mirror of https://github.com/milvus-io/milvus.git
102 lines
3.6 KiB
Python
102 lines
3.6 KiB
Python
|
from time import sleep
|
||
|
|
||
|
import pytest
|
||
|
import datetime
|
||
|
|
||
|
from pymilvus import connections
|
||
|
from base.collection_wrapper import ApiCollectionWrapper
|
||
|
from common.cus_resource_opts import CustomResourceOperations as CusResource
|
||
|
from common import common_func as cf
|
||
|
from common import common_type as ct
|
||
|
from chaos.chaos_commons import gen_experiment_config, get_chaos_yamls
|
||
|
from common.common_type import CaseLabel
|
||
|
from chaos import constants
|
||
|
from utils.util_log import test_log as log
|
||
|
|
||
|
|
||
|
def apply_memory_stress(chaos_yaml):
|
||
|
chaos_config = gen_experiment_config(chaos_yaml)
|
||
|
log.debug(chaos_config)
|
||
|
chaos_res = CusResource(kind=chaos_config['kind'],
|
||
|
group=constants.CHAOS_GROUP,
|
||
|
version=constants.CHAOS_VERSION,
|
||
|
namespace=constants.CHAOS_NAMESPACE)
|
||
|
chaos_res.create(chaos_config)
|
||
|
log.debug("chaos injected")
|
||
|
|
||
|
|
||
|
def construct_from_data(collection_name, h5_path='./testdata/random_data_10000.h5'):
|
||
|
import pandas as pd
|
||
|
df = pd.read_hdf(h5_path, key='df')
|
||
|
collection_w = ApiCollectionWrapper()
|
||
|
collection_w.construct_from_dataframe(collection_name, dataframe=df, primary_field=ct.default_int64_field_name)
|
||
|
log.debug(collection_w.num_entities)
|
||
|
return collection_w
|
||
|
|
||
|
|
||
|
class TestChaosData:
|
||
|
|
||
|
@pytest.fixture(scope="function", autouse=True)
|
||
|
def connection(self, host, port):
|
||
|
connections.add_connection(default={"host": host, "port": port})
|
||
|
conn = connections.connect(alias='default')
|
||
|
if conn is None:
|
||
|
raise Exception("no connections")
|
||
|
return conn
|
||
|
|
||
|
@pytest.mark.tags(CaseLabel.L3)
|
||
|
@pytest.mark.parametrize('chaos_yaml', get_chaos_yamls())
|
||
|
def test_chaos_memory_stress_querynode(self, connection, chaos_yaml):
|
||
|
"""
|
||
|
target: explore querynode behavior after memory stress chaos injected and recovered
|
||
|
method: 1. create a collection, insert some data
|
||
|
2. inject memory stress chaos
|
||
|
3. load collection and search, query
|
||
|
4. todo (verify querynode response)
|
||
|
5. delete chaos or chaos finished
|
||
|
6. release and reload collection, verify search and query is available
|
||
|
expected: after chaos deleted, load, search and query qre both available
|
||
|
"""
|
||
|
c_name = cf.gen_unique_str('chaos_memory')
|
||
|
collection_w = construct_from_data(c_name)
|
||
|
log.debug(collection_w.schema)
|
||
|
|
||
|
# reboot a pod
|
||
|
apply_memory_stress(chaos_yaml)
|
||
|
|
||
|
# wait memory stress
|
||
|
sleep(constants.WAIT_PER_OP * 2)
|
||
|
|
||
|
# query
|
||
|
collection_w.release()
|
||
|
collection_w.load()
|
||
|
term_expr = f'{ct.default_int64_field_name} in [0, 1, 999, 99]'
|
||
|
t0 = datetime.datetime.now()
|
||
|
query_res, _ = collection_w.query(term_expr)
|
||
|
tt = datetime.datetime.now() - t0
|
||
|
log.info(f"assert query: {tt}")
|
||
|
assert len(query_res) == 4
|
||
|
|
||
|
sleep(constants.WAIT_PER_OP * 5)
|
||
|
|
||
|
# query
|
||
|
collection_w.release()
|
||
|
collection_w.load()
|
||
|
term_expr = f'{ct.default_int64_field_name} in [0, 1, 999, 99]'
|
||
|
t0 = datetime.datetime.now()
|
||
|
query_res, _ = collection_w.query(term_expr)
|
||
|
tt = datetime.datetime.now() - t0
|
||
|
log.info(f"assert query: {tt}")
|
||
|
assert len(query_res) == 4
|
||
|
|
||
|
@pytest.mark.tags(CaseLabel.L3)
|
||
|
@pytest.mark.parametrize('chaos_yaml', get_chaos_yamls())
|
||
|
def test_chaos_memory_stress_datanode(self, connection, chaos_yaml):
|
||
|
pass
|
||
|
|
||
|
@pytest.mark.tags(CaseLabel.L3)
|
||
|
@pytest.mark.parametrize('chaos_yaml', get_chaos_yamls())
|
||
|
def test_chaos_memory_stress_indexnode(self, connection, chaos_yaml):
|
||
|
pass
|
||
|
|