mirror of https://github.com/milvus-io/milvus.git
test: refine file dir in import test (#33600)
Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>pull/33596/head^2
parent
25080bb455
commit
05a80f4def
|
@ -7,6 +7,8 @@ import numpy as np
|
|||
from ml_dtypes import bfloat16
|
||||
import pandas as pd
|
||||
import random
|
||||
from pathlib import Path
|
||||
import uuid
|
||||
from faker import Faker
|
||||
from sklearn import preprocessing
|
||||
from common.common_func import gen_unique_str
|
||||
|
@ -670,20 +672,30 @@ def gen_dict_data_by_data_field(data_fields, rows, start=0, float_vector=True, d
|
|||
|
||||
|
||||
def gen_new_json_files(float_vector, rows, dim, data_fields, file_nums=1, array_length=None, file_size=None, err_type="", enable_dynamic_field=False, **kwargs):
|
||||
schema = kwargs.get("schema", None)
|
||||
dir_prefix = f"json-{uuid.uuid4()}"
|
||||
data_source_new = f"{data_source}/{dir_prefix}"
|
||||
schema_file = f"{data_source_new}/schema.json"
|
||||
Path(schema_file).parent.mkdir(parents=True, exist_ok=True)
|
||||
if schema is not None:
|
||||
data = schema.to_dict()
|
||||
with open(schema_file, "w") as f:
|
||||
json.dump(data, f)
|
||||
files = []
|
||||
if file_size is not None:
|
||||
rows = 5000
|
||||
start_uid = 0
|
||||
for i in range(file_nums):
|
||||
file_name = f"data-fields-{len(data_fields)}-rows-{rows}-dim-{dim}-file-num-{i}-{int(time.time())}.json"
|
||||
file = f"{data_source}/{file_name}"
|
||||
file = f"{data_source_new}/{file_name}"
|
||||
Path(file).parent.mkdir(parents=True, exist_ok=True)
|
||||
data = gen_dict_data_by_data_field(data_fields=data_fields, rows=rows, start=start_uid, float_vector=float_vector, dim=dim, array_length=array_length, enable_dynamic_field=enable_dynamic_field, **kwargs)
|
||||
# log.info(f"data: {data}")
|
||||
with open(file, "w") as f:
|
||||
json.dump(data, f)
|
||||
# get the file size
|
||||
if file_size is not None:
|
||||
batch_file_size = os.path.getsize(f"{data_source}/{file_name}")
|
||||
batch_file_size = os.path.getsize(f"{data_source_new}/{file_name}")
|
||||
log.info(f"file_size with rows {rows} for {file_name}: {batch_file_size/1024/1024} MB")
|
||||
# calculate the rows to be generated
|
||||
total_batch = int(file_size*1024*1024*1024/batch_file_size)
|
||||
|
@ -693,17 +705,27 @@ def gen_new_json_files(float_vector, rows, dim, data_fields, file_nums=1, array_
|
|||
for _ in range(total_batch):
|
||||
all_data += data
|
||||
file_name = f"data-fields-{len(data_fields)}-rows-{total_rows}-dim-{dim}-file-num-{i}-{int(time.time())}.json"
|
||||
with open(f"{data_source}/{file_name}", "w") as f:
|
||||
with open(f"{data_source_new}/{file_name}", "w") as f:
|
||||
json.dump(all_data, f)
|
||||
batch_file_size = os.path.getsize(f"{data_source}/{file_name}")
|
||||
batch_file_size = os.path.getsize(f"{data_source_new}/{file_name}")
|
||||
log.info(f"file_size with rows {total_rows} for {file_name}: {batch_file_size/1024/1024/1024} GB")
|
||||
files.append(file_name)
|
||||
start_uid += rows
|
||||
files = [f"{dir_prefix}/{f}" for f in files]
|
||||
return files
|
||||
|
||||
|
||||
def gen_npy_files(float_vector, rows, dim, data_fields, file_size=None, file_nums=1, err_type="", force=False, enable_dynamic_field=False, include_meta=True):
|
||||
def gen_npy_files(float_vector, rows, dim, data_fields, file_size=None, file_nums=1, err_type="", force=False, enable_dynamic_field=False, include_meta=True, **kwargs):
|
||||
# gen numpy files
|
||||
schema = kwargs.get("schema", None)
|
||||
u_id = f"numpy-{uuid.uuid4()}"
|
||||
data_source_new = f"{data_source}/{u_id}"
|
||||
schema_file = f"{data_source_new}/schema.json"
|
||||
Path(schema_file).parent.mkdir(parents=True, exist_ok=True)
|
||||
if schema is not None:
|
||||
data = schema.to_dict()
|
||||
with open(schema_file, "w") as f:
|
||||
json.dump(data, f)
|
||||
files = []
|
||||
start_uid = 0
|
||||
if file_nums == 1:
|
||||
|
@ -723,47 +745,47 @@ def gen_npy_files(float_vector, rows, dim, data_fields, file_size=None, file_num
|
|||
if "fp16" in data_field:
|
||||
float_vector = True
|
||||
vector_type = "fp16"
|
||||
file_name = gen_vectors_in_numpy_file(dir=data_source, data_field=data_field, float_vector=float_vector,
|
||||
file_name = gen_vectors_in_numpy_file(dir=data_source_new, data_field=data_field, float_vector=float_vector,
|
||||
vector_type=vector_type, rows=rows, dim=dim, force=force)
|
||||
elif data_field == DataField.string_field: # string field for numpy not supported yet at 2022-10-17
|
||||
file_name = gen_string_in_numpy_file(dir=data_source, data_field=data_field, rows=rows, force=force)
|
||||
file_name = gen_string_in_numpy_file(dir=data_source_new, data_field=data_field, rows=rows, force=force)
|
||||
elif data_field == DataField.bool_field:
|
||||
file_name = gen_bool_in_numpy_file(dir=data_source, data_field=data_field, rows=rows, force=force)
|
||||
file_name = gen_bool_in_numpy_file(dir=data_source_new, data_field=data_field, rows=rows, force=force)
|
||||
elif data_field == DataField.json_field:
|
||||
file_name = gen_json_in_numpy_file(dir=data_source, data_field=data_field, rows=rows, force=force)
|
||||
file_name = gen_json_in_numpy_file(dir=data_source_new, data_field=data_field, rows=rows, force=force)
|
||||
else:
|
||||
file_name = gen_int_or_float_in_numpy_file(dir=data_source, data_field=data_field,
|
||||
file_name = gen_int_or_float_in_numpy_file(dir=data_source_new, data_field=data_field,
|
||||
rows=rows, force=force)
|
||||
files.append(file_name)
|
||||
if enable_dynamic_field and include_meta:
|
||||
file_name = gen_dynamic_field_in_numpy_file(dir=data_source, rows=rows, force=force)
|
||||
file_name = gen_dynamic_field_in_numpy_file(dir=data_source_new, rows=rows, force=force)
|
||||
files.append(file_name)
|
||||
if file_size is not None:
|
||||
batch_file_size = 0
|
||||
for file_name in files:
|
||||
batch_file_size += os.path.getsize(f"{data_source}/{file_name}")
|
||||
batch_file_size += os.path.getsize(f"{data_source_new}/{file_name}")
|
||||
log.info(f"file_size with rows {rows} for {files}: {batch_file_size/1024/1024} MB")
|
||||
# calculate the rows to be generated
|
||||
total_batch = int(file_size*1024*1024*1024/batch_file_size)
|
||||
total_rows = total_batch * rows
|
||||
new_files = []
|
||||
for f in files:
|
||||
arr = np.load(f"{data_source}/{f}")
|
||||
arr = np.load(f"{data_source_new}/{f}")
|
||||
all_arr = np.concatenate([arr for _ in range(total_batch)], axis=0)
|
||||
file_name = f
|
||||
np.save(f"{data_source}/{file_name}", all_arr)
|
||||
np.save(f"{data_source_new}/{file_name}", all_arr)
|
||||
log.info(f"file_name: {file_name} data type: {all_arr.dtype} data shape: {all_arr.shape}")
|
||||
new_files.append(file_name)
|
||||
files = new_files
|
||||
batch_file_size = 0
|
||||
for file_name in files:
|
||||
batch_file_size += os.path.getsize(f"{data_source}/{file_name}")
|
||||
batch_file_size += os.path.getsize(f"{data_source_new}/{file_name}")
|
||||
log.info(f"file_size with rows {total_rows} for {files}: {batch_file_size/1024/1024/1024} GB")
|
||||
|
||||
else:
|
||||
for i in range(file_nums):
|
||||
subfolder = gen_subfolder(root=data_source, dim=dim, rows=rows, file_num=i)
|
||||
dir = f"{data_source}/{subfolder}"
|
||||
subfolder = gen_subfolder(root=data_source_new, dim=dim, rows=rows, file_num=i)
|
||||
dir = f"{data_source_new}/{subfolder}"
|
||||
for data_field in data_fields:
|
||||
if DataField.vec_field in data_field:
|
||||
file_name = gen_vectors_in_numpy_file(dir=dir, data_field=data_field, float_vector=float_vector, rows=rows, dim=dim, force=force)
|
||||
|
@ -774,6 +796,7 @@ def gen_npy_files(float_vector, rows, dim, data_fields, file_size=None, file_num
|
|||
file_name = gen_dynamic_field_in_numpy_file(dir=dir, rows=rows, start=start_uid, force=force)
|
||||
files.append(f"{subfolder}/{file_name}")
|
||||
start_uid += rows
|
||||
files = [f"{u_id}/{f}" for f in files]
|
||||
return files
|
||||
|
||||
|
||||
|
@ -784,7 +807,17 @@ def gen_dynamic_field_data_in_parquet_file(rows, start=0):
|
|||
return data
|
||||
|
||||
|
||||
def gen_parquet_files(float_vector, rows, dim, data_fields, file_size=None, row_group_size=None, file_nums=1, array_length=None, err_type="", enable_dynamic_field=False, include_meta=True, sparse_format="doc"):
|
||||
def gen_parquet_files(float_vector, rows, dim, data_fields, file_size=None, row_group_size=None, file_nums=1, array_length=None, err_type="", enable_dynamic_field=False, include_meta=True, sparse_format="doc", **kwargs):
|
||||
schema = kwargs.get("schema", None)
|
||||
u_id = f"parquet-{uuid.uuid4()}"
|
||||
data_source_new = f"{data_source}/{u_id}"
|
||||
schema_file = f"{data_source_new}/schema.json"
|
||||
Path(schema_file).parent.mkdir(parents=True, exist_ok=True)
|
||||
if schema is not None:
|
||||
data = schema.to_dict()
|
||||
with open(schema_file, "w") as f:
|
||||
json.dump(data, f)
|
||||
|
||||
# gen numpy files
|
||||
if err_type == "":
|
||||
err_type = "none"
|
||||
|
@ -805,12 +838,12 @@ def gen_parquet_files(float_vector, rows, dim, data_fields, file_size=None, row_
|
|||
log.info(f"df: \n{df}")
|
||||
file_name = f"data-fields-{len(data_fields)}-rows-{rows}-dim-{dim}-file-num-{file_nums}-error-{err_type}-{int(time.time())}.parquet"
|
||||
if row_group_size is not None:
|
||||
df.to_parquet(f"{data_source}/{file_name}", engine='pyarrow', row_group_size=row_group_size)
|
||||
df.to_parquet(f"{data_source_new}/{file_name}", engine='pyarrow', row_group_size=row_group_size)
|
||||
else:
|
||||
df.to_parquet(f"{data_source}/{file_name}", engine='pyarrow')
|
||||
df.to_parquet(f"{data_source_new}/{file_name}", engine='pyarrow')
|
||||
# get the file size
|
||||
if file_size is not None:
|
||||
batch_file_size = os.path.getsize(f"{data_source}/{file_name}")
|
||||
batch_file_size = os.path.getsize(f"{data_source_new}/{file_name}")
|
||||
log.info(f"file_size with rows {rows} for {file_name}: {batch_file_size/1024/1024} MB")
|
||||
# calculate the rows to be generated
|
||||
total_batch = int(file_size*1024*1024*1024/batch_file_size)
|
||||
|
@ -819,10 +852,10 @@ def gen_parquet_files(float_vector, rows, dim, data_fields, file_size=None, row_
|
|||
file_name = f"data-fields-{len(data_fields)}-rows-{total_rows}-dim-{dim}-file-num-{file_nums}-error-{err_type}-{int(time.time())}.parquet"
|
||||
log.info(f"all df: \n {all_df}")
|
||||
if row_group_size is not None:
|
||||
all_df.to_parquet(f"{data_source}/{file_name}", engine='pyarrow', row_group_size=row_group_size)
|
||||
all_df.to_parquet(f"{data_source_new}/{file_name}", engine='pyarrow', row_group_size=row_group_size)
|
||||
else:
|
||||
all_df.to_parquet(f"{data_source}/{file_name}", engine='pyarrow')
|
||||
batch_file_size = os.path.getsize(f"{data_source}/{file_name}")
|
||||
all_df.to_parquet(f"{data_source_new}/{file_name}", engine='pyarrow')
|
||||
batch_file_size = os.path.getsize(f"{data_source_new}/{file_name}")
|
||||
log.info(f"file_size with rows {total_rows} for {file_name}: {batch_file_size/1024/1024} MB")
|
||||
files.append(file_name)
|
||||
else:
|
||||
|
@ -837,11 +870,12 @@ def gen_parquet_files(float_vector, rows, dim, data_fields, file_size=None, row_
|
|||
df = pd.DataFrame(all_field_data)
|
||||
file_name = f"data-fields-{len(data_fields)}-rows-{rows}-dim-{dim}-file-num-{i}-error-{err_type}-{int(time.time())}.parquet"
|
||||
if row_group_size is not None:
|
||||
df.to_parquet(f"{data_source}/{file_name}", engine='pyarrow', row_group_size=row_group_size)
|
||||
df.to_parquet(f"{data_source_new}/{file_name}", engine='pyarrow', row_group_size=row_group_size)
|
||||
else:
|
||||
df.to_parquet(f"{data_source}/{file_name}", engine='pyarrow')
|
||||
df.to_parquet(f"{data_source_new}/{file_name}", engine='pyarrow')
|
||||
files.append(file_name)
|
||||
start_uid += rows
|
||||
files = [f"{u_id}/{f}" for f in files]
|
||||
return files
|
||||
|
||||
|
||||
|
@ -931,7 +965,7 @@ def prepare_bulk_insert_new_json_files(minio_endpoint="", bucket_name="milvus-bu
|
|||
|
||||
|
||||
def prepare_bulk_insert_numpy_files(minio_endpoint="", bucket_name="milvus-bucket", rows=100, dim=128, enable_dynamic_field=False, file_size=None,
|
||||
data_fields=[DataField.vec_field], float_vector=True, file_nums=1, force=False, include_meta=True):
|
||||
data_fields=[DataField.vec_field], float_vector=True, file_nums=1, force=False, include_meta=True, **kwargs):
|
||||
"""
|
||||
Generate column based files based on params in numpy format and copy them to the minio
|
||||
Note: each field in data_fields would be generated one numpy file.
|
||||
|
@ -963,14 +997,14 @@ def prepare_bulk_insert_numpy_files(minio_endpoint="", bucket_name="milvus-bucke
|
|||
"""
|
||||
files = gen_npy_files(rows=rows, dim=dim, float_vector=float_vector, file_size=file_size,
|
||||
data_fields=data_fields, enable_dynamic_field=enable_dynamic_field,
|
||||
file_nums=file_nums, force=force, include_meta=include_meta)
|
||||
file_nums=file_nums, force=force, include_meta=include_meta, **kwargs)
|
||||
|
||||
copy_files_to_minio(host=minio_endpoint, r_source=data_source, files=files, bucket_name=bucket_name, force=force)
|
||||
return files
|
||||
|
||||
|
||||
def prepare_bulk_insert_parquet_files(minio_endpoint="", bucket_name="milvus-bucket", rows=100, dim=128, array_length=None, file_size=None, row_group_size=None,
|
||||
enable_dynamic_field=False, data_fields=[DataField.vec_field], float_vector=True, file_nums=1, force=False, include_meta=True, sparse_format="doc"):
|
||||
enable_dynamic_field=False, data_fields=[DataField.vec_field], float_vector=True, file_nums=1, force=False, include_meta=True, sparse_format="doc", **kwargs):
|
||||
"""
|
||||
Generate column based files based on params in parquet format and copy them to the minio
|
||||
Note: each field in data_fields would be generated one parquet file.
|
||||
|
@ -1002,7 +1036,7 @@ def prepare_bulk_insert_parquet_files(minio_endpoint="", bucket_name="milvus-buc
|
|||
"""
|
||||
files = gen_parquet_files(rows=rows, dim=dim, float_vector=float_vector, enable_dynamic_field=enable_dynamic_field,
|
||||
data_fields=data_fields, array_length=array_length, file_size=file_size, row_group_size=row_group_size,
|
||||
file_nums=file_nums, include_meta=include_meta, sparse_format=sparse_format)
|
||||
file_nums=file_nums, include_meta=include_meta, sparse_format=sparse_format, **kwargs)
|
||||
copy_files_to_minio(host=minio_endpoint, r_source=data_source, files=files, bucket_name=bucket_name, force=force)
|
||||
return files
|
||||
|
||||
|
|
|
@ -849,13 +849,15 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
cf.gen_array_field(name=df.array_string_field, element_type=DataType.VARCHAR, max_length=100),
|
||||
cf.gen_array_field(name=df.array_bool_field, element_type=DataType.BOOL),
|
||||
cf.gen_float_vec_field(name=df.float_vec_field, dim=dim),
|
||||
# cf.gen_float_vec_field(name=df.image_float_vec_field, dim=dim),
|
||||
# cf.gen_float_vec_field(name=df.text_float_vec_field, dim=dim),
|
||||
cf.gen_binary_vec_field(name=df.binary_vec_field, dim=dim),
|
||||
cf.gen_bfloat16_vec_field(name=df.bf16_vec_field, dim=dim),
|
||||
cf.gen_float16_vec_field(name=df.fp16_vec_field, dim=dim)
|
||||
]
|
||||
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
|
||||
files = prepare_bulk_insert_new_json_files(
|
||||
minio_endpoint=self.minio_endpoint,
|
||||
bucket_name=self.bucket_name,
|
||||
|
@ -864,10 +866,8 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
data_fields=data_fields,
|
||||
enable_dynamic_field=enable_dynamic_field,
|
||||
force=True,
|
||||
schema=schema
|
||||
)
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
self.collection_wrap.init_collection(c_name, schema=schema)
|
||||
|
||||
# import data
|
||||
|
@ -988,6 +988,10 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
cf.gen_float16_vec_field(name=df.fp16_vec_field, dim=dim)
|
||||
]
|
||||
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
|
||||
files = prepare_bulk_insert_numpy_files(
|
||||
minio_endpoint=self.minio_endpoint,
|
||||
bucket_name=self.bucket_name,
|
||||
|
@ -997,11 +1001,8 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
enable_dynamic_field=enable_dynamic_field,
|
||||
force=True,
|
||||
include_meta=include_meta,
|
||||
|
||||
schema=schema
|
||||
)
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
self.collection_wrap.init_collection(c_name, schema=schema)
|
||||
|
||||
# import data
|
||||
|
@ -1089,8 +1090,6 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
if enable_partition_key:
|
||||
assert len(self.collection_wrap.partitions) > 1
|
||||
|
||||
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
|
@ -1125,6 +1124,9 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
cf.gen_float16_vec_field(name=df.fp16_vec_field, dim=dim)
|
||||
]
|
||||
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
files = prepare_bulk_insert_parquet_files(
|
||||
minio_endpoint=self.minio_endpoint,
|
||||
bucket_name=self.bucket_name,
|
||||
|
@ -1134,12 +1136,9 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
enable_dynamic_field=enable_dynamic_field,
|
||||
force=True,
|
||||
include_meta=include_meta,
|
||||
schema=schema,
|
||||
)
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
self.collection_wrap.init_collection(c_name, schema=schema)
|
||||
|
||||
# import data
|
||||
t0 = time.time()
|
||||
task_id, _ = self.utility_wrap.do_bulk_insert(
|
||||
|
@ -1224,7 +1223,7 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
assert len(res) == len(query_data)
|
||||
if enable_partition_key:
|
||||
assert len(self.collection_wrap.partitions) > 1
|
||||
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L3)
|
||||
@pytest.mark.parametrize("auto_id", [True, False])
|
||||
@pytest.mark.parametrize("dim", [128]) # 128
|
||||
|
@ -1257,6 +1256,9 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
cf.gen_sparse_vec_field(name=df.sparse_vec_field),
|
||||
]
|
||||
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
files = prepare_bulk_insert_parquet_files(
|
||||
minio_endpoint=self.minio_endpoint,
|
||||
bucket_name=self.bucket_name,
|
||||
|
@ -1266,11 +1268,10 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
enable_dynamic_field=enable_dynamic_field,
|
||||
force=True,
|
||||
include_meta=include_meta,
|
||||
sparse_format=sparse_format
|
||||
sparse_format=sparse_format,
|
||||
schema=schema
|
||||
)
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
|
||||
self.collection_wrap.init_collection(c_name, schema=schema)
|
||||
|
||||
# import data
|
||||
|
@ -1378,6 +1379,9 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
cf.gen_sparse_vec_field(name=df.sparse_vec_field),
|
||||
]
|
||||
data_fields = [f.name for f in fields if not f.to_dict().get("auto_id", False)]
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
files = prepare_bulk_insert_new_json_files(
|
||||
minio_endpoint=self.minio_endpoint,
|
||||
bucket_name=self.bucket_name,
|
||||
|
@ -1387,11 +1391,9 @@ class TestBulkInsert(TestcaseBaseBulkInsert):
|
|||
enable_dynamic_field=enable_dynamic_field,
|
||||
force=True,
|
||||
include_meta=include_meta,
|
||||
sparse_format=sparse_format
|
||||
sparse_format=sparse_format,
|
||||
schema=schema
|
||||
)
|
||||
self._connect()
|
||||
c_name = cf.gen_unique_str("bulk_insert")
|
||||
schema = cf.gen_collection_schema(fields=fields, auto_id=auto_id, enable_dynamic_field=enable_dynamic_field)
|
||||
self.collection_wrap.init_collection(c_name, schema=schema)
|
||||
|
||||
# import data
|
||||
|
|
Loading…
Reference in New Issue