Merge pull request #33352 from JarHMJ/content/zh/docs/tasks/debug-application-cluster/resource-metrics-pipeline.md
[zh] sync Resource metrics pipeline of task sectionpull/33363/head
commit
2c6a497b16
|
@ -1,417 +0,0 @@
|
|||
---
|
||||
title: 资源指标管道
|
||||
content_type: concept
|
||||
---
|
||||
<!--
|
||||
reviewers:
|
||||
- fgrzadkowski
|
||||
- piosz
|
||||
title: Resource metrics pipeline
|
||||
content_type: concept
|
||||
-->
|
||||
|
||||
<!-- overview -->
|
||||
|
||||
<!--
|
||||
For Kubernetes, the _Metrics API_ offers a basic set of metrics to support automatic scaling and
|
||||
similar use cases. This API makes information available about resource usage for node and pod,
|
||||
including metrics for CPU and memory. If you deploy the Metrics API into your cluster, clients of
|
||||
the Kubernetes API can then query for this information, and you can use Kubernetes' access control
|
||||
mechanisms to manage permissions to do so.
|
||||
|
||||
The [HorizontalPodAutoscaler](/docs/tasks/run-application/horizontal-pod-autoscale/) (HPA) and
|
||||
[VerticalPodAutoscaler](https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#readme) (VPA)
|
||||
use data from the metrics API to adjust workload replicas and resources to meet customer demand.
|
||||
|
||||
You can also view the resource metrics using the
|
||||
[`kubectl top`](/docs/reference/generated/kubectl/kubectl-commands#top)
|
||||
command.
|
||||
-->
|
||||
|
||||
对于 Kubernetes,_Metrics API_ 提供了一组基本的指标,以支持自动伸缩和类似的用例。
|
||||
该 API 提供有关节点和 Pod 的资源使用情况的信息,
|
||||
包括 CPU 和内存的指标。如果将 Metrics API 部署到集群中,
|
||||
那么 Kubernetes API 的客户端就可以查询这些信息,并且可以使用 Kubernetes 的访问控制机制来管理权限。
|
||||
|
||||
[HorizontalPodAutoscaler](/zh/docs/tasks/run-application/horizontal-pod-autoscale/) (HPA) 和
|
||||
[VerticalPodAutoscaler](https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#readme) (VPA)
|
||||
使用 metrics API 中的数据调整工作负载副本和资源,以满足客户需求。
|
||||
|
||||
你也可以通过 [`kubectl top`](/zh/docs/reference/generated/kubectl/kubectl-commands#top) 命令来查看资源指标。
|
||||
|
||||
{{< note >}}
|
||||
<!--
|
||||
The Metrics API, and the metrics pipeline that it enables, only offers the minimum
|
||||
CPU and memory metrics to enable automatic scaling using HPA and / or VPA.
|
||||
If you would like to provide a more complete set of metrics, you can complement
|
||||
the simpler Metrics API by deploying a second
|
||||
[metrics pipeline](/docs/tasks/debug-application-cluster/resource-usage-monitoring/#full-metrics-pipeline)
|
||||
that uses the _Custom Metrics API_.
|
||||
-->
|
||||
Metrics API 及其启用的指标管道仅提供最少的 CPU 和内存指标,以启用使用 HPA 和/或 VPA 的自动扩展。
|
||||
如果你想提供更完整的指标集,你可以通过部署使用 _Custom Metrics API_ 的第二个
|
||||
[指标管道](/zh/docs/tasks/debug-application-cluster/resource-usage-monitoring/#full-metrics-pipeline) 来作为简单的 Metrics API 的补充。
|
||||
{{< /note >}}
|
||||
|
||||
<!--
|
||||
Figure 1 illustrates the architecture of the resource metrics pipeline.
|
||||
-->
|
||||
图 1 说明了资源指标管道的架构。
|
||||
|
||||
{{< mermaid >}}
|
||||
flowchart RL
|
||||
subgraph cluster[Cluster]
|
||||
direction RL
|
||||
S[ <br><br> ]
|
||||
A[Metrics-<br>Server]
|
||||
subgraph B[Nodes]
|
||||
direction TB
|
||||
D[cAdvisor] --> C[kubelet]
|
||||
E[Container<br>runtime] --> D
|
||||
E1[Container<br>runtime] --> D
|
||||
P[pod data] -.- C
|
||||
end
|
||||
L[API<br>server]
|
||||
W[HPA]
|
||||
C ---->|Summary<br>API| A -->|metrics<br>API| L --> W
|
||||
end
|
||||
L ---> K[kubectl<br>top]
|
||||
classDef box fill:#fff,stroke:#000,stroke-width:1px,color:#000;
|
||||
class W,B,P,K,cluster,D,E,E1 box
|
||||
classDef spacewhite fill:#ffffff,stroke:#fff,stroke-width:0px,color:#000
|
||||
class S spacewhite
|
||||
classDef k8s fill:#326ce5,stroke:#fff,stroke-width:1px,color:#fff;
|
||||
class A,L,C k8s
|
||||
{{< /mermaid >}}
|
||||
|
||||
<!--
|
||||
Figure 1. Resource Metrics Pipeline
|
||||
|
||||
The architecture components, from right to left in the figure, consist of the following:
|
||||
|
||||
* [cAdvisor](https://github.com/google/cadvisor): Daemon for collecting, aggregating and exposing
|
||||
container metrics included in Kubelet.
|
||||
* [kubelet](/docs/concepts/overview/components/#kubelet): Node agent for managing container
|
||||
resources. Resource metrics are accessible using the `/metrics/resource` and `/stats` kubelet
|
||||
API endpoints.
|
||||
* [Summary API](#summary-api-source): API provided by the kubelet for discovering and retrieving
|
||||
per-node summarized stats available through the `/stats` endpoint.
|
||||
* [metrics-server](#metrics-server): Cluster addon component that collects and aggregates resource
|
||||
metrics pulled from each kubelet. The API server serves Metrics API for use by HPA, VPA, and by
|
||||
the `kubectl top` command. Metrics Server is a reference implementation of the Metrics API.
|
||||
* [Metrics API](#metrics-api): Kubernetes API supporting access to CPU and memory used for
|
||||
workload autoscaling. To make this work in your cluster, you need an API extension server that
|
||||
provides the Metrics API.
|
||||
-->
|
||||
图 1. 资源指标管道
|
||||
|
||||
图中从右到左的架构组件包括以下内容:
|
||||
|
||||
* [cAdvisor](https://github.com/google/cadvisor): 用于收集、聚合和公开 Kubelet 中包含的容器指标的守护程序。
|
||||
* [kubelet](/zh/docs/concepts/overview/components/#kubelet): 用于管理容器资源的节点代理。
|
||||
可以使用 `/metrics/resource` 和 `/stats` kubelet API 端点访问资源指标。
|
||||
* [Summary API](#summary-api-source): kubelet 提供的 API,用于发现和检索可通过 `/stats` 端点获得的每个节点的汇总统计信息。
|
||||
* [metrics-server](#metrics-server): 集群插件组件,用于收集和聚合从每个 kubelet 中提取的资源指标。
|
||||
API 服务器提供 Metrics API 以供 HPA、VPA 和 `kubectl top` 命令使用。 Metrics Server 是 Metrics API 的参考实现。
|
||||
* [Metrics API](#metrics-api): Kubernetes API 支持访问用于工作负载自动缩放的 CPU 和内存。
|
||||
要在你的集群中进行这项工作,你需要一个提供 Metrics API 的 API 扩展服务器。
|
||||
|
||||
<!--
|
||||
cAdvisor supports reading metrics from cgroups, which works with typical container runtimes on Linux.
|
||||
If you use a container runtime that uses another resource isolation mechanism, for example
|
||||
virtualization, then that container runtime must support
|
||||
[CRI Container Metrics](https://github.com/kubernetes/community/blob/master/contributors/devel/sig-node/cri-container-stats.md)
|
||||
in order for metrics to be available to the kubelet.
|
||||
-->
|
||||
{{< note >}}
|
||||
cAdvisor 支持从 cgroups 读取指标,它适用于 Linux 上的典型容器运行时。
|
||||
如果你使用基于其他资源隔离机制的容器运行时,例如虚拟化,那么该容器运行时必须支持
|
||||
[CRI 容器指标](https://github.com/kubernetes/community/blob/master/contributors/devel/sig-node/cri-container-stats.md)
|
||||
以便 kubelet 可以使用指标。
|
||||
{{< /note >}}
|
||||
|
||||
<!-- body -->
|
||||
|
||||
<!--
|
||||
## Metrics API
|
||||
|
||||
The metrics-server implements the Metrics API. This API allows you to access CPU and memory usage
|
||||
for the nodes and pods in your cluster. Its primary role is to feed resource usage metrics to K8s
|
||||
autoscaler components.
|
||||
|
||||
Here is an example of the Metrics API request for a `minikube` node piped through `jq` for easier
|
||||
reading:
|
||||
|
||||
-->
|
||||
## Metrics API {#the-metrics-api}
|
||||
|
||||
{{< feature-state for_k8s_version="1.8" state="beta" >}}
|
||||
|
||||
metrics-server 实现了 Metrics API。此 API 允许你访问集群中节点和 Pod 的 CPU 和内存使用情况。
|
||||
它的主要作用是将资源使用指标提供给 K8s 自动缩放器组件。
|
||||
|
||||
下面是一个 `minikube` 节点的 Metrics API 请求示例,通过 `jq` 管道处理以便于阅读:
|
||||
|
||||
```shell
|
||||
kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes/minikube" | jq '.'
|
||||
```
|
||||
|
||||
<!-- Here is the same API call using `curl`: -->
|
||||
这是使用 `curl` 来执行的相同 API 调用:
|
||||
|
||||
```shell
|
||||
curl http://localhost:8080/apis/metrics.k8s.io/v1beta1/nodes/minikube
|
||||
```
|
||||
|
||||
<!-- Sample response: -->
|
||||
响应示例:
|
||||
|
||||
```json
|
||||
{
|
||||
"kind": "NodeMetrics",
|
||||
"apiVersion": "metrics.k8s.io/v1beta1",
|
||||
"metadata": {
|
||||
"name": "minikube",
|
||||
"selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/minikube",
|
||||
"creationTimestamp": "2022-01-27T18:48:43Z"
|
||||
},
|
||||
"timestamp": "2022-01-27T18:48:33Z",
|
||||
"window": "30s",
|
||||
"usage": {
|
||||
"cpu": "487558164n",
|
||||
"memory": "732212Ki"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<!--
|
||||
Here is an example of the Metrics API request for a `kube-scheduler-minikube` pod contained in the
|
||||
`kube-system` namespace and piped through `jq` for easier reading:
|
||||
-->
|
||||
|
||||
下面是一个 `kube-system` 命名空间中的 `kube-scheduler-minikube` Pod 的 Metrics API 请求示例,
|
||||
通过 `jq` 管道处理以便于阅读:
|
||||
|
||||
```shell
|
||||
kubectl get --raw "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-scheduler-minikube" | jq '.'
|
||||
```
|
||||
|
||||
<!-- Here is the same API call using `curl`: -->
|
||||
这是使用 `curl` 来完成的相同 API 调用:
|
||||
|
||||
```shell
|
||||
curl http://localhost:8080/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-scheduler-minikube
|
||||
```
|
||||
|
||||
<!-- Sample response: -->
|
||||
响应示例:
|
||||
|
||||
```json
|
||||
{
|
||||
"kind": "PodMetrics",
|
||||
"apiVersion": "metrics.k8s.io/v1beta1",
|
||||
"metadata": {
|
||||
"name": "kube-scheduler-minikube",
|
||||
"namespace": "kube-system",
|
||||
"selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-scheduler-minikube",
|
||||
"creationTimestamp": "2022-01-27T19:25:00Z"
|
||||
},
|
||||
"timestamp": "2022-01-27T19:24:31Z",
|
||||
"window": "30s",
|
||||
"containers": [
|
||||
{
|
||||
"name": "kube-scheduler",
|
||||
"usage": {
|
||||
"cpu": "9559630n",
|
||||
"memory": "22244Ki"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
<!--
|
||||
The Metrics API is defined in the [k8s.io/metrics](https://github.com/kubernetes/metrics)
|
||||
repository. You must enable the [API aggregation layer](/docs/tasks/extend-kubernetes/configure-aggregation-layer/)
|
||||
and register an [APIService](/docs/reference/kubernetes-api/cluster-resources/api-service-v1/)
|
||||
for the `metrics.k8s.io` API.
|
||||
|
||||
To learn more about the Metrics API, see [resource metrics API design](https://github.com/kubernetes/design-proposals-archive/blob/main/instrumentation/resource-metrics-api.md),
|
||||
the [metrics-server repository](https://github.com/kubernetes-sigs/metrics-server) and the
|
||||
[resource metrics API](https://github.com/kubernetes/metrics#resource-metrics-api).
|
||||
-->
|
||||
|
||||
Metrics API 在 [k8s.io/metrics](https://github.com/kubernetes/metrics) 代码库中定义。
|
||||
你必须启用 [API 聚合层](/zh/docs/tasks/extend-kubernetes/configure-aggregation-layer/)并为
|
||||
`metrics.k8s.io` API 注册一个 [APIService](/zh/docs/reference/kubernetes-api/cluster-resources/api-service-v1/)。
|
||||
|
||||
要了解有关 Metrics API 的更多信息,
|
||||
请参阅资源 [Resource Metrics API Design](https://github.com/kubernetes/design-proposals-archive/blob/main/instrumentation/resource-metrics-api.md)、
|
||||
[metrics-server 代码库](https://github.com/kubernetes-sigs/metrics-server) 和
|
||||
[Resource Metrics API](https://github.com/kubernetes/metrics#resource-metrics-api)。
|
||||
|
||||
<!--
|
||||
You must deploy the metrics-server or alternative adapter that serves the Metrics API to be able
|
||||
to access it.
|
||||
-->
|
||||
{{< note >}}
|
||||
你必须部署提供 Metrics API 服务的 metrics-server 或其他适配器才能访问它。
|
||||
{{< /note >}}
|
||||
|
||||
<!--
|
||||
## Measuring Resource Usage
|
||||
|
||||
### CPU
|
||||
|
||||
CPU is reported as the average core usage measured in cpu units. One cpu, in Kubernetes, is
|
||||
equivalent to 1 vCPU/Core for cloud providers, and 1 hyper-thread on bare-metal Intel processors.
|
||||
|
||||
This value is derived by taking a rate over a cumulative CPU counter provided by the kernel (in
|
||||
both Linux and Windows kernels). The time window used to calculate CPU is shown under window field
|
||||
in Metrics API.
|
||||
|
||||
To learn more about how Kubernetes allocates and measures CPU resources, see
|
||||
[meaning of CPU](/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu).
|
||||
-->
|
||||
## 度量资源用量 {#measuring-resource-usage}
|
||||
|
||||
### CPU
|
||||
|
||||
CPU 报告为以 cpu 为单位测量的平均核心使用率。在 Kubernetes 中,
|
||||
一个 cpu 相当于云提供商的 1 个 vCPU/Core,以及裸机 Intel 处理器上的 1 个超线程。
|
||||
|
||||
该值是通过对内核提供的累积 CPU 计数器(在 Linux 和 Windows 内核中)取一个速率得出的。
|
||||
用于计算 CPU 的时间窗口显示在 Metrics API 的窗口字段下。
|
||||
|
||||
要了解更多关于 Kubernetes 如何分配和测量 CPU 资源的信息,请参阅
|
||||
[CPU 的含义](/zh/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu)。
|
||||
|
||||
<!--
|
||||
### Memory
|
||||
|
||||
Memory is reported as the working set, measured in bytes, at the instant the metric was collected.
|
||||
|
||||
In an ideal world, the "working set" is the amount of memory in-use that cannot be freed under
|
||||
memory pressure. However, calculation of the working set varies by host OS, and generally makes
|
||||
heavy use of heuristics to produce an estimate.
|
||||
|
||||
The Kubernetes model for a container's working set expects that the container runtime counts
|
||||
anonymous memory associated with the container in question. The working set metric typically also
|
||||
includes some cached (file-backed) memory, because the host OS cannot always reclaim pages.
|
||||
|
||||
To learn more about how Kubernetes allocates and measures memory resources, see
|
||||
[meaning of memory](/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory).
|
||||
-->
|
||||
### 内存 {#memory}
|
||||
|
||||
内存报告为在收集度量标准的那一刻的工作集大小,以字节为单位。
|
||||
|
||||
在理想情况下,“工作集”是在内存压力下无法释放的正在使用的内存量。
|
||||
然而,工作集的计算因主机操作系统而异,并且通常大量使用启发式算法来产生估计。
|
||||
|
||||
Kubernetes 模型中,容器工作集是由容器运行时计算的与相关容器关联的匿名内存。
|
||||
工作集指标通常还包括一些缓存(文件支持)内存,因为主机操作系统不能总是回收页面。
|
||||
|
||||
要了解有关 Kubernetes 如何分配和测量内存资源的更多信息,
|
||||
请参阅[内存的含义](/zh/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory)。
|
||||
|
||||
<!--
|
||||
## Metrics Server
|
||||
|
||||
The metrics-server fetches resource metrics from the kubelets and exposes them in the Kubernetes
|
||||
API server through the Metrics API for use by the HPA and VPA. You can also view these metrics
|
||||
using the `kubectl top` command.
|
||||
|
||||
The metrics-server uses the Kubernetes API to track nodes and pods in your cluster. The
|
||||
metrics-server queries each node over HTTP to fetch metrics. The metrics-server also builds an
|
||||
internal view of pod metadata, and keeps a cache of pod health. That cached pod health information
|
||||
is available via the extension API that the metrics-server makes available.
|
||||
|
||||
For example with an HPA query, the metrics-server needs to identify which pods fulfill the label
|
||||
selectors in the deployment.
|
||||
-->
|
||||
## Metrics 服务器 {#metrics-server}
|
||||
|
||||
metrics-server 从 kubelet 中获取资源指标,并通过 Metrics API 在 Kubernetes API 服务器中公开它们,以供 HPA 和 VPA 使用。
|
||||
你还可以使用 `kubectl top` 命令查看这些指标。
|
||||
|
||||
metrics-server 使用 Kubernetes API 来跟踪集群中的节点和 Pod。metrics-server 服务器通过 HTTP 查询每个节点以获取指标。
|
||||
metrics-server 还构建了 Pod 元数据的内部视图,并维护 Pod 健康状况的缓存。
|
||||
缓存的 Pod 健康信息可通过 metrics-server 提供的扩展 API 获得。
|
||||
|
||||
例如,对于 HPA 查询,metrics-server 需要确定哪些 Pod 满足 Deployment 中的标签选择器。
|
||||
|
||||
<!--
|
||||
The metrics-server calls the [kubelet](/docs/reference/command-line-tools-reference/kubelet/) API
|
||||
to collect metrics from each node. Depending on the metrics-server version it uses:
|
||||
|
||||
* Metrics resource endpoint `/metrics/resource` in version v0.6.0+ or
|
||||
* Summary API endpoint `/stats/summary` in older versions
|
||||
-->
|
||||
metrics-server 调用 [kubelet](/zh/docs/reference/command-line-tools-reference/kubelet/) API
|
||||
从每个节点收集指标。根据它使用的度量服务器版本:
|
||||
|
||||
* 版本 v0.6.0+ 中,使用指标资源端点 `/metrics/resource`
|
||||
* 旧版本中使用 Summary API 端点 `/stats/summary`
|
||||
|
||||
<!--
|
||||
To learn more about the metrics-server, see the
|
||||
[metrics-server repository](https://github.com/kubernetes-sigs/metrics-server).
|
||||
|
||||
You can also check out the following:
|
||||
|
||||
* [metrics-server design](https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md)
|
||||
* [metrics-server FAQ](https://github.com/kubernetes-sigs/metrics-server/blob/master/FAQ.md)
|
||||
* [metrics-server known issues](https://github.com/kubernetes-sigs/metrics-server/blob/master/KNOWN_ISSUES.md)
|
||||
* [metrics-server releases](https://github.com/kubernetes-sigs/metrics-server/releases)
|
||||
* [Horizontal Pod Autoscaling](/docs/tasks/run-application/horizontal-pod-autoscale/)
|
||||
-->
|
||||
|
||||
了解更多 metrics-server,参阅 [metrics-server 代码库](https://github.com/kubernetes-sigs/metrics-server)。
|
||||
|
||||
你还可以查看以下内容:
|
||||
|
||||
* [metrics-server 设计](https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md)
|
||||
* [metrics-server FAQ](https://github.com/kubernetes-sigs/metrics-server/blob/master/FAQ.md)
|
||||
* [metrics-server known issues](https://github.com/kubernetes-sigs/metrics-server/blob/master/KNOWN_ISSUES.md)
|
||||
* [metrics-server releases](https://github.com/kubernetes-sigs/metrics-server/releases)
|
||||
* [Horizontal Pod Autoscaling](/zh/docs/tasks/run-application/horizontal-pod-autoscale/)
|
||||
|
||||
<!--
|
||||
### Summary API Source
|
||||
|
||||
The [Kubelet](/docs/reference/command-line-tools-reference/kubelet/) gathers stats at node, volume, pod and container level, and emits
|
||||
them in the [Summary API](https://github.com/kubernetes/kubernetes/blob/7d309e0104fedb57280b261e5677d919cb2a0e2d/staging/src/k8s.io/kubelet/pkg/apis/stats/v1alpha1/types.go)
|
||||
for consumers to read.
|
||||
-->
|
||||
|
||||
### Summary API 来源
|
||||
|
||||
[Kubelet](/zh/docs/reference/command-line-tools-reference/kubelet/) 在节点、卷、Pod 和容器级别收集统计信息,
|
||||
并在[Summary API](https://github.com/kubernetes/kubernetes/blob/7d309e0104fedb57280b261e5677d919cb2a0e2d/staging/src/k8s.io/kubelet/pkg/apis/stats/v1alpha1/types.go)
|
||||
中提供它们的统计信息供消费者阅读。
|
||||
|
||||
<!--
|
||||
Here is an example of a Summary API request for a `minikube` node:
|
||||
-->
|
||||
|
||||
下面是一个 `minikube` 节点的 Summary API 请求示例:
|
||||
|
||||
```shell
|
||||
kubectl get --raw "/api/v1/nodes/minikube/proxy/stats/summary"
|
||||
```
|
||||
|
||||
<!-- Here is the same API call using `curl`: -->
|
||||
这是使用 `curl` 来执行的相同 API 调用:
|
||||
|
||||
```shell
|
||||
curl http://localhost:8080/api/v1/nodes/minikube/proxy/stats/summary
|
||||
```
|
||||
|
||||
{{< note >}}
|
||||
<!--
|
||||
The summary API `/stats/summary` endpoint will be replaced by the `/metrics/resource` endpoint
|
||||
beginning with metrics-server 0.6.x.
|
||||
-->
|
||||
从 metrics-server 0.6.x 开始,Summary API `/stats/summary` 端点被 `/metrics/resource` 端点替换。
|
||||
{{< /note >}}
|
|
@ -1,6 +1,7 @@
|
|||
---
|
||||
title: 资源指标管道
|
||||
content_type: concept
|
||||
weight: 15
|
||||
---
|
||||
<!--
|
||||
reviewers:
|
||||
|
@ -8,6 +9,7 @@ reviewers:
|
|||
- piosz
|
||||
title: Resource metrics pipeline
|
||||
content_type: concept
|
||||
weight: 15
|
||||
-->
|
||||
|
||||
<!-- overview -->
|
||||
|
|
Loading…
Reference in New Issue