[zh-cn] Add blog: 2024-06-21-custom-profiling-kubectl-debug.md
Signed-off-by: xin.li <xin.li@daocloud.io>pull/47506/head
parent
8a44d276f7
commit
cb2d70f064
|
@ -0,0 +1,160 @@
|
|||
---
|
||||
layout: blog
|
||||
title: "Kubernetes 1.31:kubectl debug 中的自定义模板化配置特性已进入 Beta 阶段"
|
||||
date: 2024-08-22
|
||||
slug: kubernetes-1-31-custom-profiling-kubectl-debug
|
||||
author: >
|
||||
Arda Güçlü (Red Hat)
|
||||
translator: >
|
||||
Xin Li (DaoCloud)
|
||||
---
|
||||
<!--
|
||||
layout: blog
|
||||
title: "Kubernetes 1.31: Custom Profiling in Kubectl Debug Graduates to Beta"
|
||||
date: 2024-08-22
|
||||
slug: kubernetes-1-31-custom-profiling-kubectl-debug
|
||||
author: >
|
||||
Arda Güçlü (Red Hat)
|
||||
-->
|
||||
|
||||
<!--
|
||||
There are many ways of troubleshooting the pods and nodes in the cluster. However, `kubectl debug` is one of the easiest, highly used and most prominent ones. It
|
||||
provides a set of static profiles and each profile serves for a different kind of role. For instance, from the network administrator's point of view,
|
||||
debugging the node should be as easy as this:
|
||||
-->
|
||||
有很多方法可以对集群中的 Pod 和节点进行故障排查,而 `kubectl debug` 是最简单、使用最广泛、最突出的方法之一。
|
||||
它提供了一组静态配置,每个配置适用于不同类型的角色。
|
||||
例如,从网络管理员的视角来看,调试节点应该像这样简单:
|
||||
|
||||
```shell
|
||||
$ kubectl debug node/mynode -it --image=busybox --profile=netadmin
|
||||
```
|
||||
|
||||
<!--
|
||||
On the other hand, static profiles also bring about inherent rigidity, which has some implications for some pods contrary to their ease of use.
|
||||
Because there are various kinds of pods (or nodes) that all have their specific
|
||||
necessities, and unfortunately, some can't be debugged by only using the static profiles.
|
||||
|
||||
Take an instance of a simple pod consisting of a container whose healthiness relies on an environment variable:
|
||||
-->
|
||||
另一方面,静态配置也存在固有的刚性,对某些 Pod 所产生的影响与其易用性是相悖的。
|
||||
因为各种类型的 Pod(或节点)都有其特定的需求,不幸的是,有些问题仅通过静态配置是无法调试的。
|
||||
|
||||
以一个简单的 Pod 为例,此 Pod 由一个容器组成,其健康状况依赖于环境变量:
|
||||
|
||||
```yaml
|
||||
apiVersion: v1
|
||||
kind: Pod
|
||||
metadata:
|
||||
name: example-pod
|
||||
spec:
|
||||
containers:
|
||||
- name: example-container
|
||||
image: customapp:latest
|
||||
env:
|
||||
- name: REQUIRED_ENV_VAR
|
||||
value: "value1"
|
||||
```
|
||||
|
||||
<!--
|
||||
Currently, copying the pod is the sole mechanism that supports debugging this pod in kubectl debug. Furthermore, what if user needs to modify the `REQUIRED_ENV_VAR` to something different
|
||||
for advanced troubleshooting?. There is no mechanism to achieve this.
|
||||
-->
|
||||
目前,复制 Pod 是使用 `kubectl debug` 命令调试此 Pod 的唯一机制。
|
||||
此外,如果用户需要将 `REQUIRED_ENV_VAR` 环境变量修改为其他不同值来进行高级故障排查,
|
||||
当前并没有机制能够实现这一需求。
|
||||
|
||||
<!--
|
||||
## Custom Profiling
|
||||
|
||||
Custom profiling is a new functionality available under `--custom` flag, introduced in kubectl debug to provide extensibility. It expects partial `Container` spec in either YAML or JSON format.
|
||||
In order to debug the example-container above by creating an ephemeral container, we simply have to define this YAML:
|
||||
-->
|
||||
## 自定义模板化配置
|
||||
|
||||
自定义模板化配置使用 `--custom` 标志提供的一项新特性,在 `kubectl debug` 中引入以提供可扩展性。
|
||||
它需要以 YAML 或 JSON 格式的内容填充 `container` 规约,
|
||||
为了通过创建临时容器来调试上面的示例容器,我们只需定义此 YAML:
|
||||
|
||||
```yaml
|
||||
# partial_container.yaml
|
||||
env:
|
||||
- name: REQUIRED_ENV_VAR
|
||||
value: value2
|
||||
```
|
||||
|
||||
<!--
|
||||
and execute:
|
||||
-->
|
||||
并且执行:
|
||||
|
||||
```shell
|
||||
kubectl debug example-pod -it --image=customapp --custom=partial_container.yaml
|
||||
```
|
||||
|
||||
<!--
|
||||
Here is another example that modifies multiple fields at once (change port number, add resource limits, modify environment variable) in JSON:
|
||||
-->
|
||||
下面是另一个在 JSON 中一次修改多个字段(更改端口号、添加资源限制、修改环境变量)的示例:
|
||||
|
||||
```json
|
||||
{
|
||||
"ports": [
|
||||
{
|
||||
"containerPort": 80
|
||||
}
|
||||
],
|
||||
"resources": {
|
||||
"limits": {
|
||||
"cpu": "0.5",
|
||||
"memory": "512Mi"
|
||||
},
|
||||
"requests": {
|
||||
"cpu": "0.2",
|
||||
"memory": "256Mi"
|
||||
}
|
||||
},
|
||||
"env": [
|
||||
{
|
||||
"name": "REQUIRED_ENV_VAR",
|
||||
"value": "value2"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
<!--
|
||||
## Constraints
|
||||
|
||||
Uncontrolled extensibility hurts the usability. So that, custom profiling is not allowed for certain fields such as command, image, lifecycle, volume devices and container name.
|
||||
In the future, more fields can be added to the disallowed list if required.
|
||||
-->
|
||||
## 约束
|
||||
|
||||
不受控制的扩展性会损害可用性。因此,某些字段(例如命令、镜像、生命周期、卷设备和容器名称)不允许进行自定义模版化配置。
|
||||
将来如果需要,可以将更多字段添加到禁止列表中。
|
||||
|
||||
<!--
|
||||
## Limitations
|
||||
|
||||
The `kubectl debug` command has 3 aspects: Debugging with ephemeral containers, pod copying, and node debugging. The largest intersection set of these aspects is the container spec within a Pod
|
||||
That's why, custom profiling only supports the modification of the fields that are defined with `containers`. This leads to a limitation that if user needs to modify the other fields in the Pod spec, it is not supported.
|
||||
-->
|
||||
## 限制
|
||||
|
||||
`kubectl debug` 命令有 3 个方面:使用临时容器进行调试、Pod 复制和节点调试。
|
||||
这些方面最大的交集是 Pod 内的容器规约,因此自定义模版化配置仅支持修改使用 `containers` 下定义的字段。
|
||||
这导致了一个限制,如果用户需要修改 Pod 规约中的其他字段,则不受支持。
|
||||
|
||||
<!--
|
||||
## Acknowledgments
|
||||
|
||||
Special thanks to all the contributors who reviewed and commented on this feature, from the initial conception to its actual implementation (alphabetical order):
|
||||
-->
|
||||
## 致谢
|
||||
|
||||
特别感谢所有审查和评论此特性(从最初的概念到实际实施)的贡献者(按字母顺序排列):
|
||||
|
||||
- [Eddie Zaneski](https://github.com/eddiezane)
|
||||
- [Maciej Szulik](https://github.com/soltysh)
|
||||
- [Lee Verberne](https://github.com/verb)
|
Loading…
Reference in New Issue