[zh] sync /reference/node/node-status.md
parent
67ca9f95a7
commit
81380bd618
|
@ -0,0 +1,268 @@
|
|||
---
|
||||
content_type: reference
|
||||
title: 节点状态
|
||||
weight: 80
|
||||
---
|
||||
<!--
|
||||
content_type: reference
|
||||
title: Node Status
|
||||
weight: 80
|
||||
-->
|
||||
|
||||
<!-- overview -->
|
||||
|
||||
<!--
|
||||
The status of a [node](/docs/concepts/architecture/nodes/) in Kubernetes is a critical
|
||||
aspect of managing a Kubernetes cluster. In this article, we'll cover the basics of
|
||||
monitoring and maintaining node status to ensure a healthy and stable cluster.
|
||||
-->
|
||||
在 Kubernetes 中,[节点](/zh-cn/docs/concepts/architecture/nodes/)的状态是管理 Kubernetes
|
||||
集群的一个关键方面。在本文中,我们将简要介绍如何监控和维护节点状态以确保集群的健康和稳定。
|
||||
|
||||
<!--
|
||||
## Node status fields
|
||||
|
||||
A Node's status contains the following information:
|
||||
|
||||
* [Addresses](#addresses)
|
||||
* [Conditions](#condition)
|
||||
* [Capacity and Allocatable](#capacity)
|
||||
* [Info](#info)
|
||||
-->
|
||||
## 节点状态字段 {#node-status-fields}
|
||||
|
||||
一个节点的状态包含以下信息:
|
||||
|
||||
* [地址(Addresses)](#addresses)
|
||||
* [状况(Condition)](#condition)
|
||||
* [容量与可分配(Capacity)](#capacity)
|
||||
* [信息(Info)](#info)
|
||||
|
||||
<!--
|
||||
You can use `kubectl` to view a Node's status and other details:
|
||||
|
||||
```shell
|
||||
kubectl describe node <insert-node-name-here>
|
||||
```
|
||||
|
||||
Each section of the output is described below.
|
||||
-->
|
||||
你可以使用 `kubectl` 来查看节点状态和其他细节信息:
|
||||
|
||||
```shell
|
||||
kubectl describe node <节点名称>
|
||||
```
|
||||
|
||||
下面对输出的每个部分进行详细描述。
|
||||
|
||||
<!--
|
||||
## Addresses
|
||||
|
||||
The usage of these fields varies depending on your cloud provider or bare metal configuration.
|
||||
-->
|
||||
### 地址 {#addresses}
|
||||
|
||||
这些字段的用法取决于你的云服务商或者物理机配置。
|
||||
|
||||
<!--
|
||||
* HostName: The hostname as reported by the node's kernel. Can be overridden via the kubelet
|
||||
`--hostname-override` parameter.
|
||||
* ExternalIP: Typically the IP address of the node that is externally routable (available from
|
||||
outside the cluster).
|
||||
* InternalIP: Typically the IP address of the node that is routable only within the cluster.
|
||||
-->
|
||||
* HostName:由节点的内核报告。可以通过 kubelet 的 `--hostname-override` 参数覆盖。
|
||||
* ExternalIP:通常是节点的可外部路由(从集群外可访问)的 IP 地址。
|
||||
* InternalIP:通常是节点的仅可在集群内部路由的 IP 地址。
|
||||
|
||||
<!--
|
||||
## Conditions {#condition}
|
||||
|
||||
The `conditions` field describes the status of all `Running` nodes. Examples of conditions include:
|
||||
-->
|
||||
### 状况 {#condition}
|
||||
|
||||
`conditions` 字段描述了所有 `Running` 节点的状况。状况的示例包括:
|
||||
|
||||
<!--
|
||||
{{< table caption = "Node conditions, and a description of when each condition applies." >}}
|
||||
| Node Condition | Description |
|
||||
|----------------------|-------------|
|
||||
| `Ready` | `True` if the node is healthy and ready to accept pods, `False` if the node is not healthy and is not accepting pods, and `Unknown` if the node controller has not heard from the node in the last `node-monitor-grace-period` (default is 40 seconds) |
|
||||
| `DiskPressure` | `True` if pressure exists on the disk size—that is, if the disk capacity is low; otherwise `False` |
|
||||
| `MemoryPressure` | `True` if pressure exists on the node memory—that is, if the node memory is low; otherwise `False` |
|
||||
| `PIDPressure` | `True` if pressure exists on the processes—that is, if there are too many processes on the node; otherwise `False` |
|
||||
| `NetworkUnavailable` | `True` if the network for the node is not correctly configured, otherwise `False` |
|
||||
{{< /table >}}
|
||||
-->
|
||||
{{< table caption = "节点状况及每种状况适用场景的描述" >}}
|
||||
| 节点状况 | 描述 |
|
||||
|----------------|-------------|
|
||||
| `Ready` | 如节点是健康的并已经准备好接收 Pod 则为 `True`;`False` 表示节点不健康而且不能接收 Pod;`Unknown` 表示节点控制器在最近 `node-monitor-grace-period` 期间(默认 40 秒)没有收到节点的消息 |
|
||||
| `DiskPressure` | `True` 表示节点存在磁盘空间压力,即磁盘可用量低,否则为 `False` |
|
||||
| `MemoryPressure` | `True` 表示节点存在内存压力,即节点内存可用量低,否则为 `False` |
|
||||
| `PIDPressure` | `True` 表示节点存在进程压力,即节点上进程过多;否则为 `False` |
|
||||
| `NetworkUnavailable` | `True` 表示节点网络配置不正确;否则为 `False` |
|
||||
{{< /table >}}
|
||||
|
||||
{{< note >}}
|
||||
<!--
|
||||
If you use command-line tools to print details of a cordoned Node, the Condition includes
|
||||
`SchedulingDisabled`. `SchedulingDisabled` is not a Condition in the Kubernetes API; instead,
|
||||
cordoned nodes are marked Unschedulable in their spec.
|
||||
-->
|
||||
如果使用命令行工具来打印已保护(Cordoned)节点的细节,其中的 Condition 字段可能包括
|
||||
`SchedulingDisabled`。`SchedulingDisabled` 不是 Kubernetes API 中定义的
|
||||
Condition,被保护起来的节点在其规约中被标记为不可调度(Unschedulable)。
|
||||
{{< /note >}}
|
||||
|
||||
<!--
|
||||
In the Kubernetes API, a node's condition is represented as part of the `.status`
|
||||
of the Node resource. For example, the following JSON structure describes a healthy node:
|
||||
-->
|
||||
在 Kubernetes API 中,节点的状况表示节点资源中 `.status` 的一部分。
|
||||
例如,以下 JSON 结构描述了一个健康节点:
|
||||
|
||||
```json
|
||||
"conditions": [
|
||||
{
|
||||
"type": "Ready",
|
||||
"status": "True",
|
||||
"reason": "KubeletReady",
|
||||
"message": "kubelet is posting ready status",
|
||||
"lastHeartbeatTime": "2019-06-05T18:38:35Z",
|
||||
"lastTransitionTime": "2019-06-05T11:41:27Z"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
<!--
|
||||
When problems occur on nodes, the Kubernetes control plane automatically creates
|
||||
[taints](/docs/concepts/scheduling-eviction/taint-and-toleration/) that match the conditions
|
||||
affecting the node. An example of this is when the `status` of the Ready condition
|
||||
remains `Unknown` or `False` for longer than the kube-controller-manager's `NodeMonitorGracePeriod`,
|
||||
which defaults to 40 seconds. This will cause either an `node.kubernetes.io/unreachable` taint, for an `Unknown` status,
|
||||
or a `node.kubernetes.io/not-ready` taint, for a `False` status, to be added to the Node.
|
||||
-->
|
||||
当节点上出现问题时,Kubernetes 控制面会自动创建与影响节点的状况对应的
|
||||
[污点](/zh-cn/docs/concepts/scheduling-eviction/taint-and-toleration/)。
|
||||
例如当 Ready 状况的 `status` 保持 `Unknown` 或 `False` 的时间长于
|
||||
kube-controller-manager 的 `NodeMonitorGracePeriod`(默认为 40 秒)时,
|
||||
会造成 `Unknown` 状态下为节点添加 `node.kubernetes.io/unreachable` 污点或在
|
||||
`False` 状态下为节点添加 `node.kubernetes.io/not-ready` 污点。
|
||||
|
||||
<!--
|
||||
These taints affect pending pods as the scheduler takes the Node's taints into consideration when
|
||||
assigning a pod to a Node. Existing pods scheduled to the node may be evicted due to the application
|
||||
of `NoExecute` taints. Pods may also have {{< glossary_tooltip text="tolerations" term_id="toleration" >}} that let
|
||||
them schedule to and continue running on a Node even though it has a specific taint.
|
||||
-->
|
||||
这些污点会影响悬决的 Pod,因为调度器在将 Pod 分配到节点时会考虑节点的污点。
|
||||
已调度到节点的当前 Pod 可能会由于施加的 `NoExecute` 污点被驱逐。
|
||||
Pod 还可以设置{{< glossary_tooltip text="容忍度" term_id="toleration" >}},
|
||||
使得这些 Pod 仍然能够调度到且继续运行在设置了特定污点的节点上。
|
||||
|
||||
<!--
|
||||
See [Taint Based Evictions](/docs/concepts/scheduling-eviction/taint-and-toleration/#taint-based-evictions) and
|
||||
[Taint Nodes by Condition](/docs/concepts/scheduling-eviction/taint-and-toleration/#taint-nodes-by-condition)
|
||||
for more details.
|
||||
-->
|
||||
进一步的细节可参阅[基于污点的驱逐](/zh-cn/docs/concepts/scheduling-eviction/taint-and-toleration/#taint-based-evictions)
|
||||
和[根据状况为节点设置污点](/zh-cn/docs/concepts/scheduling-eviction/taint-and-toleration/#taint-nodes-by-condition)。
|
||||
|
||||
<!--
|
||||
## Capacity and Allocatable {#capacity}
|
||||
|
||||
Describes the resources available on the node: CPU, memory, and the maximum
|
||||
number of pods that can be scheduled onto the node.
|
||||
-->
|
||||
### 容量(Capacity)与可分配(Allocatable) {#capacity}
|
||||
|
||||
这两个值描述节点上的可用资源:CPU、内存和可以调度到节点上的 Pod 的个数上限。
|
||||
|
||||
<!--
|
||||
The fields in the capacity block indicate the total amount of resources that a
|
||||
Node has. The allocatable block indicates the amount of resources on a
|
||||
Node that is available to be consumed by normal Pods.
|
||||
-->
|
||||
`capacity` 块中的字段标示节点拥有的资源总量。
|
||||
`allocatable` 块指示节点上可供普通 Pod 使用的资源量。
|
||||
|
||||
<!--
|
||||
You may read more about capacity and allocatable resources while learning how
|
||||
to [reserve compute resources](/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable)
|
||||
on a Node.
|
||||
-->
|
||||
你可以通过学习如何在节点上[预留计算资源](/zh-cn/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable)
|
||||
来进一步了解有关容量和可分配资源的信息。
|
||||
|
||||
<!--
|
||||
## Info
|
||||
|
||||
Describes general information about the node, such as kernel version, Kubernetes
|
||||
version (kubelet and kube-proxy version), container runtime details, and which
|
||||
operating system the node uses.
|
||||
The kubelet gathers this information from the node and publishes it into
|
||||
the Kubernetes API.
|
||||
-->
|
||||
### 信息(Info) {#info}
|
||||
|
||||
Info 指的是节点的一般信息,如内核版本、Kubernetes 版本(`kubelet` 和 `kube-proxy` 版本)、
|
||||
容器运行时详细信息,以及节点使用的操作系统。
|
||||
`kubelet` 从节点收集这些信息并将其发布到 Kubernetes API。
|
||||
|
||||
<!--
|
||||
## Heartbeats
|
||||
|
||||
Heartbeats, sent by Kubernetes nodes, help your cluster determine the
|
||||
availability of each node, and to take action when failures are detected.
|
||||
-->
|
||||
## 心跳 {#heartbeats}
|
||||
|
||||
Kubernetes 节点发送的心跳帮助你的集群确定每个节点的可用性,并在检测到故障时采取行动。
|
||||
|
||||
<!--
|
||||
For nodes there are two forms of heartbeats:
|
||||
|
||||
* updates to the `.status` of a Node
|
||||
* [Lease](/docs/concepts/architecture/leases/) objects
|
||||
within the `kube-node-lease`
|
||||
{{< glossary_tooltip term_id="namespace" text="namespace">}}.
|
||||
Each Node has an associated Lease object.
|
||||
-->
|
||||
对于节点,有两种形式的心跳:
|
||||
|
||||
* 更新节点的 `.status`
|
||||
* `kube-node-lease` {{<glossary_tooltip term_id="namespace" text="名字空间">}}中的
|
||||
[Lease(租约)](/zh-cn/docs/concepts/architecture/leases/)对象。
|
||||
每个节点都有一个关联的 Lease 对象。
|
||||
|
||||
<!--
|
||||
Compared to updates to `.status` of a Node, a Lease is a lightweight resource.
|
||||
Using Leases for heartbeats reduces the performance impact of these updates
|
||||
for large clusters.
|
||||
|
||||
The kubelet is responsible for creating and updating the `.status` of Nodes,
|
||||
and for updating their related Leases.
|
||||
-->
|
||||
与节点的 `.status` 更新相比,Lease 是一种轻量级资源。
|
||||
使用 Lease 来表达心跳在大型集群中可以减少这些更新对性能的影响。
|
||||
|
||||
kubelet 负责创建和更新节点的 `.status`,以及更新它们对应的 Lease。
|
||||
|
||||
<!--
|
||||
- The kubelet updates the node's `.status` either when there is change in status
|
||||
or if there has been no update for a configured interval. The default interval
|
||||
for `.status` updates to Nodes is 5 minutes, which is much longer than the 40
|
||||
second default timeout for unreachable nodes.
|
||||
- The kubelet creates and then updates its Lease object every 10 seconds
|
||||
(the default update interval). Lease updates occur independently from
|
||||
updates to the Node's `.status`. If the Lease update fails, the kubelet retries,
|
||||
using exponential backoff that starts at 200 milliseconds and capped at 7 seconds.
|
||||
-->
|
||||
- 当节点状态发生变化时,或者在配置的时间间隔内没有更新事件时,kubelet 会更新 `.status`。
|
||||
`.status` 更新的默认间隔为 5 分钟(比节点不可达事件的 40 秒默认超时时间长很多)。
|
||||
- `kubelet` 会创建并每 10 秒(默认更新间隔时间)更新 Lease 对象。
|
||||
Lease 的更新独立于节点的 `.status` 更新而发生。
|
||||
如果 Lease 的更新操作失败,kubelet 会采用指数回退机制,从 200 毫秒开始重试,
|
||||
最长重试间隔为 7 秒钟。
|
Loading…
Reference in New Issue