[zh] Sync concepts/overview/_index.md
parent
9ad065d97a
commit
a2d5a6d2d4
|
@ -58,124 +58,6 @@ Google 在 2014 年开源了 Kubernetes 项目。
|
|||
Kubernetes 建立在 [Google 大规模运行生产工作负载十几年经验](https://research.google/pubs/pub43438)的基础上,
|
||||
结合了社区中最优秀的想法和实践。
|
||||
|
||||
<!--
|
||||
## Going back in time
|
||||
|
||||
Let's take a look at why Kubernetes is so useful by going back in time.
|
||||
-->
|
||||
## 时光回溯 {#going-back-in-time}
|
||||
|
||||
让我们回顾一下为何 Kubernetes 能够裨益四方。
|
||||
|
||||
<!--
|
||||
![Deployment evolution](/images/docs/Container_Evolution.svg)
|
||||
-->
|
||||
![部署演进](/zh-cn/docs/images/Container_Evolution.svg)
|
||||
|
||||
<!--
|
||||
**Traditional deployment era:**
|
||||
Early on, organizations ran applications on physical servers. There was no way to define
|
||||
resource boundaries for applications in a physical server, and this caused resource
|
||||
allocation issues. For example, if multiple applications run on a physical server, there
|
||||
can be instances where one application would take up most of the resources, and as a result,
|
||||
the other applications would underperform. A solution for this would be to run each application
|
||||
on a different physical server. But this did not scale as resources were underutilized, and it
|
||||
was expensive for organizations to maintain many physical servers.
|
||||
-->
|
||||
**传统部署时代:**
|
||||
|
||||
早期,各个组织是在物理服务器上运行应用程序。
|
||||
由于无法限制在物理服务器中运行的应用程序资源使用,因此会导致资源分配问题。
|
||||
例如,如果在同一台物理服务器上运行多个应用程序,
|
||||
则可能会出现一个应用程序占用大部分资源的情况,而导致其他应用程序的性能下降。
|
||||
一种解决方案是将每个应用程序都运行在不同的物理服务器上,
|
||||
但是当某个应用程序资源利用率不高时,剩余资源无法被分配给其他应用程序,
|
||||
而且维护许多物理服务器的成本很高。
|
||||
|
||||
<!--
|
||||
**Virtualized deployment era:** As a solution, virtualization was introduced. It allows you
|
||||
to run multiple Virtual Machines (VMs) on a single physical server's CPU. Virtualization
|
||||
allows applications to be isolated between VMs and provides a level of security as the
|
||||
information of one application cannot be freely accessed by another application.
|
||||
-->
|
||||
**虚拟化部署时代:**
|
||||
|
||||
因此,虚拟化技术被引入了。虚拟化技术允许你在单个物理服务器的 CPU 上运行多台虚拟机(VM)。
|
||||
虚拟化能使应用程序在不同 VM 之间被彼此隔离,且能提供一定程度的安全性,
|
||||
因为一个应用程序的信息不能被另一应用程序随意访问。
|
||||
|
||||
<!--
|
||||
Virtualization allows better utilization of resources in a physical server and allows
|
||||
better scalability because an application can be added or updated easily, reduces
|
||||
hardware costs, and much more. With virtualization you can present a set of physical
|
||||
resources as a cluster of disposable virtual machines.
|
||||
|
||||
Each VM is a full machine running all the components, including its own operating
|
||||
system, on top of the virtualized hardware.
|
||||
-->
|
||||
虚拟化技术能够更好地利用物理服务器的资源,并且因为可轻松地添加或更新应用程序,
|
||||
而因此可以具有更高的可扩缩性,以及降低硬件成本等等的好处。
|
||||
通过虚拟化,你可以将一组物理资源呈现为可丢弃的虚拟机集群。
|
||||
|
||||
每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。
|
||||
|
||||
<!--
|
||||
**Container deployment era:** Containers are similar to VMs, but they have relaxed
|
||||
isolation properties to share the Operating System (OS) among the applications.
|
||||
Therefore, containers are considered lightweight. Similar to a VM, a container
|
||||
has its own filesystem, share of CPU, memory, process space, and more. As they
|
||||
are decoupled from the underlying infrastructure, they are portable across clouds
|
||||
and OS distributions.
|
||||
-->
|
||||
**容器部署时代:**
|
||||
|
||||
容器类似于 VM,但是更宽松的隔离特性,使容器之间可以共享操作系统(OS)。
|
||||
因此,容器比起 VM 被认为是更轻量级的。且与 VM 类似,每个容器都具有自己的文件系统、CPU、内存、进程空间等。
|
||||
由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。
|
||||
|
||||
<!--
|
||||
Containers have become popular because they provide extra benefits, such as:
|
||||
-->
|
||||
容器因具有许多优势而变得流行起来,例如:
|
||||
|
||||
<!--
|
||||
* Agile application creation and deployment: increased ease and efficiency of
|
||||
container image creation compared to VM image use.
|
||||
* Continuous development, integration, and deployment: provides for reliable
|
||||
and frequent container image build and deployment with quick and efficient
|
||||
rollbacks (due to image immutability).
|
||||
* Dev and Ops separation of concerns: create application container images at
|
||||
build/release time rather than deployment time, thereby decoupling
|
||||
applications from infrastructure.
|
||||
* Observability: not only surfaces OS-level information and metrics, but also
|
||||
application health and other signals.
|
||||
* Environmental consistency across development, testing, and production: runs
|
||||
the same on a laptop as it does in the cloud.
|
||||
* Cloud and OS distribution portability: runs on Ubuntu, RHEL, CoreOS, on-premises,
|
||||
on major public clouds, and anywhere else.
|
||||
* Application-centric management: raises the level of abstraction from running an
|
||||
OS on virtual hardware to running an application on an OS using logical resources.
|
||||
* Loosely coupled, distributed, elastic, liberated micro-services: applications are
|
||||
broken into smaller, independent pieces and can be deployed and managed dynamically –
|
||||
not a monolithic stack running on one big single-purpose machine.
|
||||
* Resource isolation: predictable application performance.
|
||||
* Resource utilization: high efficiency and density.
|
||||
-->
|
||||
* 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
|
||||
* 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性),
|
||||
提供可靠且频繁的容器镜像构建和部署。
|
||||
* 关注开发与运维的分离:在构建、发布时创建应用程序容器镜像,而不是在部署时,
|
||||
从而将应用程序与基础架构分离。
|
||||
* 可观察性:不仅可以显示 OS 级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
|
||||
* 跨开发、测试和生产的环境一致性:在笔记本计算机上也可以和在云中运行一样的应用程序。
|
||||
* 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、
|
||||
Google Kubernetes Engine 和其他任何地方运行。
|
||||
* 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
|
||||
* 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分,
|
||||
并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。
|
||||
* 资源隔离:可预测的应用程序性能。
|
||||
* 资源利用:高效率和高密度。
|
||||
|
||||
<!--
|
||||
## Why you need Kubernetes and what it can do {#why-you-need-kubernetes-and-what-can-it-do}
|
||||
-->
|
||||
|
@ -368,6 +250,131 @@ Kubernetes:
|
|||
你不需要在乎如何从 A 移动到 C,也不需要集中控制,这使得系统更易于使用且功能更强大、
|
||||
系统更健壮,更为弹性和可扩展。
|
||||
|
||||
<!--
|
||||
## Historical context for Kubernetes {#going-back-in-time}
|
||||
|
||||
Let's take a look at why Kubernetes is so useful by going back in time.
|
||||
-->
|
||||
## Kubernetes 的历史背景 {#going-back-in-time}
|
||||
|
||||
让我们回顾一下为何 Kubernetes 能够裨益四方。
|
||||
|
||||
<!--
|
||||
![Deployment evolution](/images/docs/Container_Evolution.svg)
|
||||
-->
|
||||
![部署演进](/zh-cn/docs/images/Container_Evolution.svg)
|
||||
|
||||
<!--
|
||||
**Traditional deployment era:**
|
||||
|
||||
Early on, organizations ran applications on physical servers. There was no way to define
|
||||
resource boundaries for applications in a physical server, and this caused resource
|
||||
allocation issues. For example, if multiple applications run on a physical server, there
|
||||
can be instances where one application would take up most of the resources, and as a result,
|
||||
the other applications would underperform. A solution for this would be to run each application
|
||||
on a different physical server. But this did not scale as resources were underutilized, and it
|
||||
was expensive for organizations to maintain many physical servers.
|
||||
-->
|
||||
**传统部署时代:**
|
||||
|
||||
早期,各个组织是在物理服务器上运行应用程序。
|
||||
由于无法限制在物理服务器中运行的应用程序资源使用,因此会导致资源分配问题。
|
||||
例如,如果在同一台物理服务器上运行多个应用程序,
|
||||
则可能会出现一个应用程序占用大部分资源的情况,而导致其他应用程序的性能下降。
|
||||
一种解决方案是将每个应用程序都运行在不同的物理服务器上,
|
||||
但是当某个应用程序资源利用率不高时,剩余资源无法被分配给其他应用程序,
|
||||
而且维护许多物理服务器的成本很高。
|
||||
|
||||
<!--
|
||||
**Virtualized deployment era:**
|
||||
|
||||
As a solution, virtualization was introduced. It allows you
|
||||
to run multiple Virtual Machines (VMs) on a single physical server's CPU. Virtualization
|
||||
allows applications to be isolated between VMs and provides a level of security as the
|
||||
information of one application cannot be freely accessed by another application.
|
||||
-->
|
||||
**虚拟化部署时代:**
|
||||
|
||||
因此,虚拟化技术被引入了。虚拟化技术允许你在单个物理服务器的 CPU 上运行多台虚拟机(VM)。
|
||||
虚拟化能使应用程序在不同 VM 之间被彼此隔离,且能提供一定程度的安全性,
|
||||
因为一个应用程序的信息不能被另一应用程序随意访问。
|
||||
|
||||
<!--
|
||||
Virtualization allows better utilization of resources in a physical server and allows
|
||||
better scalability because an application can be added or updated easily, reduces
|
||||
hardware costs, and much more. With virtualization you can present a set of physical
|
||||
resources as a cluster of disposable virtual machines.
|
||||
|
||||
Each VM is a full machine running all the components, including its own operating
|
||||
system, on top of the virtualized hardware.
|
||||
-->
|
||||
虚拟化技术能够更好地利用物理服务器的资源,并且因为可轻松地添加或更新应用程序,
|
||||
而因此可以具有更高的可扩缩性,以及降低硬件成本等等的好处。
|
||||
通过虚拟化,你可以将一组物理资源呈现为可丢弃的虚拟机集群。
|
||||
|
||||
每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。
|
||||
|
||||
<!--
|
||||
**Container deployment era:**
|
||||
|
||||
Containers are similar to VMs, but they have relaxed
|
||||
isolation properties to share the Operating System (OS) among the applications.
|
||||
Therefore, containers are considered lightweight. Similar to a VM, a container
|
||||
has its own filesystem, share of CPU, memory, process space, and more. As they
|
||||
are decoupled from the underlying infrastructure, they are portable across clouds
|
||||
and OS distributions.
|
||||
-->
|
||||
**容器部署时代:**
|
||||
|
||||
容器类似于 VM,但是更宽松的隔离特性,使容器之间可以共享操作系统(OS)。
|
||||
因此,容器比起 VM 被认为是更轻量级的。且与 VM 类似,每个容器都具有自己的文件系统、CPU、内存、进程空间等。
|
||||
由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。
|
||||
|
||||
<!--
|
||||
Containers have become popular because they provide extra benefits, such as:
|
||||
-->
|
||||
容器因具有许多优势而变得流行起来,例如:
|
||||
|
||||
<!--
|
||||
* Agile application creation and deployment: increased ease and efficiency of
|
||||
container image creation compared to VM image use.
|
||||
* Continuous development, integration, and deployment: provides for reliable
|
||||
and frequent container image build and deployment with quick and efficient
|
||||
rollbacks (due to image immutability).
|
||||
* Dev and Ops separation of concerns: create application container images at
|
||||
build/release time rather than deployment time, thereby decoupling
|
||||
applications from infrastructure.
|
||||
* Observability: not only surfaces OS-level information and metrics, but also
|
||||
application health and other signals.
|
||||
-->
|
||||
* 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
|
||||
* 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性),
|
||||
提供可靠且频繁的容器镜像构建和部署。
|
||||
* 关注开发与运维的分离:在构建、发布时创建应用程序容器镜像,而不是在部署时,
|
||||
从而将应用程序与基础架构分离。
|
||||
* 可观察性:不仅可以显示 OS 级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
|
||||
<!--
|
||||
* Environmental consistency across development, testing, and production: runs
|
||||
the same on a laptop as it does in the cloud.
|
||||
* Cloud and OS distribution portability: runs on Ubuntu, RHEL, CoreOS, on-premises,
|
||||
on major public clouds, and anywhere else.
|
||||
* Application-centric management: raises the level of abstraction from running an
|
||||
OS on virtual hardware to running an application on an OS using logical resources.
|
||||
* Loosely coupled, distributed, elastic, liberated micro-services: applications are
|
||||
broken into smaller, independent pieces and can be deployed and managed dynamically –
|
||||
not a monolithic stack running on one big single-purpose machine.
|
||||
* Resource isolation: predictable application performance.
|
||||
* Resource utilization: high efficiency and density.
|
||||
-->
|
||||
* 跨开发、测试和生产的环境一致性:在笔记本计算机上也可以和在云中运行一样的应用程序。
|
||||
* 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、
|
||||
Google Kubernetes Engine 和其他任何地方运行。
|
||||
* 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
|
||||
* 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分,
|
||||
并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。
|
||||
* 资源隔离:可预测的应用程序性能。
|
||||
* 资源利用:高效率和高密度。
|
||||
|
||||
## {{% heading "whatsnext" %}}
|
||||
|
||||
<!--
|
||||
|
|
Loading…
Reference in New Issue