milvus/tests/python_client/testcases/test_compaction.py

1272 lines
52 KiB
Python
Raw Normal View History

import threading
from time import time, sleep
import pytest
from pymilvus.grpc_gen.common_pb2 import SegmentState
from pymilvus.exceptions import MilvusException
from base.client_base import TestcaseBase
from common import common_func as cf
from common import common_type as ct
from common.common_type import CaseLabel, CheckTasks
from utils.util_log import test_log as log
prefix = "compact"
tmp_nb = 100
class TestCompactionParams(TestcaseBase):
@pytest.mark.tags(CaseLabel.L2)
def test_compact_without_connection(self):
"""
target: test compact without connection
method: compact after remove connection
expected: raise exception
"""
# init collection with tmp_nb default data
collection_w = self.init_collection_general(prefix, nb=tmp_nb, insert_data=True)[0]
# remove connection and delete
self.connection_wrap.remove_connection(ct.default_alias)
res_list, _ = self.connection_wrap.list_connections()
assert ct.default_alias not in res_list
error = {ct.err_code: 0, ct.err_msg: "should create connect first"}
collection_w.compact(check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_compact_twice(self):
"""
target: test compact twice
method: 1.create with shard_num=1
2.insert and flush twice (two segments)
3.compact
4.insert new data
5.compact
expected: Merge into one segment
"""
# init collection with one shard, insert into two segments
pytest.skip("DataCoord: for A, B -> C, will not compact segment C before A, B GCed, no method to check whether a segment is GCed")
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=tmp_nb)
# first compact two segments
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans1 = collection_w.get_compaction_plans()[0]
target_1 = c_plans1.plans[0].target
# insert new data
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
log.debug(collection_w.num_entities)
# second compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_state()
c_plans2 = collection_w.get_compaction_plans()[0]
assert target_1 in c_plans2.plans[0].sources
log.debug(c_plans2.plans[0].target)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/20747")
def test_compact_partition(self):
"""
target: test compact partition
method: compact partition
expected: Verify partition segments merged
"""
# create collection with shard_num=1, and create partition
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
partition_w = self.init_partition_wrap(collection_wrap=collection_w)
# insert flush twice
for i in range(2):
df = cf.gen_default_dataframe_data(tmp_nb)
partition_w.insert(df)
assert partition_w.num_entities == tmp_nb * (i + 1)
# create index
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
assert len(c_plans.plans) == 1
assert len(c_plans.plans[0].sources) == 2
target = c_plans.plans[0].target
# verify queryNode load the compacted segments
cost = 180
start = time()
while time() - start < cost:
collection_w.load()
segment_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
if len(segment_info) == 1:
break
sleep(1.0)
assert target == segment_info[0].segmentID
@pytest.mark.tags(CaseLabel.L2)
def test_compact_only_growing_segment(self):
"""
target: test compact growing data
method: 1.insert into multi segments without flush
2.compact
expected: No compaction (compact just for sealed data)
"""
# create and insert without flush
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
# compact when only growing segment
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
assert len(c_plans.plans) == 0
@pytest.mark.tags(CaseLabel.L2)
def test_compact_empty_collection(self):
"""
target: test compact an empty collection
method: compact an empty collection
expected: No exception
"""
# init collection and empty
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
# compact
collection_w.compact()
c_plans, _ = collection_w.get_compaction_plans()
assert len(c_plans.plans) == 0
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("delete_pos", [1, tmp_nb // 2])
def test_compact_after_delete(self, delete_pos):
"""
target: test delete one entity and compact
method: 1.create with shard_num=1
2.delete one sealed entity, half entities
2.compact
expected: Verify compact result
"""
# create, insert without flush
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data(tmp_nb)
insert_res, _ = collection_w.insert(df)
# delete single entity, flush
single_expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:delete_pos]}'
collection_w.delete(single_expr)
collection_w.flush()
# compact, get plan
sleep(ct.compact_retention_duration + 1)
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_delete_compact)
collection_w.load()
collection_w.query(single_expr, check_items=CheckTasks.check_query_empty)
res = df.iloc[-1:, :1].to_dict('records')
collection_w.query(f'{ct.default_int64_field_name} in {insert_res.primary_keys[-1:]}',
check_items={'exp_res': res})
@pytest.mark.tags(CaseLabel.L3)
def test_compact_after_delete_index(self):
"""
target: test compact after delete and create index
method: 1.create with 1 shard and insert nb entities (ensure can be index)
2.delete some entities and flush (ensure generate delta log)
3.create index
4.compact outside retentionDuration
5.load and search
expected: Empty search result
"""
# create, insert without flush
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data()
insert_res, _ = collection_w.insert(df)
# delete and flush
expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:ct.default_nb // 2]}'
collection_w.delete(expr)
assert collection_w.num_entities == ct.default_nb
# build index
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# compact, get plan
sleep(ct.compact_retention_duration + 1)
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_delete_compact)
collection_w.load()
res, _ = collection_w.search(df[ct.default_float_vec_field_name][:1].to_list(),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit)
assert len(res[0]) == ct.default_limit
@pytest.mark.tags(CaseLabel.L2)
def test_compact_delete_ratio(self):
"""
target: test delete entities reaches ratio and auto-compact
method: 1.create with shard_num=1
2.insert (compact load delta log, not from dmlChannel)
3.delete 20% of nb, flush
expected: Verify auto compaction, merge insert log and delta log
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data(tmp_nb)
insert_res, _ = collection_w.insert(df)
collection_w.create_index(ct.default_float_vec_field_name, index_params=ct.default_flat_index)
# delete 20% entities
ratio_expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:tmp_nb // ct.compact_delta_ratio_reciprocal]}'
collection_w.delete(ratio_expr)
collection_w.flush()
# Flush a new segment and meet condition 20% deleted entities, triggre compaction but no way to get plan
collection_w.insert(cf.gen_default_dataframe_data(1, start=tmp_nb))
exp_num_entities_after_compact = tmp_nb - (tmp_nb // ct.compact_delta_ratio_reciprocal) + 1
start = time()
while True:
if collection_w.num_entities == exp_num_entities_after_compact:
break
if time() - start > 180:
raise MilvusException(1, "Auto delete ratio compaction cost more than 180s")
sleep(1)
collection_w.load()
collection_w.query(ratio_expr, check_items=CheckTasks.check_query_empty)
res = df.iloc[-1:, :1].to_dict('records')
collection_w.query(f'{ct.default_int64_field_name} in {insert_res.primary_keys[-1:]}',
check_items={'exp_res': res})
@pytest.mark.tags(CaseLabel.L2)
def test_compact_delete_less_ratio(self):
"""
target: test delete entities less ratio and no compact
method: 1.create collection shard_num=1
2.insert without flush
3.delete 10% entities and flush
expected: Verify no compact (can't), delete successfully
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data(tmp_nb)
insert_res, _ = collection_w.insert(df)
# delete 10% entities, ratio = 0.1
less_ratio_reciprocal = 10
ratio_expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:tmp_nb // less_ratio_reciprocal]}'
collection_w.delete(ratio_expr)
assert collection_w.num_entities == tmp_nb
collection_w.create_index(ct.default_float_vec_field_name, index_params=ct.default_flat_index)
collection_w.load()
collection_w.query(ratio_expr, check_task=CheckTasks.check_query_empty)
@pytest.mark.tags(CaseLabel.L3)
def test_compact_after_delete_all(self):
"""
target: test delete all and compact
method: 1.create with shard_num=1
2.delete all sealed data
3.compact
expected: Get compaction plan
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data()
res, _ = collection_w.insert(df)
expr = f'{ct.default_int64_field_name} in {res.primary_keys}'
collection_w.delete(expr)
assert collection_w.num_entities == ct.default_nb
# currently no way to verify whether it is compact after delete,
# because the merge compact plan is generate first
sleep(ct.compact_retention_duration + 1)
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_delete_compact)
collection_w.create_index(ct.default_float_vec_field_name, index_params=ct.default_flat_index)
collection_w.load()
collection_w.query(expr, check_items=CheckTasks.check_query_empty)
@pytest.mark.tags(CaseLabel.L2)
def test_compact_after_delete(self):
"""
target: test delete and then compact
method: 1. create a collection and insert data
2. delete all data and compact
3. load query and release
expected: can't find the deleted data
"""
nb = 50000
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
df = cf.gen_default_dataframe_data(nb=nb)
res, _ = collection_w.insert(df)
assert collection_w.num_entities == nb
expr = f'{ct.default_int64_field_name} in {res.primary_keys}'
collection_w.create_index(ct.default_float_vec_field_name, index_params=ct.default_flat_index)
collection_w.delete(expr)
assert collection_w.num_entities == nb
collection_w.compact()
collection_w.wait_for_compaction_completed()
# collection_w.get_compaction_plans(check_task=CheckTasks.check_delete_compact)
collection_w.load()
res = collection_w.query(expr)[0]
assert len(res) == 0
collection_w.release()
sleep(30)
collection_w.load()
res = collection_w.query(expr)[0]
assert len(res) == 0
collection_w.release()
sleep(40)
collection_w.load()
res = collection_w.query(expr)[0]
assert len(res) == 0
collection_w.release()
sleep(60)
collection_w.load()
res = collection_w.query(expr)[0]
assert len(res) == 0
collection_w.release()
@pytest.mark.skip(reason="TODO")
@pytest.mark.tags(CaseLabel.L2)
def test_compact_delete_max_delete_size(self):
"""
target: test compact delta log reaches max delete size 10MiB
method: todo
expected: auto merge single segment
"""
pass
@pytest.mark.tags(CaseLabel.L1)
def test_compact_max_time_interval(self):
"""
target: test auto compact with max interval 60s
method: 1.create with shard_num=1
2.insert flush twice (two segments)
3.wait max_compaction_interval (60s)
expected: Verify compaction results
"""
# create collection shard_num=1, insert 2 segments, each with tmp_nb entities
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
collection_w.compact()
# Notice:The merge segments compaction triggered by max_compaction_interval also needs to meet
# the compaction_segment_ num_threshold
for i in range(ct.compact_segment_num_threshold):
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
assert collection_w.num_entities == tmp_nb * (i + 1)
sleep(ct.max_compaction_interval + 1)
# verify queryNode load the compacted segments
collection_w.load()
replicas = collection_w.get_replicas()[0]
replica_num = len(replicas.groups)
cost = 180
start = time()
while time() - start < cost:
sleep(1.0)
collection_w.load()
segment_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
if len(segment_info) == 1*replica_num:
break
if time() - start > cost:
raise MilvusException(1, f"Waiting more than {cost}s for the compacted segment indexed")
collection_w.release()
@pytest.mark.skip(reason="TODO")
@pytest.mark.tags(CaseLabel.L2)
def test_compact_delta_max_time_interval(self):
"""
target: test merge insert and delta log triggered by max_compaction_interval
method: todo
expected: auto compact binlogs
"""
pass
class TestCompactionOperation(TestcaseBase):
# @pytest.mark.xfail(reason="Issue https://github.com/milvus-io/milvus/issues/15665")
@pytest.mark.tags(CaseLabel.L3)
def test_compact_both_delete_merge(self):
"""
target: test compact both delete and merge
method: 1.create collection with shard_num=1
2.insert data into two segments
3.delete and flush (new insert)
4.compact
5.load and search
expected: Triggre two types compaction
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
ids = []
for i in range(2):
df = cf.gen_default_dataframe_data(tmp_nb, start=i * tmp_nb)
insert_res, _ = collection_w.insert(df)
assert collection_w.num_entities == (i + 1) * tmp_nb
ids.extend(insert_res.primary_keys)
# delete_ids = ids[:tmp_nb]
delete_ids = [0, tmp_nb // 2]
expr = f'{ct.default_int64_field_name} in {delete_ids}'
collection_w.delete(expr)
collection_w.insert(cf.gen_default_dataframe_data(1, start=2 * tmp_nb))
assert collection_w.num_entities == 2 * tmp_nb + 1
sleep(ct.compact_retention_duration + 1)
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
# assert len(c_plans.plans) == 2
# todo assert two types compaction plan
# search
ids.pop(0)
ids.pop(-1)
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit,
check_items={"nq": ct.default_nq,
"ids": ids,
"limit": ct.default_limit})
collection_w.query(f"{ct.default_int64_field_name} in {delete_ids}",
check_task=CheckTasks.check_query_empty)
@pytest.mark.tags(CaseLabel.L3)
def test_compact_delete_multi_segments(self):
"""
target: test compact multi delete segments
method: 1.create collection with shard_num=2
2.insert data into two segments
3.delete entities from two segments
4.compact
5.load and search
expected: Verify two delta compaction plans
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix))
df = cf.gen_default_dataframe_data(2*tmp_nb)
insert_res, _ = collection_w.insert(df)
assert collection_w.num_entities == 2 * tmp_nb
collection_w.load()
log.debug(self.utility_wrap.get_query_segment_info(collection_w.name))
delete_ids = [i for i in range(10)]
expr = f'{ct.default_int64_field_name} in {delete_ids}'
collection_w.delete(expr)
sleep(ct.compact_retention_duration + 1)
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
assert len(c_plans.plans) == 2
for plan in c_plans.plans:
assert len(plan.sources) == 1
collection_w.query(f"{ct.default_int64_field_name} in {delete_ids}",
check_task=CheckTasks.check_query_empty)
@pytest.mark.tags(CaseLabel.L2)
def test_compact_merge_multi_shards(self):
"""
target: test compact merge multi shards
method: 1.Create a collection with 2 shards
2.Insert twice and generate 4 segments
3.Compact and wait it completed
expected: Verify there are 2 merge type complation plans
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=2)
for i in range(2):
df = cf.gen_default_dataframe_data(2 * tmp_nb)
insert_res, _ = collection_w.insert(df)
log.debug(collection_w.num_entities)
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
collection_w.load()
log.debug(self.utility_wrap.get_query_segment_info(collection_w.name))
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
assert len(c_plans.plans) == 2
targets = []
for plan in c_plans.plans:
assert len(plan.sources) == 2
targets.append(plan.target)
collection_w.release()
collection_w.load()
seg_info, _ = self.utility_wrap.get_query_segment_info(collection_w.name)
for seg in seg_info:
seg.segmentID in targets
@pytest.mark.tags(CaseLabel.L1)
def test_compact_after_index(self):
"""
target: test compact after create index
method: 1.insert data into two segments
2.create index
3.compact
4.search
expected: Verify segment info and index info
"""
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=ct.default_nb,
is_dup=False)
# create index
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_merge_compact)
# search
collection_w.load()
self.utility_wrap.get_query_segment_info(collection_w.name)
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit)
assert len(search_res) == ct.default_nq
for hits in search_res:
assert len(hits) == ct.default_limit
@pytest.mark.tags(CaseLabel.L1)
def test_compact_after_binary_index(self):
"""
target: test compact after create index
method: 1.insert binary data into two segments
2.create binary index
3.compact
4.search
expected: Verify segment info and index info
"""
# create collection with 1 shard and insert 2 segments
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1,
schema=cf.gen_default_binary_collection_schema())
for i in range(2):
df, _ = cf.gen_default_binary_dataframe_data()
collection_w.insert(data=df)
assert collection_w.num_entities == (i + 1) * ct.default_nb
# create index
collection_w.create_index(ct.default_binary_vec_field_name, ct.default_binary_index)
log.debug(collection_w.index())
# load and search
collection_w.load()
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 32}}
search_res_one, _ = collection_w.search(df[ct.default_binary_vec_field_name][:ct.default_nq].to_list(),
ct.default_binary_vec_field_name, search_params, ct.default_limit)
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans(check_task=CheckTasks.check_merge_compact)[0]
# waiting for handoff completed and search
cost = 180
start = time()
while True:
sleep(1)
segment_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
if len(segment_info) != 0 and segment_info[0].segmentID == c_plans.plans[0].target:
log.debug(segment_info)
break
if time() - start > cost:
raise MilvusException(1, f"Handoff after compact and index cost more than {cost}s")
# verify search result
search_res_two, _ = collection_w.search(df[ct.default_binary_vec_field_name][:ct.default_nq].to_list(),
ct.default_binary_vec_field_name, search_params, ct.default_limit)
assert len(search_res_one) == ct.default_nq
for hits in search_res_one:
assert len(hits) == ct.default_limit
@pytest.mark.tags(CaseLabel.L1)
def test_compact_and_index(self):
"""
target: test compact and create index
method: 1.insert data into two segments
2.compact
3.create index
4.load and search
expected: Verify search result and index info
"""
pytest.skip("Compaction requires segment indexed")
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=ct.default_nb,
is_dup=False)
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_merge_compact)
# create index
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# search
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit)
assert len(search_res) == ct.default_nq
for hits in search_res:
assert len(hits) == ct.default_limit
@pytest.mark.tags(CaseLabel.L3)
def test_compact_delete_and_search(self):
"""
target: test delete and compact segment, and search
method: 1.create collection and insert
2.delete part entities
3.compact
4.load and search
expected: Verify search result
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data()
insert_res, _ = collection_w.insert(df)
expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:ct.default_nb // 2]}'
collection_w.delete(expr)
assert collection_w.num_entities == ct.default_nb
sleep(ct.compact_retention_duration + 1)
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_delete_compact)
# search
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"nq": ct.default_nq,
"ids": insert_res.primary_keys[ct.default_nb // 2:],
"limit": ct.default_limit}
)
collection_w.query("int64 in [0]", check_task=CheckTasks.check_query_empty)
@pytest.mark.tags(CaseLabel.L0)
def test_compact_merge_and_search(self):
"""
target: test compact and search
method: 1.insert data into two segments
2.compact
3.load and search
expected: Verify search result
"""
pytest.skip("Compaction requires segment indexed")
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=ct.default_nb,
is_dup=False)
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_merge_compact)
# search
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit)
assert len(search_res) == ct.default_nq
for hits in search_res:
assert len(hits) == ct.default_limit
@pytest.mark.tags(CaseLabel.L2)
def test_compact_search_after_delete_channel(self):
"""
target: test search after compact, and queryNode get delete request from channel,
rather than compacted delta log
method: 1.insert, flush and load
2.delete half
3.compact
4.search
expected: No compact, compact get delta log from storage
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data()
insert_res, _ = collection_w.insert(df)
assert collection_w.num_entities == ct.default_nb
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
collection_w.load()
expr = f'{ct.default_int64_field_name} in {insert_res.primary_keys[:ct.default_nb // 2]}'
collection_w.delete(expr)
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
assert len(c_plans.plans) == 1
# search
collection_w.load()
search_res, _ = collection_w.search(cf.gen_vectors(ct.default_nq, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"nq": ct.default_nq,
"ids": insert_res.primary_keys[ct.default_nb // 2:],
"limit": ct.default_limit}
)
@pytest.mark.tags(CaseLabel.L3)
def test_compact_repeatedly_delete_same_id(self):
"""
target: test compact after repeatedly delete same entity
method: 1.Create and insert entities
2.repeatedly delete the same id
3.compact
expected: No exception or delta log just delete one
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data()
insert_res, _ = collection_w.insert(df)
expr = f'{ct.default_int64_field_name} in [0]'
for _ in range(100):
collection_w.delete(expr=expr)
assert collection_w.num_entities == ct.default_nb
sleep(ct.compact_retention_duration + 1)
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_delete_compact)
collection_w.load()
collection_w.query(expr, check_task=CheckTasks.check_query_empty)
@pytest.mark.tags(CaseLabel.L0)
def test_compact_merge_two_segments(self):
"""
target: test compact merge two segments
method: 1.create with shard_num=1
2.insert and flush
3.insert and flush again
4.compact
5.load
expected: Verify segments are merged
"""
num_of_segment = 2
# create collection shard_num=1, insert 2 segments, each with tmp_nb entities
collection_w = self.collection_insert_multi_segments_one_shard(prefix, num_of_segment, tmp_nb)
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_merge_compact)
# verify the two segments are merged into one
c_plans = collection_w.get_compaction_plans()[0]
# verify queryNode load the compacted segments
collection_w.load()
start = time()
cost = 180
while True:
sleep(1)
segments_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
# verify segments reaches threshold, auto-merge ten segments into one
if len(segments_info) == 1:
break
end = time()
if end - start > cost:
raise MilvusException(1, "Compact merge two segments more than 180s")
assert c_plans.plans[0].target == segments_info[0].segmentID
@pytest.mark.tags(CaseLabel.L2)
def test_compact_no_merge(self):
"""
target: test compact when no segments merge
method: 1.create with shard_num=1
2.insert and flush
3.compact and search
expected: No exception and compact plans
"""
# create collection
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
assert collection_w.num_entities == tmp_nb
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
collection_w.load()
seg_before, _ = self.utility_wrap.get_query_segment_info(collection_w.name)
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans, _ = collection_w.get_compaction_plans()
assert len(c_plans.plans) == 1
assert [seg_before[0].segmentID] == c_plans.plans[0].sources
collection_w.release()
collection_w.load()
seg_after, _ = self.utility_wrap.get_query_segment_info(collection_w.name)
assert seg_after[0].segmentID == c_plans.plans[0].target
@pytest.mark.tags(CaseLabel.L1)
def test_compact_manual_and_auto(self):
"""
target: test compact manual and auto
method: 1.create with shard_num=1
2.insert one and flush (11 times)
3.compact
4.load and search
expected: Verify segments info
"""
# greater than auto-merge threshold 10
pytest.skip("DataCoord: for A, B -> C, will not compact segment C before A, B GCed, no method to check whether a segment is GCed")
num_of_segment = ct.compact_segment_num_threshold + 1
# create collection shard_num=1, insert 11 segments, each with one entity
collection_w = self.collection_insert_multi_segments_one_shard(prefix, num_of_segment=num_of_segment)
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# waiting for auto compaction finished
sleep(60)
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans, _ = collection_w.get_compaction_plans(check_task=CheckTasks.check_merge_compact, check_items={"segment_num": 2})
collection_w.load()
start = time()
cost = 180
while True:
sleep(1)
segments_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
# verify segments reaches threshold, auto-merge ten segments into one
if len(segments_info) == 1:
break
end = time()
if end - start > cost:
raise MilvusException(1, "Compact auto and manual more than 180s")
assert segments_info[0].segmentID == c_plans.plans[0].target
@pytest.mark.tags(CaseLabel.L1)
def test_compact_merge_multi_segments(self):
"""
target: test compact and merge multi small segments
method: 1.create with shard_num=1
2.insert one and flush (less than threshold)
3.compact
4.load and search
expected: Verify segments info
"""
# less than auto-merge threshold 10
num_of_segment = ct.compact_segment_num_threshold - 1
# create collection shard_num=1, insert 11 segments, each with one entity
collection_w = self.collection_insert_multi_segments_one_shard(prefix, num_of_segment=num_of_segment)
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans(check_task=CheckTasks.check_merge_compact,
check_items={"segment_num": num_of_segment})[0]
target = c_plans.plans[0].target
collection_w.load()
cost = 180
start = time()
while True:
sleep(1)
segments_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
# verify segments reaches threshold, auto-merge ten segments into one
if len(segments_info) == 1:
break
end = time()
if end - start > cost:
raise MilvusException(1, "Compact merge multiple segments more than 180s")
replicas = collection_w.get_replicas()[0]
replica_num = len(replicas.groups)
assert len(segments_info) == 1*replica_num
assert segments_info[0].segmentID == target
@pytest.mark.tags(CaseLabel.L2)
def test_compact_threshold_auto_merge(self):
"""
target: test num (segment_size < 1/2Max) reaches auto-merge threshold 10
method: 1.create with shard_num=1
2.insert flush 10 times (merge threshold 10)
3.wait for compaction, load
expected: Get query segments info to verify segments auto-merged into one
"""
threshold = ct.compact_segment_num_threshold
# create collection shard_num=1, insert 10 segments, each with one entity
collection_w = self.collection_insert_multi_segments_one_shard(prefix, num_of_segment=threshold)
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# Estimated auto-merging takes 30s
cost = 180
collection_w.load()
replicas = collection_w.get_replicas()[0]
replica_num = len(replicas.groups)
start = time()
while True:
sleep(1)
segments_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
# verify segments reaches threshold, auto-merge ten segments into one
if len(segments_info) == 1*replica_num:
break
end = time()
if end - start > cost:
raise MilvusException(1, "Compact auto-merge more than 180s")
@pytest.mark.tags(CaseLabel.L2)
def test_compact_less_threshold_no_merge(self):
"""
target: test compact the num of segments that size less than 1/2Max, does not reach the threshold
method: 1.create collection with shard_num = 1
2.insert flush 9 times (segments threshold 10)
3.after a while, load
expected: Verify segments are not merged
"""
less_threshold = ct.compact_segment_num_threshold - 1
# create collection shard_num=1, insert 9 segments, each with one entity
collection_w = self.collection_insert_multi_segments_one_shard(prefix, num_of_segment=less_threshold)
# create index
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
# load and verify no auto-merge
collection_w.load()
replicas = collection_w.get_replicas()[0]
replica_num = len(replicas.groups)
segments_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
assert len(segments_info) == less_threshold*replica_num
@pytest.mark.skip(reason="Todo")
@pytest.mark.tags(CaseLabel.L2)
def test_compact_multi_collections(self):
"""
target: test compact multi collections with merge
method: create 50 collections, add entities into them and compact in turn
expected: No exception
"""
pass
@pytest.mark.tags(CaseLabel.L1)
def test_compact_and_insert(self):
"""
target: test insert after compact
method: 1.create and insert with flush
2.delete and compact
3.insert new data
4.load and search
expected: Verify search result and segment info
"""
# create collection shard_num=1, insert 2 segments, each with tmp_nb entities
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=tmp_nb)
# compact two segments
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
# insert new data, verify insert flush successfully
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
assert collection_w.num_entities == tmp_nb * 3
@pytest.mark.tags(CaseLabel.L1)
def test_compact_and_delete(self):
"""
target: test delete after compact
method: 1.delete half and compact
2.load and query
3.delete and query
expected: Verify deleted ids
"""
# init collection with one shard, insert into two segments
collection_w = self.collection_insert_multi_segments_one_shard(prefix, is_dup=False)
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# compact and complete
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_merge_compact)
# delete and query
expr = f'{ct.default_int64_field_name} in {[0]}'
collection_w.delete(expr)
collection_w.load()
collection_w.query(expr, check_task=CheckTasks.check_query_empty)
expr_1 = f'{ct.default_int64_field_name} in {[1]}'
collection_w.query(expr_1, check_task=CheckTasks.check_query_results, check_items={
'exp_res': [{'int64': 1}]})
@pytest.mark.tags(CaseLabel.L1)
def test_compact_cross_shards(self):
"""
target: test compact cross shards
method: 1.create with shard_num=2
2.insert once and flush (two segments, belonging to two shards)
3.compact and completed
expected: Verify compact plan sources only one segment
"""
# insert into two segments with two shard
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=2)
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
assert collection_w.num_entities == tmp_nb
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
# Actually no merged
assert len(c_plans.plans) == 2
for plan in c_plans.plans:
assert len(plan.sources) == 1
@pytest.mark.tags(CaseLabel.L3)
def test_compact_delete_cross_shards(self):
"""
target: test delete compact cross different shards
method: 1.create with 2 shards
2.insert entities into 2 segments
3.delete one entity from each segment
4.call compact and get compact plan
expected: Generate compaction plan for each segment
"""
shards_num = 2
# insert into two segments with two shard
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=shards_num)
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
expr = f"{ct.default_int64_field_name} in [0, 99]"
collection_w.delete(expr)
assert collection_w.num_entities == tmp_nb
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# compact
sleep(ct.compact_retention_duration + 1)
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_delete_compact,
check_items={"plans_num": shards_num})
@pytest.mark.tags(CaseLabel.L1)
def test_compact_cross_partition(self):
"""
target: test compact cross partitions
method: 1.create with shard_num=1
2.create partition and insert, flush
3.insert _default partition and flush
4.compact
expected: Verify two independent compaction plans
"""
# create collection and partition
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), shards_num=1)
partition_w = self.init_partition_wrap(collection_wrap=collection_w)
# insert
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
assert collection_w.num_entities == tmp_nb
partition_w.insert(df)
assert collection_w.num_entities == tmp_nb * 2
# compaction only applied to indexed segments.
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
# compact
collection_w.compact()
collection_w.wait_for_compaction_completed()
c_plans = collection_w.get_compaction_plans()[0]
# since manual compaction, segment should be compacted any way
assert len(c_plans.plans) == 2
for plan in c_plans.plans:
assert len(plan.sources) == 1
@pytest.mark.tags(CaseLabel.L1)
def test_compact_during_insert(self):
"""
target: test compact during insert and flush
method: 1.insert entities into multi segments
2.start a thread to load and search
3.compact collection
expected: Search and compact both successfully
"""
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=ct.default_nb,
is_dup=False)
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
log.debug(collection_w.index())
df = cf.gen_default_dataframe_data(start=ct.default_nb*2)
def do_flush():
collection_w.insert(df)
log.debug(collection_w.num_entities)
# compact during insert
t = threading.Thread(target=do_flush, args=())
t.start()
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
t.join()
# waitting for new segment index and compact
index_cost = 240
start = time()
while True:
sleep(10)
collection_w.load()
# new segment compacted
seg_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
if len(seg_info) == 2:
break
end = time()
collection_w.release()
if end - start > index_cost:
raise MilvusException(1, f"Waiting more than {index_cost}s for the new segment indexed")
# compact new segment
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans()
# waitting for new segment index and compact
compact_cost = 180
start = time()
while True:
sleep(1)
collection_w.load()
# new segment compacted
seg_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
if len(seg_info) == 1:
break
end = time()
collection_w.release()
if end - start > compact_cost:
raise MilvusException(1, f"Waiting more than {compact_cost}s for the new target segment to load")
# search
search_res, _ = collection_w.search([df[ct.default_float_vec_field_name][0]],
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit)
assert len(search_res[0]) == ct.default_limit
@pytest.mark.tags(CaseLabel.L2)
def test_compact_during_index(self):
"""
target: test compact during index
method: while compact collection start a thread to create index
expected: No exception
"""
collection_w = self.collection_insert_multi_segments_one_shard(prefix, nb_of_segment=ct.default_nb,
is_dup=False)
def do_index():
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
assert collection_w.index()[0].params == ct.default_index
# compact during index
t = threading.Thread(target=do_index, args=())
t.start()
collection_w.compact()
collection_w.wait_for_compaction_completed(timeout=180)
collection_w.get_compaction_plans()
t.join()
collection_w.load()
replicas = collection_w.get_replicas()[0]
replica_num = len(replicas.groups)
seg_info = self.utility_wrap.get_query_segment_info(collection_w.name)[0]
if not (len(seg_info) == 1*replica_num or len(seg_info) == 2*replica_num):
assert False
@pytest.mark.tags(CaseLabel.L2)
def test_compact_during_search(self):
"""
target: test compact during search
method: while compact collection start a thread to search
expected: No exception
"""
# less than auto-merge threshold 10
num_of_segment = ct.compact_segment_num_threshold - 1
# create collection shard_num=1, insert 11 segments, each with one entity
collection_w = self.collection_insert_multi_segments_one_shard(prefix,
num_of_segment=num_of_segment,
nb_of_segment=100)
def do_search():
for _ in range(5):
search_res, _ = collection_w.search(cf.gen_vectors(1, ct.default_dim),
ct.default_float_vec_field_name,
ct.default_search_params, ct.default_limit)
assert len(search_res[0]) == ct.default_limit
# compact during search
collection_w.create_index(ct.default_float_vec_field_name, ct.default_index)
collection_w.load()
t = threading.Thread(target=do_search, args=())
t.start()
collection_w.compact()
collection_w.wait_for_compaction_completed()
collection_w.get_compaction_plans(check_task=CheckTasks.check_merge_compact,
check_items={"segment_num": num_of_segment})
t.join()