milvus/README.md

201 lines
6.0 KiB
Markdown
Raw Normal View History

![Milvuslogo](https://github.com/milvus-io/docs/blob/master/assets/milvus_logo.png)
![LICENSE](https://img.shields.io/badge/license-Apache--2.0-brightgreen)
![Language](https://img.shields.io/badge/language-C%2B%2B-blue)
[![codebeat badge](https://codebeat.co/badges/e030a4f6-b126-4475-a938-4723d54ec3a7?style=plastic)](https://codebeat.co/projects/github-com-jinhai-cn-milvus-master)
- [Slack Community](https://join.slack.com/t/milvusio/shared_invite/enQtNzY1OTQ0NDI3NjMzLWNmYmM1NmNjOTQ5MGI5NDhhYmRhMGU5M2NhNzhhMDMzY2MzNDdlYjM5ODQ5MmE3ODFlYzU3YjJkNmVlNDQ2ZTk)
- [Twitter](https://twitter.com/milvusio)
- [Facebook](https://www.facebook.com/io.milvus.5)
- [Blog](https://www.milvus.io/blog/)
- [CSDN](https://zilliz.blog.csdn.net/)
- [中文官网](https://www.milvus.io/zh-CN/)
# Welcome to Milvus
## What is Milvus
Milvus is an open source similarity search engine for massive feature vectors. Designed with heterogeneous computing architecture for the best cost efficiency. Searches over billion-scale vectors take only milliseconds with minimum computing resources.
Milvus provides stable Python, Java and C++ APIs.
Keep up-to-date with newest releases and latest updates by reading Milvus [release notes](https://milvus.io/docs/en/releases/v0.5.0/).
- Heterogeneous computing
Milvus is designed with heterogeneous computing architecture for the best performance and cost efficiency.
- Multiple indexes
Milvus supports a variety of indexing types that employs quantization, tree-based, and graph indexing techniques.
- Intelligent resource management
Milvus automatically adapts search computation and index building processes based on your datasets and available resources.
- Horizontal scalability
Milvus supports online / offline expansion to scale both storage and computation resources with simple commands.
- High availability
Milvus is integrated with Kubernetes framework so that all single point of failures could be avoided.
- High compatibility
Milvus is compatible with almost all deep learning models and major programming languages such as Python, Java and C++, etc.
- Ease of use
Milvus can be easily installed in a few steps and enables you to exclusively focus on feature vectors.
- Visualized monitor
You can track system performance on Prometheus-based GUI monitor dashboards.
## Architecture
![Milvus_arch](https://github.com/milvus-io/docs/blob/master/assets/milvus_arch.png)
## Get started
### Hardware Requirements
| Component | Recommended configuration |
| --------- | ----------------------------------- |
| CPU | Intel CPU Haswell or higher |
| GPU | NVIDIA Pascal series or higher |
| Memory | 8 GB or more (depends on data size) |
| Storage | SATA 3.0 SSD or higher |
### Install using docker
Use Docker to install Milvus is a breeze. See the [Milvus install guide](https://milvus.io/docs/en/userguide/install_milvus/) for details.
### Build from source
#### Software requirements
- Ubuntu 18.04 or higher
- CMake 3.14 or higher
- CUDA 10.0 or higher
- NVIDIA driver 418 or higher
#### Compilation
##### Step 1 Install dependencies
```shell
$ cd [Milvus sourcecode path]/core
./ubuntu_build_deps.sh
```
##### Step 2 Build
```shell
$ cd [Milvus sourcecode path]/core
$ ./build.sh -t Debug
or
$ ./build.sh -t Release
```
When the build is completed, all the stuff that you need in order to run Milvus will be installed under `[Milvus root path]/core/milvus`.
#### Launch Milvus server
```shell
$ cd [Milvus root path]/core/milvus
```
Add `lib/` directory to `LD_LIBRARY_PATH`
```
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/milvus/lib
```
Then start Milvus server:
```
$ cd scripts
$ ./start_server.sh
```
To stop Milvus server, run:
```shell
$ ./stop_server.sh
```
To edit Milvus settings in `conf/server_config.yaml` and `conf/log_config.conf`, please read [Milvus Configuration](https://github.com/milvus-io/docs/blob/master/reference/milvus_config.md).
### Try your first Milvus program
#### Run Python example code
Make sure [Python 3.5](https://www.python.org/downloads/) or higher is already installed and in use.
Install Milvus Python SDK.
```shell
# Install Milvus Python SDK
$ pip install pymilvus==0.2.3
```
Create a new file `example.py`, and add [Python example code](https://github.com/milvus-io/pymilvus/blob/master/examples/AdvancedExample.py) to it.
Run the example code.
```shell
# Run Milvus Python example
$ python3 example.py
```
#### Run C++ example code
```shell
# Run Milvus C++ example
$ cd [Milvus root path]/core/milvus/bin
$ ./sdk_simple
```
#### Run Java example code
Make sure Java 8 or higher is already installed.
Refer to [this link](https://github.com/milvus-io/milvus-sdk-java/tree/master/examples) for the example code.
## Contribution guidelines
Contributions are welcomed and greatly appreciated. If you want to contribute to Milvus, please read our [contribution guidelines](CONTRIBUTING.md). This project adheres to the [code of conduct](CODE_OF_CONDUCT.md) of Milvus. By participating, you are expected to uphold this code.
We use [GitHub issues](https://github.com/milvus-io/milvus/issues/new/choose) to track issues and bugs. For general questions and public discussions, please join our community.
## Join the Milvus community
To connect with other users and contributors, welcome to join our [slack channel](https://join.slack.com/t/milvusio/shared_invite/enQtNzY1OTQ0NDI3NjMzLWNmYmM1NmNjOTQ5MGI5NDhhYmRhMGU5M2NhNzhhMDMzY2MzNDdlYjM5ODQ5MmE3ODFlYzU3YjJkNmVlNDQ2ZTk).
## Milvus Roadmap
Please read our [roadmap](https://milvus.io/docs/en/roadmap/) to learn about upcoming features.
## Resources
[Milvus official website](https://www.milvus.io)
[Milvus docs](https://www.milvus.io/docs/en/userguide/install_milvus/)
[Milvus bootcamp](https://github.com/milvus-io/bootcamp)
[Milvus blog](https://www.milvus.io/blog/)
[Milvus CSDN](https://zilliz.blog.csdn.net/)
[Milvus roadmap](https://milvus.io/docs/en/roadmap/)
## License
[Apache 2.0 license](LICENSE)