConf::CriteriaT criterial;
int32_t disk, days;
int64_t disk, days;
s = config.GetDBConfigArchiveDiskThreshold(disk);
if (!s.ok()) {
std::cerr << s.ToString() << std::endl;

View File

@ -51,7 +51,7 @@ CreatePartitionRequest::OnExecute() {
return status;
}
status = ValidationUtil::ValidateTableName(partition_param_->partition_name());
status = ValidationUtil::ValidatePartitionName(partition_param_->partition_name());
if (!status.ok()) {
return status;
}

View File

@ -22,6 +22,7 @@
#include "utils/ValidationUtil.h"
#include <memory>
#include <string>
namespace milvus {
namespace server {
@ -38,23 +39,40 @@ DropPartitionRequest::Create(const ::milvus::grpc::PartitionParam* partition_par
Status
DropPartitionRequest::OnExecute() {
if (!partition_param_->partition_name().empty()) {
auto status = ValidationUtil::ValidateTableName(partition_param_->partition_name());
if (!status.ok()) {
return status;
}
return DBWrapper::DB()->DropPartition(partition_param_->partition_name());
} else {
auto status = ValidationUtil::ValidateTableName(partition_param_->table_name());
std::string table_name = partition_param_->table_name();
std::string partition_name = partition_param_->partition_name();
std::string partition_tag = partition_param_->tag();
if (!partition_name.empty()) {
auto status = ValidationUtil::ValidateTableName(partition_name);
if (!status.ok()) {
return status;
}
status = ValidationUtil::ValidatePartitionTags({partition_param_->tag()});
// check partition existence
engine::meta::TableSchema table_info;
table_info.table_id_ = partition_name;
status = DBWrapper::DB()->DescribeTable(table_info);
if (!status.ok()) {
if (status.code() == DB_NOT_FOUND) {
return Status(SERVER_TABLE_NOT_EXIST,
"Table " + table_name + "'s partition " + partition_name + " not found");
} else {
return status;
}
}
return DBWrapper::DB()->DropPartition(partition_name);
} else {
auto status = ValidationUtil::ValidateTableName(table_name);
if (!status.ok()) {
return status;
}
return DBWrapper::DB()->DropPartitionByTag(partition_param_->table_name(), partition_param_->tag());
status = ValidationUtil::ValidatePartitionTags({partition_tag});
if (!status.ok()) {
return status;
}
return DBWrapper::DB()->DropPartitionByTag(table_name, partition_tag);
}
}

View File

@ -54,7 +54,7 @@ CommonUtil::GetSystemMemInfo(uint64_t& total_mem, uint64_t& free_mem) {
}
bool
CommonUtil::GetSystemAvailableThreads(uint32_t& thread_count) {
CommonUtil::GetSystemAvailableThreads(int64_t& thread_count) {
// threadCnt = std::thread::hardware_concurrency();
thread_count = sysconf(_SC_NPROCESSORS_CONF);
thread_count *= THREAD_MULTIPLY_CPU;

View File

@ -30,7 +30,7 @@ class CommonUtil {
static bool
GetSystemMemInfo(uint64_t& total_mem, uint64_t& free_mem);
static bool
GetSystemAvailableThreads(uint32_t& thread_count);
GetSystemAvailableThreads(int64_t& thread_count);
static bool
IsFileExist(const std::string& path);

View File

@ -18,6 +18,7 @@
#include "utils/ValidationUtil.h"
#include "Log.h"
#include "db/engine/ExecutionEngine.h"
#include "utils/StringHelpFunctions.h"
#include <arpa/inet.h>
#ifdef MILVUS_GPU_VERSION
@ -168,11 +169,26 @@ ValidationUtil::ValidateSearchNprobe(int64_t nprobe, const engine::meta::TableSc
return Status::OK();
}
Status
ValidationUtil::ValidatePartitionName(const std::string& partition_name) {
if (partition_name.empty()) {
std::string msg = "Partition name should not be empty.";
SERVER_LOG_ERROR << msg;
return Status(SERVER_INVALID_TABLE_NAME, msg);
}
return ValidateTableName(partition_name);
}
Status
ValidationUtil::ValidatePartitionTags(const std::vector<std::string>& partition_tags) {
for (auto& tag : partition_tags) {
if (tag.empty()) {
std::string msg = "Invalid partition tag: " + tag + ". " + "Partition tag should not be empty.";
for (const std::string& tag : partition_tags) {
// trim side-blank of tag, only compare valid characters
// for example: " ab cd " is treated as "ab cd"
std::string valid_tag = tag;
StringHelpFunctions::TrimStringBlank(valid_tag);
if (valid_tag.empty()) {
std::string msg = "Invalid partition tag: " + valid_tag + ". " + "Partition tag should not be empty.";
SERVER_LOG_ERROR << msg;
return Status(SERVER_INVALID_NPROBE, msg);
}

View File

@ -55,6 +55,9 @@ class ValidationUtil {
static Status
ValidateSearchNprobe(int64_t nprobe, const engine::meta::TableSchema& table_schema);
static Status
ValidatePartitionName(const std::string& partition_name);
static Status
ValidatePartitionTags(const std::vector<std::string>& partition_tags);

View File

@ -201,5 +201,35 @@ NSGConfAdapter::MatchSearch(const TempMetaConf& metaconf, const IndexType& type)
return conf;
}
knowhere::Config
SPTAGKDTConfAdapter::Match(const TempMetaConf& metaconf) {
auto conf = std::make_shared<knowhere::KDTCfg>();
conf->d = metaconf.dim;
conf->metric_type = metaconf.metric_type;
return conf;
}
knowhere::Config
SPTAGKDTConfAdapter::MatchSearch(const TempMetaConf& metaconf, const IndexType& type) {
auto conf = std::make_shared<knowhere::KDTCfg>();
conf->k = metaconf.k;
return conf;
}
knowhere::Config
SPTAGBKTConfAdapter::Match(const TempMetaConf& metaconf) {
auto conf = std::make_shared<knowhere::BKTCfg>();
conf->d = metaconf.dim;
conf->metric_type = metaconf.metric_type;
return conf;
}
knowhere::Config
SPTAGBKTConfAdapter::MatchSearch(const TempMetaConf& metaconf, const IndexType& type) {
auto conf = std::make_shared<knowhere::BKTCfg>();
conf->k = metaconf.k;
return conf;
}
} // namespace engine
} // namespace milvus

View File

@ -94,5 +94,23 @@ class NSGConfAdapter : public IVFConfAdapter {
MatchSearch(const TempMetaConf& metaconf, const IndexType& type) final;
};
class SPTAGKDTConfAdapter : public ConfAdapter {
public:
knowhere::Config
Match(const TempMetaConf& metaconf) override;
knowhere::Config
MatchSearch(const TempMetaConf& metaconf, const IndexType& type) override;
};
class SPTAGBKTConfAdapter : public ConfAdapter {
public:
knowhere::Config
Match(const TempMetaConf& metaconf) override;
knowhere::Config
MatchSearch(const TempMetaConf& metaconf, const IndexType& type) override;
};
} // namespace engine
} // namespace milvus

View File

@ -56,6 +56,9 @@ AdapterMgr::RegisterAdapter() {
REGISTER_CONF_ADAPTER(IVFPQConfAdapter, IndexType::FAISS_IVFPQ_MIX, ivfpq_mix);
REGISTER_CONF_ADAPTER(NSGConfAdapter, IndexType::NSG_MIX, nsg_mix);
REGISTER_CONF_ADAPTER(SPTAGKDTConfAdapter, IndexType::SPTAG_KDT_RNT_CPU, sptag_kdt);
REGISTER_CONF_ADAPTER(SPTAGBKTConfAdapter, IndexType::SPTAG_BKT_RNT_CPU, sptag_bkt);
}
} // namespace engine

View File

@ -48,7 +48,7 @@ KnowhereResource::Initialize() {
// get build index gpu resource
server::Config& config = server::Config::GetInstance();
std::vector<int32_t> build_index_gpus;
std::vector<int64_t> build_index_gpus;
s = config.GetGpuResourceConfigBuildIndexResources(build_index_gpus);
if (!s.ok())
return s;
@ -58,7 +58,7 @@ KnowhereResource::Initialize() {
}
// get search gpu resource
std::vector<int32_t> search_gpus;
std::vector<int64_t> search_gpus;
s = config.GetGpuResourceConfigSearchResources(search_gpus);
if (!s.ok())
return s;

View File

@ -21,17 +21,19 @@
#include "knowhere/index/vector_index/IndexIDMAP.h"
#include "utils/Log.h"
#include "wrapper/WrapperException.h"
#include "wrapper/gpu/GPUVecImpl.h"
#ifdef MILVUS_GPU_VERSION
#include <src/index/knowhere/knowhere/index/vector_index/IndexGPUIVF.h>
#include <src/index/knowhere/knowhere/index/vector_index/helpers/Cloner.h>
#include "knowhere/index/vector_index/IndexGPUIVF.h"
#include "knowhere/index/vector_index/IndexIVFSQHybrid.h"
#include "knowhere/index/vector_index/helpers/Cloner.h"
#endif
/*
* no parameter check in this layer.
* only responible for index combination
* only responsible for index combination
*/
namespace milvus {

View File

@ -22,8 +22,8 @@
#include "knowhere/index/vector_index/IndexIVF.h"
#include "knowhere/index/vector_index/IndexIVFPQ.h"
#include "knowhere/index/vector_index/IndexIVFSQ.h"
#include "knowhere/index/vector_index/IndexKDT.h"
#include "knowhere/index/vector_index/IndexNSG.h"
#include "knowhere/index/vector_index/IndexSPTAG.h"
#include "utils/Log.h"
#ifdef MILVUS_GPU_VERSION
@ -128,7 +128,11 @@ GetVecIndexFactory(const IndexType& type, const Config& cfg) {
break;
}
case IndexType::SPTAG_KDT_RNT_CPU: {
index = std::make_shared<knowhere::CPUKDTRNG>();
index = std::make_shared<knowhere::CPUSPTAGRNG>("KDT");
break;
}
case IndexType::SPTAG_BKT_RNT_CPU: {
index = std::make_shared<knowhere::CPUSPTAGRNG>("BKT");
break;
}
case IndexType::FAISS_IVFSQ8_CPU: {

View File

@ -49,6 +49,7 @@ enum class IndexType {
FAISS_IVFSQ8_HYBRID, // only support build on gpu.
NSG_MIX,
FAISS_IVFPQ_MIX,
SPTAG_BKT_RNT_CPU,
};
class VecIndex;
@ -139,6 +140,9 @@ write_index(VecIndexPtr index, const std::string& location);
extern VecIndexPtr
read_index(const std::string& location);
VecIndexPtr
read_index(const std::string& location, knowhere::BinarySet& index_binary);
extern VecIndexPtr
GetVecIndexFactory(const IndexType& type, const Config& cfg = Config());

View File

@ -9,4 +9,6 @@ sudo apt-get -y update && sudo apt-get -y install intel-mkl-gnu-2019.5-281 intel
sudo apt-get install -y gfortran libmysqlclient-dev mysql-client libcurl4-openssl-dev libboost-system-dev \
libboost-filesystem-dev libboost-serialization-dev libboost-regex-dev
sudo ln -s /usr/lib/x86_64-linux-gnu/libmysqlclient.so /usr/lib/x86_64-linux-gnu/libmysqlclient_r.so
if [ ! -f "/usr/lib/x86_64-linux-gnu/libmysqlclient_r.so" ]; then
sudo ln -s /usr/lib/x86_64-linux-gnu/libmysqlclient.so /usr/lib/x86_64-linux-gnu/libmysqlclient_r.so
fi

View File

@ -467,6 +467,13 @@ TEST_F(DBTest, PARTITION_TEST) {
stat = db_->CreatePartition(table_name, partition_name, partition_tag);
ASSERT_TRUE(stat.ok());
// not allow nested partition
stat = db_->CreatePartition(partition_name, "dumy", "dummy");
ASSERT_FALSE(stat.ok());
// not allow duplicated partition
stat = db_->CreatePartition(table_name, partition_name, partition_tag);
ASSERT_FALSE(stat.ok());
std::vector<float> xb;
BuildVectors(INSERT_BATCH, xb);

View File

@ -297,6 +297,14 @@ TEST_F(MySqlDBTest, PARTITION_TEST) {
stat = db_->CreatePartition(table_name, partition_name, partition_tag);
ASSERT_TRUE(stat.ok());
// not allow nested partition
stat = db_->CreatePartition(partition_name, "dumy", "dummy");
ASSERT_FALSE(stat.ok());
// not allow duplicated partition
stat = db_->CreatePartition(table_name, partition_name, partition_tag);
ASSERT_FALSE(stat.ok());
std::vector<float> xb;
BuildVectors(INSERT_BATCH, xb);

View File

@ -104,7 +104,6 @@ TEST_F(ConfigTest, SERVER_CONFIG_VALID_TEST) {
milvus::server::Config& config = milvus::server::Config::GetInstance();
milvus::Status s;
std::string str_val;
int32_t int32_val;
int64_t int64_val;
float float_val;
bool bool_val;
@ -160,26 +159,26 @@ TEST_F(ConfigTest, SERVER_CONFIG_VALID_TEST) {
ASSERT_TRUE(s.ok());
ASSERT_TRUE(str_val == db_backend_url);
int32_t db_archive_disk_threshold = 100;
int64_t db_archive_disk_threshold = 100;
s = config.SetDBConfigArchiveDiskThreshold(std::to_string(db_archive_disk_threshold));
ASSERT_TRUE(s.ok());
s = config.GetDBConfigArchiveDiskThreshold(int32_val);
s = config.GetDBConfigArchiveDiskThreshold(int64_val);
ASSERT_TRUE(s.ok());
ASSERT_TRUE(int32_val == db_archive_disk_threshold);
ASSERT_TRUE(int64_val == db_archive_disk_threshold);
int32_t db_archive_days_threshold = 365;
int64_t db_archive_days_threshold = 365;
s = config.SetDBConfigArchiveDaysThreshold(std::to_string(db_archive_days_threshold));
ASSERT_TRUE(s.ok());
s = config.GetDBConfigArchiveDaysThreshold(int32_val);
s = config.GetDBConfigArchiveDaysThreshold(int64_val);
ASSERT_TRUE(s.ok());
ASSERT_TRUE(int32_val == db_archive_days_threshold);
ASSERT_TRUE(int64_val == db_archive_days_threshold);
int32_t db_insert_buffer_size = 2;
int64_t db_insert_buffer_size = 2;
s = config.SetDBConfigInsertBufferSize(std::to_string(db_insert_buffer_size));
ASSERT_TRUE(s.ok());
s = config.GetDBConfigInsertBufferSize(int32_val);
s = config.GetDBConfigInsertBufferSize(int64_val);
ASSERT_TRUE(s.ok());
ASSERT_TRUE(int32_val == db_insert_buffer_size);
ASSERT_TRUE(int64_val == db_insert_buffer_size);
/* metric config */
bool metric_enable_monitor = false;
@ -223,32 +222,32 @@ TEST_F(ConfigTest, SERVER_CONFIG_VALID_TEST) {
ASSERT_TRUE(bool_val == cache_insert_data);
/* engine config */
int32_t engine_use_blas_threshold = 50;
int64_t engine_use_blas_threshold = 50;
s = config.SetEngineConfigUseBlasThreshold(std::to_string(engine_use_blas_threshold));
ASSERT_TRUE(s.ok());
s = config.GetEngineConfigUseBlasThreshold(int32_val);
s = config.GetEngineConfigUseBlasThreshold(int64_val);
ASSERT_TRUE(s.ok());
ASSERT_TRUE(int32_val == engine_use_blas_threshold);
ASSERT_TRUE(int64_val == engine_use_blas_threshold);
int32_t engine_omp_thread_num = 8;
int64_t engine_omp_thread_num = 8;
s = config.SetEngineConfigOmpThreadNum(std::to_string(engine_omp_thread_num));
ASSERT_TRUE(s.ok());
s = config.GetEngineConfigOmpThreadNum(int32_val);
s = config.GetEngineConfigOmpThreadNum(int64_val);
ASSERT_TRUE(s.ok());
ASSERT_TRUE(int32_val == engine_omp_thread_num);
ASSERT_TRUE(int64_val == engine_omp_thread_num);
int32_t engine_gpu_search_threshold = 800;
int64_t engine_gpu_search_threshold = 800;
s = config.SetEngineConfigGpuSearchThreshold(std::to_string(engine_gpu_search_threshold));
ASSERT_TRUE(s.ok());
s = config.GetEngineConfigGpuSearchThreshold(int32_val);
s = config.GetEngineConfigGpuSearchThreshold(int64_val);
ASSERT_TRUE(s.ok());
ASSERT_TRUE(int32_val == engine_gpu_search_threshold);
ASSERT_TRUE(int64_val == engine_gpu_search_threshold);
/* gpu resource config */
bool resource_enable_gpu = true;
s = config.SetGpuResourceConfigEnableGpu(std::to_string(resource_enable_gpu));
s = config.SetGpuResourceConfigEnable(std::to_string(resource_enable_gpu));
ASSERT_TRUE(s.ok());
s = config.GetGpuResourceConfigEnableGpu(bool_val);
s = config.GetGpuResourceConfigEnable(bool_val);
ASSERT_TRUE(s.ok());
ASSERT_TRUE(bool_val == resource_enable_gpu);
@ -267,7 +266,7 @@ TEST_F(ConfigTest, SERVER_CONFIG_VALID_TEST) {
ASSERT_TRUE(float_val == gpu_cache_threshold);
std::vector<std::string> search_resources = {"gpu0"};
std::vector<int32_t> search_res_vec;
std::vector<int64_t> search_res_vec;
std::string search_res_str;
milvus::server::StringHelpFunctions::MergeStringWithDelimeter(
search_resources, milvus::server::CONFIG_GPU_RESOURCE_DELIMITER, search_res_str);
@ -276,11 +275,11 @@ TEST_F(ConfigTest, SERVER_CONFIG_VALID_TEST) {
s = config.GetGpuResourceConfigSearchResources(search_res_vec);
ASSERT_TRUE(s.ok());
for (size_t i = 0; i < search_resources.size(); i++) {
ASSERT_TRUE(std::stoi(search_resources[i].substr(3)) == search_res_vec[i]);
ASSERT_TRUE(std::stoll(search_resources[i].substr(3)) == search_res_vec[i]);
}
std::vector<std::string> build_index_resources = {"gpu0"};
std::vector<int32_t> build_index_res_vec;
std::vector<int64_t> build_index_res_vec;
std::string build_index_res_str;
milvus::server::StringHelpFunctions::MergeStringWithDelimeter(
build_index_resources, milvus::server::CONFIG_GPU_RESOURCE_DELIMITER, build_index_res_str);
@ -289,7 +288,7 @@ TEST_F(ConfigTest, SERVER_CONFIG_VALID_TEST) {
s = config.GetGpuResourceConfigBuildIndexResources(build_index_res_vec);
ASSERT_TRUE(s.ok());
for (size_t i = 0; i < build_index_resources.size(); i++) {
ASSERT_TRUE(std::stoi(build_index_resources[i].substr(3)) == build_index_res_vec[i]);
ASSERT_TRUE(std::stoll(build_index_resources[i].substr(3)) == build_index_res_vec[i]);
}
#endif
}
@ -394,7 +393,7 @@ TEST_F(ConfigTest, SERVER_CONFIG_INVALID_TEST) {
ASSERT_FALSE(s.ok());
/* gpu resource config */
s = config.SetGpuResourceConfigEnableGpu("ok");
s = config.SetGpuResourceConfigEnable("ok");
ASSERT_FALSE(s.ok());
#ifdef MILVUS_GPU_VERSION

View File

@ -409,7 +409,7 @@ TEST_F(RpcHandlerTest, PARTITION_TEST) {
partition_parm.set_partition_name(partition_name);
handler->DropPartition(&context, &partition_parm, &response);
ASSERT_EQ(response.error_code(), ::grpc::Status::OK.error_code());
ASSERT_NE(response.error_code(), ::grpc::Status::OK.error_code());
}
TEST_F(RpcHandlerTest, CMD_TEST) {

View File

@ -60,7 +60,7 @@ TEST(UtilTest, COMMON_TEST) {
ASSERT_GT(total_mem, 0);
ASSERT_GT(free_mem, 0);
uint32_t thread_cnt = 0;
int64_t thread_cnt = 0;
milvus::server::CommonUtil::GetSystemAvailableThreads(thread_cnt);
ASSERT_GT(thread_cnt, 0);

View File

@ -16,28 +16,29 @@
// under the License.
#include "easyloggingpp/easylogging++.h"
#include "wrapper/VecIndex.h"
#ifdef MILVUS_GPU_VERSION
#include "knowhere/index/vector_index/helpers/FaissGpuResourceMgr.h"
#endif
#include "knowhere/index/vector_index/helpers/IndexParameter.h"
#include "wrapper/VecIndex.h"
#include "wrapper/utils.h"
#include <gtest/gtest.h>
INITIALIZE_EASYLOGGINGPP
using ::testing::Combine;
using ::testing::TestWithParam;
using ::testing::Values;
using ::testing::Combine;
class KnowhereWrapperTest
: public DataGenBase,
public TestWithParam<::std::tuple<milvus::engine::IndexType, std::string, int, int, int, int>> {
: public DataGenBase,
public TestWithParam<::std::tuple<milvus::engine::IndexType, std::string, int, int, int, int>> {
protected:
void SetUp() override {
void
SetUp() override {
#ifdef MILVUS_GPU_VERSION
knowhere::FaissGpuResourceMgr::GetInstance().InitDevice(DEVICEID, PINMEM, TEMPMEM, RESNUM);
#endif
@ -58,7 +59,8 @@ class KnowhereWrapperTest
searchconf = ParamGenerator::GetInstance().GenSearchConf(index_type, tempconf);
}
void TearDown() override {
void
TearDown() override {
#ifdef MILVUS_GPU_VERSION
knowhere::FaissGpuResourceMgr::GetInstance().Free();
#endif
@ -71,22 +73,20 @@ class KnowhereWrapperTest
knowhere::Config searchconf;
};
INSTANTIATE_TEST_CASE_P(WrapperParam, KnowhereWrapperTest,
Values(
//["Index type", "Generator type", "dim", "nb", "nq", "k", "build config", "search config"]
INSTANTIATE_TEST_CASE_P(
WrapperParam, KnowhereWrapperTest,
Values(
//["Index type", "Generator type", "dim", "nb", "nq", "k", "build config", "search config"]
#ifdef MILVUS_GPU_VERSION
std::make_tuple(milvus::engine::IndexType::FAISS_IVFFLAT_GPU, "Default", DIM, NB, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFFLAT_MIX, "Default", 64, 1000, 10, 10),
// std::make_tuple(milvus::engine::IndexType::FAISS_IVFSQ8_GPU, "Default", DIM, NB,
// 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFSQ8_GPU, "Default", DIM, NB, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFSQ8_MIX, "Default", DIM, NB, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFPQ_MIX, "Default", 64, 1000, 10, 10),
// std::make_tuple(IndexType::NSG_MIX, "Default", 128, 250000, 10, 10),
// std::make_tuple(milvus::engine::IndexType::NSG_MIX, "Default", 128, 250000, 10, 10),
#endif
// std::make_tuple(IndexType::SPTAG_KDT_RNT_CPU, "Default", 128, 250000, 10, 10),
// std::make_tuple(milvus::engine::IndexType::SPTAG_KDT_RNT_CPU, "Default", 128, 100, 10, 10),
// std::make_tuple(milvus::engine::IndexType::SPTAG_BKT_RNT_CPU, "Default", 128, 100, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IDMAP, "Default", 64, 1000, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFFLAT_CPU, "Default", 64, 1000, 10, 10),
std::make_tuple(milvus::engine::IndexType::FAISS_IVFSQ8_CPU, "Default", DIM, NB, 10, 10)));

23
docs/README.md Normal file
View File

@ -0,0 +1,23 @@
# Docs
This repository contains test reports on the search performance of different index types on standalone Milvus.
The tests are run on [SIFT1B dataset](http://corpus-texmex.irisa.fr/), and provide results on the following measures:
- Query Elapsed Time: Time cost (in seconds) to run a query.
- Recall: The fraction of the total amount of relevant instances that were actually retrieved.
Test variables are `nq` and `topk`.
## Test reports
The following is a list of existing test reports:
- [IVF_SQ8](test_report/milvus_ivfsq8_test_report_detailed_version.md)
- [IVF_SQ8H](test_report/milvus_ivfsq8h_test_report_detailed_version.md)
To read the CN version of these reports:
- [IVF_SQ8_cn](test_report/milvus_ivfsq8_test_report_detailed_version_cn.md)
- [IVF_SQ8H_cn](test_report/milvus_ivfsq8h_test_report_detailed_version_cn.md)

View File

@ -0,0 +1,179 @@
# milvus_ivfsq8h_test_report_detailed_version
## Summary
This document contains the test reports of IVF_SQ8H index on Milvus single server.
## Test objectives
The time cost and recall when searching with different parameters.
## Test method
### Hardware/Software requirements
Operating System: CentOS Linux release 7.6.1810 (Core)
CPU: Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz
GPU0: GeForce GTX 1080
GPU1: GeForce GTX 1080
Memory: 503GB
Docker version: 18.09
NVIDIA Driver version: 430.34
Milvus version: 0.5.3
SDK interface: Python 3.6.8
pymilvus version: 0.2.5
### Data model
The data used in the tests are:
- Data source: sift1b
- Data type: hdf5
For details on this dataset, please check : http://corpus-texmex.irisa.fr/ .
### Measures
- Query Elapsed Time: Time cost (in seconds) to run a query. Variables that affect Query Elapsed Time:
- nq (Number of queried vectors)
> Note: In the query test of query elapsed time, we will test the following parameters with different values:
>
> nq - grouped by: [1, 5, 10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800].
>
- Recall: The fraction of the total amount of relevant instances that were actually retrieved . Variables that affect Recall:
- nq (Number of queried vectors)
- topk (Top k result of a query)
> Note: In the query test of recall, we will test the following parameters with different values:
>
> nq - grouped by: [10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800],
>
> topk - grouped by: [1, 10, 100]
## Test reports
### Test environment
Data base: sift1b-1,000,000,000 vectors, 128-dimension
Table Attributes
- nlist: 16384
- metric_type: L2
Query configuration
- nprobe: 32
Milvus configuration
- cpu_cache_capacity: 150
- gpu_cache_capacity: 6
- use_blas_threshold: 1100
- gpu_search_threshold: 1200
- search_resources: cpu, gpu0, gpu1
The definitions of Milvus configuration are on https://milvus.io/docs/en/reference/milvus_config/.
Test method
Test the query elapsed time and recall with several parameters, and once only change one parameter.
- Whether to restart Milvus after each query: No
### Performance test
#### Data query
**Test result**
Query Elapsed Time
topk = 100
| nq/topk | topk=100 |
| :-----: | :------: |
| nq=1 | 0.34 |
| nq=5 | 0.72 |
| nq=10 | 0.91 |
| nq=50 | 1.51 |
| nq=100 | 2.49 |
| nq=200 | 4.09 |
| nq=400 | 7.32 |
| nq=600 | 10.63 |
| nq=800 | 13.84 |
| nq=1000 | 16.83 |
| nq=1200 | 18.20 |
| nq=1400 | 20.1 |
| nq=1600 | 20.0 |
| nq=1800 | 19.86 |
When nq is 1800, the query time cost of a 128-dimension vector is around 11ms.
**Conclusion**
When nq < 1200, the query elapsed time increases quickly with nq; when nq > 1200, the query elapsed time increases much slower. It is because gpu_search_threshold is set to 1200, when nq < 1200, CPU is chosen to do the query, otherwise GPU is chosen. Compared with CPU, GPU has much more cores and stronger computing capability. When nq is large, it can better reflect GPU's advantages on computing.
The query elapsed time consists of two parts: (1) index CPU-to-GPU copy time; (2) nprobe buckets search time. When nq is larger enough, index CPU-to-GPU copy time can be amortized efficiently. So Milvus performs well through setting suitable gpu_search_threshold.
### Recall test
**Test result**
topk = 1 : recall - recall@1
topk = 10 : recall - recall@10
topk = 100 : recall - recall@100
We use the ground_truth in sift1b dataset to calculate the recall of query results.
| nq/topk | topk=1 | topk=10 | topk=100 |
| :-----: | :----: | :-----: | :------: |
| nq=10 | 0.900 | 0.910 | 0.939 |
| nq=50 | 0.980 | 0.950 | 0.941 |
| nq=100 | 0.970 | 0.937 | 0.931 |
| nq=200 | 0.955 | 0.941 | 0.929 |
| nq=400 | 0.958 | 0.944 | 0.932 |
| nq=600 | 0.952 | 0.946 | 0.934 |
| nq=800 | 0.941 | 0.943 | 0.930 |
| nq=1000 | 0.938 | 0.942 | 0.930 |
| nq=1200 | 0.937 | 0.943 | 0.931 |
| nq=1400 | 0.939 | 0.945 | 0.931 |
| nq=1600 | 0.936 | 0.945 | 0.931 |
| nq=1800 | 0.937 | 0.946 | 0.932 |
**Conclusion**
As nq increases, the recall gradually stabilizes to over 93%. The usage of CPU or GPU and different topk are not related to recall.

View File

@ -0,0 +1,180 @@
# milvus_ivfsq8h_test_report_detailed_version_cn
## 概述
本文描述了ivfsq8h索引在milvus单机部署方式下的测试结果。
## 测试目标
参数不同情况下的查询时间和召回率。
## 测试方法
### 软硬件环境
操作系统CentOS Linux release 7.6.1810 (Core)
CPUIntel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz
GPU0GeForce GTX 1080
GPU1GeForce GTX 1080
内存503GB
Docker版本18.09
NVIDIA Driver版本430.34
Milvus版本0.5.3
SDK接口Python 3.6.8
pymilvus版本0.2.5
### 数据模型
本测试中用到的主要数据:
- 数据来源sift1b
- 数据类型hdf5
关于该数据集的详细信息请参考http://corpus-texmex.irisa.fr/ 。
### 测试指标
- Query Elapsed Time: 数据库查询所有向量的时间以秒计。影响Query Elapsed Time的变量
- nq (被查询向量的数量)
> 备注:在向量查询测试中,我们会测试下面参数不同的取值来观察结果:
>
> 被查询向量的数量nq将按照 [1, 5, 10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800]的数量分组。
>
- Recall: 实际返回的正确结果占总数之比。影响Recall的变量
- nq (被查询向量的数量)
- topk (单条查询中最相似的K个结果)
> 备注:在向量准确性测试中,我们会测试下面参数不同的取值来观察结果:
>
> 被查询向量的数量nq将按照 [10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800]的数量分组,
>
> 单条查询中最相似的K个结果topk将按照[1, 10, 100]的数量分组。
## 测试报告
### 测试环境
数据集: sift1b-1,000,000,000向量, 128维
表格属性:
- nlist: 16384
- metric_type: L2
查询设置:
- nprobe: 32
Milvus设置
- cpu_cache_capacity: 150
- gpu_cache_capacity: 6
- use_blas_threshold: 1100
- gpu_search_threshold: 1200
- search_resources: cpu, gpu0, gpu1
Milvus设置的详细定义可以参考 https://milvus.io/docs/en/reference/milvus_config/ 。
测试方法
通过一次仅改变一个参数的值,测试查询向量时间和召回率。
- 查询后是否重启Milvus
### 性能测试
#### 数据查询
测试结果
Query Elapsed Time
topk = 100
| nq/topk | topk=100 |
| :-----: | :------: |
| nq=1 | 0.34 |
| nq=5 | 0.72 |
| nq=10 | 0.91 |
| nq=50 | 1.51 |
| nq=100 | 2.49 |
| nq=200 | 4.09 |
| nq=400 | 7.32 |
| nq=600 | 10.63 |
| nq=800 | 13.84 |
| nq=1000 | 16.83 |
| nq=1200 | 18.20 |
| nq=1400 | 20.1 |
| nq=1600 | 20.0 |
| nq=1800 | 19.86 |
当nq为1800时查询一条128维向量需要耗时约11毫秒。
**总结**
当nq小于1200时查询耗时随nq的增长快速增大当nq大于1200时查询耗时的增大则缓慢许多。这是因为gpu_search_threshold这一参数的值被设为1200当nq<1200CPUGPUCPU
在GPU模式下的查询耗时由两部分组成1索引从CPU到GPU的拷贝时间2所有分桶的查询时间。当nq小于500时索引从CPU到GPU 的拷贝时间无法被有效均摊此时CPU模式时一个更优的选择当nq大于500时选择GPU模式更合理。和CPU相比GPU具有更多的核数和更强的算力。当nq较大时GPU在计算上的优势能被更好地被体现。
### 召回率测试
**测试结果**
topk = 1 : recall - recall@1
topk = 10 : recall - recall@10
topk = 100 : recall - recall@100
我们利用sift1b数据集中的ground_truth来计算查询结果的召回率。
| nq/topk | topk=1 | topk=10 | topk=100 |
| :-----: | :----: | :-----: | :------: |
| nq=10 | 0.900 | 0.910 | 0.939 |
| nq=50 | 0.980 | 0.950 | 0.941 |
| nq=100 | 0.970 | 0.937 | 0.931 |
| nq=200 | 0.955 | 0.941 | 0.929 |
| nq=400 | 0.958 | 0.944 | 0.932 |
| nq=600 | 0.952 | 0.946 | 0.934 |
| nq=800 | 0.941 | 0.943 | 0.930 |
| nq=1000 | 0.938 | 0.942 | 0.930 |
| nq=1200 | 0.937 | 0.943 | 0.931 |
| nq=1400 | 0.939 | 0.945 | 0.931 |
| nq=1600 | 0.936 | 0.945 | 0.931 |
| nq=1800 | 0.937 | 0.946 | 0.932 |
**总结**
随着nq的增大召回率逐渐稳定至93%以上。CPU/GPU的使用以及topk的值与召回率的大小无关。

View File

@ -2,6 +2,7 @@ import logging
import threading
from functools import wraps
from milvus import Milvus
from milvus.client.hooks import BaseaSearchHook
from mishards import (settings, exceptions)
from utils import singleton
@ -9,6 +10,12 @@ from utils import singleton
logger = logging.getLogger(__name__)
class Searchook(BaseaSearchHook):
def on_response(self, *args, **kwargs):
return True
class Connection:
def __init__(self, name, uri, max_retry=1, error_handlers=None, **kwargs):
self.name = name
@ -18,6 +25,9 @@ class Connection:
self.conn = Milvus()
self.error_handlers = [] if not error_handlers else error_handlers
self.on_retry_func = kwargs.get('on_retry_func', None)
# define search hook
self.conn._set_hook(search_in_file=Searchook())
# self._connect()
def __str__(self):

View File

@ -29,39 +29,71 @@ class ServiceHandler(milvus_pb2_grpc.MilvusServiceServicer):
self.router = router
self.max_workers = max_workers
def _reduce(self, source_ids, ids, source_diss, diss, k, reverse):
if source_diss[k - 1] <= diss[0]:
return source_ids, source_diss
if diss[k - 1] <= source_diss[0]:
return ids, diss
source_diss.extend(diss)
diss_t = enumerate(source_diss)
diss_m_rst = sorted(diss_t, key=lambda x: x[1])[:k]
diss_m_out = [id_ for _, id_ in diss_m_rst]
source_ids.extend(ids)
id_m_out = [source_ids[i] for i, _ in diss_m_rst]
return id_m_out, diss_m_out
def _do_merge(self, files_n_topk_results, topk, reverse=False, **kwargs):
status = status_pb2.Status(error_code=status_pb2.SUCCESS,
reason="Success")
if not files_n_topk_results:
return status, []
request_results = defaultdict(list)
merge_id_results = []
merge_dis_results = []
calc_time = time.time()
for files_collection in files_n_topk_results:
if isinstance(files_collection, tuple):
status, _ = files_collection
return status, []
for request_pos, each_request_results in enumerate(
files_collection.topk_query_result):
request_results[request_pos].extend(
each_request_results.query_result_arrays)
request_results[request_pos] = sorted(
request_results[request_pos],
key=lambda x: x.distance,
reverse=reverse)[:topk]
row_num = files_collection.row_num
ids = files_collection.ids
diss = files_collection.distances # distance collections
# TODO: batch_len is equal to topk, may need to compare with topk
batch_len = len(ids) // row_num
for row_index in range(row_num):
id_batch = ids[row_index * batch_len: (row_index + 1) * batch_len]
dis_batch = diss[row_index * batch_len: (row_index + 1) * batch_len]
if len(merge_id_results) < row_index:
raise ValueError("merge error")
elif len(merge_id_results) == row_index:
# TODO: may bug here
merge_id_results.append(id_batch)
merge_dis_results.append(dis_batch)
else:
merge_id_results[row_index], merge_dis_results[row_index] = \
self._reduce(merge_id_results[row_index], id_batch,
merge_dis_results[row_index], dis_batch,
batch_len,
reverse)
calc_time = time.time() - calc_time
logger.info('Merge takes {}'.format(calc_time))
results = sorted(request_results.items())
topk_query_result = []
id_mrege_list = []
dis_mrege_list = []
for result in results:
query_result = TopKQueryResult(query_result_arrays=result[1])
topk_query_result.append(query_result)
for id_results, dis_results in zip(merge_id_results, merge_dis_results):
id_mrege_list.extend(id_results)
dis_mrege_list.extend(dis_results)
return status, topk_query_result
return status, id_mrege_list, dis_mrege_list
def _do_query(self,
context,
@ -109,8 +141,8 @@ class ServiceHandler(milvus_pb2_grpc.MilvusServiceServicer):
file_ids=query_params['file_ids'],
query_records=vectors,
top_k=topk,
nprobe=nprobe,
lazy_=True)
nprobe=nprobe
)
end = time.time()
logger.info('search_vectors_in_files takes: {}'.format(end - start))
@ -241,7 +273,7 @@ class ServiceHandler(milvus_pb2_grpc.MilvusServiceServicer):
logger.info('Search {}: topk={} nprobe={}'.format(
table_name, topk, nprobe))
metadata = {'resp_class': milvus_pb2.TopKQueryResultList}
metadata = {'resp_class': milvus_pb2.TopKQueryResult}
if nprobe > self.MAX_NPROBE or nprobe <= 0:
raise exceptions.InvalidArgumentError(
@ -275,22 +307,24 @@ class ServiceHandler(milvus_pb2_grpc.MilvusServiceServicer):
query_range_array.append(
Range(query_range.start_value, query_range.end_value))
status, results = self._do_query(context,
table_name,
table_meta,
query_record_array,
topk,
nprobe,
query_range_array,
metadata=metadata)
status, id_results, dis_results = self._do_query(context,
table_name,
table_meta,
query_record_array,
topk,
nprobe,
query_range_array,
metadata=metadata)
now = time.time()
logger.info('SearchVector takes: {}'.format(now - start))
topk_result_list = milvus_pb2.TopKQueryResultList(
topk_result_list = milvus_pb2.TopKQueryResult(
status=status_pb2.Status(error_code=status.error_code,
reason=status.reason),
topk_query_result=results)
row_num=len(query_record_array),
ids=id_results,
distances=dis_results)
return topk_result_list
@mark_grpc_method

View File

@ -14,8 +14,7 @@ py==1.8.0
pyasn1==0.4.7
pyasn1-modules==0.2.6
pylint==2.3.1
pymilvus-test==0.2.28
#pymilvus==0.2.0
pymilvus==0.2.5
pyparsing==2.4.0
pytest==4.6.3
pytest-level==0.1.1