mirror of https://github.com/milvus-io/milvus.git
parent
8c030e3a32
commit
0420a8beb0
|
@ -6,6 +6,7 @@
|
|||
**/docker-compose.yml
|
||||
.idea
|
||||
*.html
|
||||
*.hdf5
|
||||
|
||||
.python-version
|
||||
__pycache__
|
||||
|
|
|
@ -0,0 +1,18 @@
|
|||
#!/bin/bash
|
||||
# refer to https://github.com/yahoojapan/gongt/blob/master/assets/bench/download.sh
|
||||
|
||||
function check () {
|
||||
if [ ! -e $1 ]; then
|
||||
curl -LO $2
|
||||
fi
|
||||
# md5sum -c $1.md5
|
||||
}
|
||||
|
||||
check fashion-mnist-784-euclidean.hdf5 http://vectors.erikbern.com/fashion-mnist-784-euclidean.hdf5
|
||||
check glove-25-angular.hdf5 http://vectors.erikbern.com/glove-25-angular.hdf5
|
||||
check glove-50-angular.hdf5 http://vectors.erikbern.com/glove-50-angular.hdf5
|
||||
check glove-100-angular.hdf5 http://vectors.erikbern.com/glove-100-angular.hdf5
|
||||
check glove-200-angular.hdf5 http://vectors.erikbern.com/glove-200-angular.hdf5
|
||||
check mnist-784-euclidean.hdf5 http://vectors.erikbern.com/mnist-784-euclidean.hdf5
|
||||
check nytimes-256-angular.hdf5 http://vectors.erikbern.com/nytimes-256-angular.hdf5
|
||||
check sift-128-euclidean.hdf5 http://vectors.erikbern.com/sift-128-euclidean.hdf5
|
|
@ -0,0 +1,130 @@
|
|||
import h5py
|
||||
import numpy as np
|
||||
import time
|
||||
from pathlib import Path
|
||||
from pymilvus import (
|
||||
connections,
|
||||
FieldSchema, CollectionSchema, DataType,
|
||||
Collection
|
||||
)
|
||||
|
||||
|
||||
def read_benchmark_hdf5(file_path):
|
||||
|
||||
f = h5py.File(file_path, 'r')
|
||||
train = np.array(f["train"])
|
||||
test = np.array(f["test"])
|
||||
neighbors = np.array(f["neighbors"])
|
||||
f.close()
|
||||
return train, test, neighbors
|
||||
|
||||
|
||||
dim = 128
|
||||
TIMEOUT = 100
|
||||
|
||||
|
||||
def milvus_recall_test(host='127.0.0.1'):
|
||||
file_path = f"{str(Path(__file__).absolute().parent.parent.parent)}/assets/ann_hdf5/sift-128-euclidean.hdf5"
|
||||
train, test, neighbors = read_benchmark_hdf5(file_path)
|
||||
connections.connect(host=host, port="19530")
|
||||
default_fields = [
|
||||
FieldSchema(name="int64", dtype=DataType.INT64, is_primary=True),
|
||||
FieldSchema(name="float", dtype=DataType.FLOAT),
|
||||
FieldSchema(name="varchar", dtype=DataType.VARCHAR, max_length=65535),
|
||||
FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
|
||||
]
|
||||
default_schema = CollectionSchema(
|
||||
fields=default_fields, description="test collection")
|
||||
collection = Collection(name="sift_128_euclidean", schema=default_schema)
|
||||
nb = len(train)
|
||||
batch_size = 50000
|
||||
epoch = int(nb / batch_size)
|
||||
t0 = time.time()
|
||||
for i in range(epoch):
|
||||
print("epoch:", i)
|
||||
start = i * batch_size
|
||||
end = (i + 1) * batch_size
|
||||
if end > nb:
|
||||
end = nb
|
||||
data = [
|
||||
[i for i in range(start, end)],
|
||||
[np.float32(i) for i in range(start, end)],
|
||||
[str(i) for i in range(start, end)],
|
||||
train[start:end]
|
||||
]
|
||||
collection.insert(data)
|
||||
t1 = time.time()
|
||||
print(f"\nInsert {nb} vectors cost {t1 - t0:.4f} seconds")
|
||||
|
||||
t0 = time.time()
|
||||
print(f"\nGet collection entities...")
|
||||
print(collection.num_entities)
|
||||
t1 = time.time()
|
||||
print(f"\nGet collection entities cost {t1 - t0:.4f} seconds")
|
||||
|
||||
# create index
|
||||
default_index = {"index_type": "IVF_SQ8",
|
||||
"metric_type": "L2", "params": {"nlist": 64}}
|
||||
print(f"\nCreate index...")
|
||||
t0 = time.time()
|
||||
collection.create_index(field_name="float_vector",
|
||||
index_params=default_index)
|
||||
t1 = time.time()
|
||||
print(f"\nCreate index cost {t1 - t0:.4f} seconds")
|
||||
|
||||
# load collection
|
||||
replica_number = 1
|
||||
print(f"\nload collection...")
|
||||
t0 = time.time()
|
||||
collection.load(replica_number=replica_number)
|
||||
t1 = time.time()
|
||||
print(f"\nload collection cost {t1 - t0:.4f} seconds")
|
||||
|
||||
# search
|
||||
topK = 100
|
||||
nq = 10000
|
||||
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
|
||||
t0 = time.time()
|
||||
print(f"\nSearch...")
|
||||
# define output_fields of search result
|
||||
res = collection.search(
|
||||
test[:nq], "float_vector", search_params, topK, output_fields=["int64"], timeout=TIMEOUT
|
||||
)
|
||||
t1 = time.time()
|
||||
print(f"search cost {t1 - t0:.4f} seconds")
|
||||
result_ids = []
|
||||
for hits in res:
|
||||
result_id = []
|
||||
for hit in hits:
|
||||
result_id.append(hit.entity.get("int64"))
|
||||
result_ids.append(result_id)
|
||||
|
||||
# calculate recall
|
||||
true_ids = neighbors[:nq, :topK]
|
||||
sum_radio = 0.0
|
||||
for index, item in enumerate(result_ids):
|
||||
# tmp = set(item).intersection(set(flat_id_list[index]))
|
||||
assert len(item) == len(true_ids[index])
|
||||
tmp = set(true_ids[index]).intersection(set(item))
|
||||
sum_radio = sum_radio + len(tmp) / len(item)
|
||||
recall = round(sum_radio / len(result_ids), 3)
|
||||
assert recall >= 0.95
|
||||
print(f"recall={recall}")
|
||||
|
||||
# query
|
||||
expr = "int64 in [2,4,6,8]"
|
||||
output_fields = ["int64", "float"]
|
||||
res = collection.query(expr, output_fields, timeout=TIMEOUT)
|
||||
sorted_res = sorted(res, key=lambda k: k['int64'])
|
||||
for r in sorted_res:
|
||||
print(r)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='config for recall test')
|
||||
parser.add_argument('--host', type=str,
|
||||
default="127.0.0.1", help='milvus server ip')
|
||||
args = parser.parse_args()
|
||||
host = args.host
|
||||
milvus_recall_test(host)
|
|
@ -0,0 +1,64 @@
|
|||
import h5py
|
||||
import numpy as np
|
||||
import time
|
||||
from pathlib import Path
|
||||
from pymilvus import connections, Collection
|
||||
|
||||
|
||||
def read_benchmark_hdf5(file_path):
|
||||
|
||||
f = h5py.File(file_path, 'r')
|
||||
train = np.array(f["train"])
|
||||
test = np.array(f["test"])
|
||||
neighbors = np.array(f["neighbors"])
|
||||
f.close()
|
||||
return train, test, neighbors
|
||||
|
||||
|
||||
dim = 128
|
||||
TIMEOUT = 100
|
||||
|
||||
|
||||
def search_test(host="127.0.0.1"):
|
||||
file_path = f"{str(Path(__file__).absolute().parent.parent.parent)}/assets/ann_hdf5/sift-128-euclidean.hdf5"
|
||||
train, test, neighbors = read_benchmark_hdf5(file_path)
|
||||
connections.connect(host=host, port="19530")
|
||||
collection = Collection(name="sift_128_euclidean")
|
||||
nq = 10000
|
||||
topK = 100
|
||||
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
|
||||
t0 = time.time()
|
||||
print(f"\nSearch...")
|
||||
# define output_fields of search result
|
||||
res = collection.search(
|
||||
test[:nq], "float_vector", search_params, topK, output_fields=["int64"], timeout=TIMEOUT
|
||||
)
|
||||
t1 = time.time()
|
||||
print(f"search cost {t1 - t0:.4f} seconds")
|
||||
result_ids = []
|
||||
for hits in res:
|
||||
result_id = []
|
||||
for hit in hits:
|
||||
result_id.append(hit.entity.get("int64"))
|
||||
result_ids.append(result_id)
|
||||
|
||||
# calculate recall
|
||||
true_ids = neighbors[:nq,:topK]
|
||||
sum_radio = 0.0
|
||||
for index, item in enumerate(result_ids):
|
||||
# tmp = set(item).intersection(set(flat_id_list[index]))
|
||||
assert len(item) == len(true_ids[index])
|
||||
tmp = set(true_ids[index]).intersection(set(item))
|
||||
sum_radio = sum_radio + len(tmp) / len(item)
|
||||
recall = round(sum_radio / len(result_ids), 3)
|
||||
assert recall >= 0.95
|
||||
print(f"recall={recall}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='config for recall test')
|
||||
parser.add_argument('--host', type=str, default="127.0.0.1", help='milvus server ip')
|
||||
args = parser.parse_args()
|
||||
host = args.host
|
||||
search_test(host)
|
|
@ -33,3 +33,6 @@ protobuf==3.17.1
|
|||
|
||||
# for bulk load test
|
||||
minio==7.1.5
|
||||
|
||||
# for benchmark
|
||||
h5py==3.1.0
|
Loading…
Reference in New Issue