[zh-cn] sync blog: 2023-04-28-statefulset-migration.md
Signed-off-by: xin.li <xin.li@daocloud.io>pull/41480/head
parent
cc27138112
commit
bb7e71d7fd
|
@ -0,0 +1,374 @@
|
|||
---
|
||||
layout: blog
|
||||
title: "Kubernetes 1.27: StatefulSet 启动序号简化了迁移"
|
||||
date: 2023-04-28
|
||||
slug: statefulset-start-ordinal
|
||||
---
|
||||
|
||||
<!--
|
||||
layout: blog
|
||||
title: "Kubernetes 1.27: StatefulSet Start Ordinal Simplifies Migration"
|
||||
date: 2023-04-28
|
||||
slug: statefulset-start-ordinal
|
||||
-->
|
||||
|
||||
<!--
|
||||
**Author**: Peter Schuurman (Google)
|
||||
-->
|
||||
**作者:** Peter Schuurman (Google)
|
||||
|
||||
**译者:** Xin Li (DaoCloud)
|
||||
|
||||
<!--
|
||||
Kubernetes v1.26 introduced a new, alpha-level feature for
|
||||
[StatefulSets](/docs/concepts/workloads/controllers/statefulset/) that controls
|
||||
the ordinal numbering of Pod replicas. As of Kubernetes v1.27, this feature is
|
||||
now beta. Ordinals can start from arbitrary
|
||||
non-negative numbers. This blog post will discuss how this feature can be
|
||||
used.
|
||||
-->
|
||||
Kubernetes v1.26 为 [StatefulSet](/zh-cn/docs/concepts/workloads/controllers/statefulset/)
|
||||
引入了一个新的 Alpha 级别特性,可以控制 Pod 副本的序号。
|
||||
从 Kubernetes v1.27 开始,此特性进级到 Beta 阶段。序数可以从任意非负数开始,
|
||||
这篇博文将讨论如何使用此功能。
|
||||
|
||||
<!--
|
||||
## Background
|
||||
|
||||
StatefulSets ordinals provide sequential identities for pod replicas. When using
|
||||
[`OrderedReady` Pod management](/docs/tutorials/stateful-application/basic-stateful-set/#orderedready-pod-management)
|
||||
Pods are created from ordinal index `0` up to `N-1`.
|
||||
-->
|
||||
## 背景
|
||||
|
||||
StatefulSet 序号为 Pod 副本提供顺序标识。当使用
|
||||
[`OrderedReady` Pod 管理策略](/docs/tutorials/stateful-application/basic-stateful-set/#orderedready-pod-management)时,
|
||||
Pod 是从序号索引 `0` 到 `N-1` 顺序创建的。
|
||||
|
||||
<!--
|
||||
With Kubernetes today, orchestrating a StatefulSet migration across clusters is
|
||||
challenging. Backup and restore solutions exist, but these require the
|
||||
application to be scaled down to zero replicas prior to migration. In today's
|
||||
fully connected world, even planned application downtime may not allow you to
|
||||
meet your business goals. You could use
|
||||
[Cascading Delete](/docs/tutorials/stateful-application/basic-stateful-set/#cascading-delete)
|
||||
or
|
||||
[On Delete](/docs/tutorials/stateful-application/basic-stateful-set/#on-delete)
|
||||
to migrate individual pods, however this is error prone and tedious to manage.
|
||||
You lose the self-healing benefit of the StatefulSet controller when your Pods
|
||||
fail or are evicted.
|
||||
-->
|
||||
如今使用 Kubernetes 跨集群编排 StatefulSet 迁移具有挑战性。
|
||||
虽然存在备份和恢复解决方案,但这些解决方案需要在迁移之前将应用程序的副本数缩为 0。
|
||||
在当今这个完全互联的世界中,即使是计划内的应用停机可能也无法实现你的业务目标。
|
||||
|
||||
你可以使用[级联删除](/zh-cn/docs/tutorials/stateful-application/basic-stateful-set/#cascading-delete)或
|
||||
[OnDelete 策略](/zh-cn/docs/tutorials/stateful-application/basic-stateful-set/#on-delete)来迁移单个 Pod,
|
||||
但是这很容易出错并且管理起来很乏味。
|
||||
当你的 Pod 出现故障或被逐出时,你将失去 StatefulSet 控制器的自我修复优势。
|
||||
|
||||
<!--
|
||||
Kubernetes v1.26 enables a StatefulSet to be responsible for a range of ordinals
|
||||
within a range {0..N-1} (the ordinals 0, 1, ... up to N-1).
|
||||
With it, you can scale down a range
|
||||
{0..k-1} in a source cluster, and scale up the complementary range {k..N-1}
|
||||
in a destination cluster, while maintaining application availability. This
|
||||
enables you to retain *at most one* semantics (meaning there is at most one Pod
|
||||
with a given identity running in a StatefulSet) and
|
||||
[Rolling Update](/docs/tutorials/stateful-application/basic-stateful-set/#rolling-update)
|
||||
behavior when orchestrating a migration across clusters.
|
||||
-->
|
||||
Kubernetes v1.26 使 StatefulSet 能够负责 {0..N-1} 范围内的一系列序数(序数 0、1、... 直到 N-1)。
|
||||
有了它,你可以缩小源集群中的范围 {0..k-1},并扩大目标集群中的互补范围 {k..N-1},同时保证应用程序可用性。
|
||||
这使你在编排跨集群迁移时保留**至多一个**语义(意味着最多有一个具有给定身份的
|
||||
Pod 在 StatefulSet 中运行)和[滚动更新](/zh-cn/docs/tutorials/stateful-application/basic-stateful-set/#rolling-update)行为。
|
||||
|
||||
<!--
|
||||
## Why would I want to use this feature?
|
||||
|
||||
Say you're running your StatefulSet in one cluster, and need to migrate it out
|
||||
to a different cluster. There are many reasons why you would need to do this:
|
||||
* **Scalability**: Your StatefulSet has scaled too large for your cluster, and
|
||||
has started to disrupt the quality of service for other workloads in your
|
||||
cluster.
|
||||
* **Isolation**: You're running a StatefulSet in a cluster that is accessed
|
||||
by multiple users, and namespace isolation isn't sufficient.
|
||||
* **Cluster Configuration**: You want to move your StatefulSet to a different
|
||||
cluster to use some environment that is not available on your current
|
||||
cluster.
|
||||
* **Control Plane Upgrades**: You want to move your StatefulSet to a cluster
|
||||
running an upgraded control plane, and can't handle the risk or downtime of
|
||||
in-place control plane upgrades.
|
||||
-->
|
||||
## 我为什么要使用此功能?
|
||||
|
||||
假设你在一个集群中运行 StatefulSet,并且需要将其迁移到另一个集群。你需要这样做的原因有很多:
|
||||
|
||||
* **可扩展性**:你的 StatefulSet 对于你的集群而言规模过大,并且已经开始破坏集群中其他工作负载的服务质量。
|
||||
* **隔离性**:你在一个供多个用户访问的集群中运行 StatefulSet,而命名空间隔离是不够的。
|
||||
* **集群配置**:你想将 StatefulSet 迁移到另一个集群,以使用在当前集群上不存在的某些环境。
|
||||
* **控制平面升级**:你想将 StatefulSet 迁移到运行着较高版本控制平面,
|
||||
并且无法处承担就地升级控制平面所产生的风险或预留停机时间。
|
||||
|
||||
<!--
|
||||
## How do I use it?
|
||||
|
||||
Enable the `StatefulSetStartOrdinal` feature gate on a cluster, and create a
|
||||
StatefulSet with a customized `.spec.ordinals.start`.
|
||||
-->
|
||||
## 我该如何使用它?
|
||||
|
||||
在集群上启用 `StatefulSetStartOrdinal` 特性门控,并使用自定义的
|
||||
`.spec.ordinals.start` 创建一个 StatefulSet。
|
||||
|
||||
<!--
|
||||
## Try it out
|
||||
|
||||
In this demo, I'll use the new mechanism to migrate a
|
||||
StatefulSet from one Kubernetes cluster to another. The
|
||||
[redis-cluster](https://github.com/bitnami/charts/tree/main/bitnami/redis-cluster)
|
||||
Bitnami Helm chart will be used to install Redis.
|
||||
-->
|
||||
## 试试看吧
|
||||
|
||||
在此演示中,我将使用新机制将 StatefulSet 从一个 Kubernetes 集群迁移到另一个。
|
||||
[redis-cluster](https://github.com/bitnami/charts/tree/main/bitnami/redis-cluster)
|
||||
Bitnami Helm chart 将用于安装 Redis。
|
||||
|
||||
<!--
|
||||
Tools Required:
|
||||
* [yq](https://github.com/mikefarah/yq)
|
||||
* [helm](https://helm.sh/docs/helm/helm_install/)
|
||||
-->
|
||||
所需工具:
|
||||
|
||||
* [yq](https://github.com/mikefarah/yq)
|
||||
* [helm](https://helm.sh/docs/helm/helm_install/)
|
||||
|
||||
<!--
|
||||
### Pre-requisites {#demo-pre-requisites}
|
||||
|
||||
To do this, I need two Kubernetes clusters that can both access common
|
||||
networking and storage; I've named my clusters `source` and `destination`.
|
||||
Specifically, I need:
|
||||
-->
|
||||
### 先决条件 {#demo-pre-requisites}
|
||||
|
||||
为此,我需要两个可以访问公共网络和存储的 Kubernetes 集群;
|
||||
我已将集群命名为 `source` 和 `destination`。具体来说,我需要:
|
||||
|
||||
<!--
|
||||
* The `StatefulSetStartOrdinal` feature gate enabled on both clusters.
|
||||
* Client configuration for `kubectl` that lets me access both clusters as an
|
||||
administrator.
|
||||
* The same `StorageClass` installed on both clusters, and set as the default
|
||||
StorageClass for both clusters. This `StorageClass` should provision
|
||||
underlying storage that is accessible from either or both clusters.
|
||||
* A flat network topology that allows for pods to send and receive packets to
|
||||
and from Pods in either clusters. If you are creating clusters on a cloud
|
||||
provider, this configuration may be called private cloud or private network.
|
||||
-->
|
||||
* 在两个集群上都启用 `StatefulSetStartOrdinal` 特性门控。
|
||||
* `kubectl` 的客户端配置允许我以管理员身份访问这两个集群。
|
||||
* 两个集群上都安装了相同的 `StorageClass`,并设置为两个集群的默认 `StorageClass`。
|
||||
这个 `StorageClass` 应该提供可从一个或两个集群访问的底层存储。
|
||||
* 一种扁平的网络拓扑,允许 Pod 向任一集群中的 Pod 发送数据包和从中接收数据包。
|
||||
如果你在云提供商上创建集群,则此配置可能被称为私有云或私有网络。
|
||||
|
||||
<!--
|
||||
1. Create a demo namespace on both clusters:
|
||||
-->
|
||||
1. 在两个集群上创建一个用于演示的命名空间:
|
||||
|
||||
```
|
||||
kubectl create ns kep-3335
|
||||
```
|
||||
|
||||
<!--
|
||||
2. Deploy a Redis cluster with six replicas in the source cluster:
|
||||
-->
|
||||
2. 在 `source` 集群中部署一个有六个副本的 Redis 集群:
|
||||
|
||||
```
|
||||
helm repo add bitnami https://charts.bitnami.com/bitnami
|
||||
helm install redis --namespace kep-3335 \
|
||||
bitnami/redis-cluster \
|
||||
--set persistence.size=1Gi \
|
||||
--set cluster.nodes=6
|
||||
```
|
||||
|
||||
<!--
|
||||
3. Check the replication status in the source cluster:
|
||||
-->
|
||||
3. 检查 `source` 集群中的副本状态:
|
||||
|
||||
```
|
||||
kubectl exec -it redis-redis-cluster-0 -- /bin/bash -c \
|
||||
"redis-cli -c -h redis-redis-cluster -a $(kubectl get secret redis-redis-cluster -o jsonpath="{.data.redis-password}" | base64 -d) CLUSTER NODES;"
|
||||
```
|
||||
|
||||
```
|
||||
2ce30362c188aabc06f3eee5d92892d95b1da5c3 10.104.0.14:6379@16379 myself,master - 0 1669764411000 3 connected 10923-16383
|
||||
7743661f60b6b17b5c71d083260419588b4f2451 10.104.0.16:6379@16379 slave 2ce30362c188aabc06f3eee5d92892d95b1da5c3 0 1669764410000 3 connected
|
||||
961f35e37c4eea507cfe12f96e3bfd694b9c21d4 10.104.0.18:6379@16379 slave a8765caed08f3e185cef22bd09edf409dc2bcc61 0 1669764411000 1 connected
|
||||
7136e37d8864db983f334b85d2b094be47c830e5 10.104.0.15:6379@16379 slave 2cff613d763b22c180cd40668da8e452edef3fc8 0 1669764412595 2 connected
|
||||
a8765caed08f3e185cef22bd09edf409dc2bcc61 10.104.0.19:6379@16379 master - 0 1669764411592 1 connected 0-5460
|
||||
2cff613d763b22c180cd40668da8e452edef3fc8 10.104.0.17:6379@16379 master - 0 1669764410000 2 connected 5461-10922
|
||||
```
|
||||
|
||||
<!--
|
||||
4. Deploy a Redis cluster with zero replicas in the destination cluster:
|
||||
-->
|
||||
4. 在 `destination` 集群中部署一个零副本的 Redis 集群:
|
||||
|
||||
```
|
||||
helm install redis --namespace kep-3335 \
|
||||
bitnami/redis-cluster \
|
||||
--set persistence.size=1Gi \
|
||||
--set cluster.nodes=0 \
|
||||
--set redis.extraEnvVars\[0\].name=REDIS_NODES,redis.extraEnvVars\[0\].value="redis-redis-cluster-headless.kep-3335.svc.cluster.local" \
|
||||
--set existingSecret=redis-redis-cluster
|
||||
```
|
||||
|
||||
<!--
|
||||
5. Scale down the `redis-redis-cluster` StatefulSet in the source cluster by 1,
|
||||
to remove the replica `redis-redis-cluster-5`:
|
||||
-->
|
||||
5. 将源集群中的 `redis-redis-cluster` StatefulSet 副本数缩小 1,
|
||||
以删除副本 `redis-redis-cluster-5`:
|
||||
|
||||
```
|
||||
kubectl patch sts redis-redis-cluster -p '{"spec": {"replicas": 5}}'
|
||||
```
|
||||
|
||||
<!--
|
||||
6. Migrate dependencies from the source cluster to the destination cluster:
|
||||
|
||||
The following commands copy resources from `source` to `destionation`. Details
|
||||
that are not relevant in `destination` cluster are removed (eg: `uid`,
|
||||
`resourceVersion`, `status`).
|
||||
|
||||
**Steps for the source cluster**
|
||||
-->
|
||||
6. 将依赖从 `source` 集群迁移到 `destionation` 集群:
|
||||
以下命令将依赖资源从 `source` 复制到 `destionation`,其中与 `destionation`
|
||||
集群无关的详细信息已被删除(例如:`uid`、`resourceVersion`、`status`)。
|
||||
|
||||
<!--
|
||||
Note: If using a `StorageClass` with `reclaimPolicy: Delete` configured, you
|
||||
should patch the PVs in `source` with `reclaimPolicy: Retain` prior to
|
||||
deletion to retain the underlying storage used in `destination`. See
|
||||
[Change the Reclaim Policy of a PersistentVolume](/docs/tasks/administer-cluster/change-pv-reclaim-policy/)
|
||||
for more details.
|
||||
-->
|
||||
|
||||
说明:如果使用配置了 `reclaimPolicy: Delete` 的 `StorageClass`,
|
||||
你应该在删除之前使用 `reclaimPolicy: Retain` 修补 `source` 中的 PV,
|
||||
以保留 `destination` 中使用的底层存储。
|
||||
有关详细信息,请参阅[更改 PersistentVolume](/zh-cn/docs/tasks/administer-cluster/change-pv-reclaim-policy/)
|
||||
的回收策略。
|
||||
|
||||
```
|
||||
kubectl get pvc redis-data-redis-redis-cluster-5 -o yaml | yq 'del(.metadata.uid, .metadata.resourceVersion, .metadata.annotations, .metadata.finalizers, .status)' > /tmp/pvc-redis-data-redis-redis-cluster-5.yaml
|
||||
kubectl get pv $(yq '.spec.volumeName' /tmp/pvc-redis-data-redis-redis-cluster-5.yaml) -o yaml | yq 'del(.metadata.uid, .metadata.resourceVersion, .metadata.annotations, .metadata.finalizers, .spec.claimRef, .status)' > /tmp/pv-redis-data-redis-redis-cluster-5.yaml
|
||||
kubectl get secret redis-redis-cluster -o yaml | yq 'del(.metadata.uid, .metadata.resourceVersion)' > /tmp/secret-redis-redis-cluster.yaml
|
||||
```
|
||||
|
||||
<!--
|
||||
**Steps for the destination cluster**
|
||||
|
||||
Note: For the PV/PVC, this procedure only works if the underlying storage system
|
||||
that your PVs use can support being copied into `destination`. Storage
|
||||
that is associated with a specific node or topology may not be supported.
|
||||
Additionally, some storage systems may store addtional metadata about
|
||||
volumes outside of a PV object, and may require a more specialized
|
||||
sequence to import a volume.
|
||||
-->
|
||||
|
||||
**`destination` 集群中的步骤**
|
||||
|
||||
说明:对于 PV/PVC,此过程仅在你的 PV 使用的底层存储系统支持复制到 `destination`
|
||||
集群时才有效。可能不支持与特定节点或拓扑关联的存储。此外,某些存储系统可能会在 PV
|
||||
对象之外存储有关卷的附加元数据,并且可能需要更专门的序列来导入卷。
|
||||
|
||||
```
|
||||
kubectl create -f /tmp/pv-redis-data-redis-redis-cluster-5.yaml
|
||||
kubectl create -f /tmp/pvc-redis-data-redis-redis-cluster-5.yaml
|
||||
kubectl create -f /tmp/secret-redis-redis-cluster.yaml
|
||||
```
|
||||
|
||||
<!--
|
||||
7. Scale up the `redis-redis-cluster` StatefulSet in the destination cluster by
|
||||
1, with a start ordinal of 5:
|
||||
-->
|
||||
7. 将 `destination` 集群中的 `redis-redis-cluster` StatefulSet 扩容 1,起始序号为 5:
|
||||
|
||||
```
|
||||
kubectl patch sts redis-redis-cluster -p '{"spec": {"ordinals": {"start": 5}, "replicas": 1}}'
|
||||
```
|
||||
|
||||
<!--
|
||||
8. Check the replication status in the destination cluster:
|
||||
-->
|
||||
8. 检查 `destination` 集群中的副本状态:
|
||||
|
||||
```
|
||||
kubectl exec -it redis-redis-cluster-5 -- /bin/bash -c \
|
||||
"redis-cli -c -h redis-redis-cluster -a $(kubectl get secret redis-redis-cluster -o jsonpath="{.data.redis-password}" | base64 -d) CLUSTER NODES;"
|
||||
```
|
||||
|
||||
<!--
|
||||
I should see that the new replica (labeled `myself`) has joined the Redis
|
||||
cluster (the IP address belongs to a different CIDR block than the
|
||||
replicas in the source cluster).
|
||||
-->
|
||||
我应该看到新副本(标记为 `myself`)已加入 Redis 集群(IP
|
||||
地址与 `source` 集群中的副本归属于不同的 CIDR 块)。
|
||||
|
||||
```
|
||||
2cff613d763b22c180cd40668da8e452edef3fc8 10.104.0.17:6379@16379 master - 0 1669766684000 2 connected 5461-10922
|
||||
7136e37d8864db983f334b85d2b094be47c830e5 10.108.0.22:6379@16379 myself,slave 2cff613d763b22c180cd40668da8e452edef3fc8 0 1669766685609 2 connected
|
||||
2ce30362c188aabc06f3eee5d92892d95b1da5c3 10.104.0.14:6379@16379 master - 0 1669766684000 3 connected 10923-16383
|
||||
961f35e37c4eea507cfe12f96e3bfd694b9c21d4 10.104.0.18:6379@16379 slave a8765caed08f3e185cef22bd09edf409dc2bcc61 0 1669766683600 1 connected
|
||||
a8765caed08f3e185cef22bd09edf409dc2bcc61 10.104.0.19:6379@16379 master - 0 1669766685000 1 connected 0-5460
|
||||
7743661f60b6b17b5c71d083260419588b4f2451 10.104.0.16:6379@16379 slave 2ce30362c188aabc06f3eee5d92892d95b1da5c3 0 1669766686613 3 connected
|
||||
```
|
||||
|
||||
<!--
|
||||
9. Repeat steps #5 to #7 for the remainder of the replicas, until the
|
||||
Redis StatefulSet in the source cluster is scaled to 0, and the Redis
|
||||
StatefulSet in the destination cluster is healthy with 6 total replicas.
|
||||
-->
|
||||
9. 对剩余的副本重复 #5 到 #7 的步骤,直到 `source` 集群中的 Redis StatefulSet 副本缩放为 0,
|
||||
并且 `destination` 集群中的 Redis StatefulSet 健康,总共有 6 个副本。
|
||||
|
||||
<!--
|
||||
## What's Next?
|
||||
|
||||
This feature provides a building block for a StatefulSet to be split up across
|
||||
clusters, but does not prescribe the mechanism as to how the StatefulSet should
|
||||
be migrated. Migration requires coordination of StatefulSet replicas, along with
|
||||
orchestration of the storage and network layer. This is dependent on the storage
|
||||
and connectivity requirements of the application installed by the StatefulSet.
|
||||
Additionally, many StatefulSets are managed by
|
||||
[operators](/docs/concepts/extend-kubernetes/operator/), which adds another
|
||||
layer of complexity to migration.
|
||||
-->
|
||||
## 接下来?
|
||||
|
||||
此特性为跨集群拆分 StatefulSet 提供了一项基本支撑技术,但没有规定 StatefulSet 的迁移机制。
|
||||
迁移需要对 StatefulSet 副本的协调,以及对存储和网络层的编排。这取决于使用 StatefulSet
|
||||
安装的应用程序的存储和网络连接要求。此外,许多 StatefulSet 由
|
||||
[operator](/zh-cn/docs/concepts/extend-kubernetes/operator/) 管理,这也增加了额外的迁移复杂性。
|
||||
|
||||
<!--
|
||||
If you're interested in building enhancements to make these processes easier,
|
||||
get involved with
|
||||
[SIG Multicluster](https://github.com/kubernetes/community/blob/master/sig-multicluster)
|
||||
to contribute!
|
||||
-->
|
||||
如果你有兴趣构建增强功能以简化这些过程,请参与
|
||||
[SIG Multicluster](https://github.com/kubernetes/community/blob/master/sig-multicluster)
|
||||
做出贡献!
|
||||
|
||||
|
Loading…
Reference in New Issue