Updated more of the outdated links
Links referencing API spec has been pointed to v1alpha1 which was current at the time of the blog post.pull/32067/head
parent
23bf4cea16
commit
2bfad1bc05
|
@ -30,15 +30,15 @@ This led to design principles that allow the Gateway API to improve upon Ingress
|
|||
|
||||
The Gateway API introduces a few new resource types:
|
||||
|
||||
- **[GatewayClasses](https://gateway-api.sigs.k8s.io/references/spec/#networking.x-k8s.io/v1alpha1.GatewayClass)** are cluster-scoped resources that act as templates to explicitly define behavior for Gateways derived from them. This is similar in concept to StorageClasses, but for networking data-planes.
|
||||
- **[Gateways](https://gateway-api.sigs.k8s.io/references/spec/#networking.x-k8s.io/v1alpha1.Gateway)** are the deployed instances of GatewayClasses. They are the logical representation of the data-plane which performs routing, which may be in-cluster proxies, hardware LBs, or cloud LBs.
|
||||
- **Routes** are not a single resource, but represent many different protocol-specific Route resources. The [HTTPRoute](https://gateway-api.sigs.k8s.io/references/spec/#networking.x-k8s.io/v1alpha1.HTTPRoute) has matching, filtering, and routing rules that get applied to Gateways that can process HTTP and HTTPS traffic. Similarly, there are [TCPRoutes](https://gateway-api.sigs.k8s.io/references/spec/#networking.x-k8s.io/v1alpha1.TCPRoute), [UDPRoutes](https://gateway-api.sigs.k8s.io/references/spec/#networking.x-k8s.io/v1alpha1.UDPRoute), and [TLSRoutes](https://gateway-api.sigs.k8s.io/references/spec/#networking.x-k8s.io/v1alpha1.TLSRoute) which also have protocol-specific semantics. This model also allows the Gateway API to incrementally expand its protocol support in the future.
|
||||
- **[GatewayClasses](https://gateway-api.sigs.k8s.io/v1alpha1/references/spec/#networking.x-k8s.io/v1alpha1.GatewayClass)** are cluster-scoped resources that act as templates to explicitly define behavior for Gateways derived from them. This is similar in concept to StorageClasses, but for networking data-planes.
|
||||
- **[Gateways](https://gateway-api.sigs.k8s.io/v1alpha1/references/spec/#networking.x-k8s.io/v1alpha1.Gateway)** are the deployed instances of GatewayClasses. They are the logical representation of the data-plane which performs routing, which may be in-cluster proxies, hardware LBs, or cloud LBs.
|
||||
- **Routes** are not a single resource, but represent many different protocol-specific Route resources. The [HTTPRoute](https://gateway-api.sigs.k8s.io/v1alpha1/references/spec/#networking.x-k8s.io/v1alpha1.HTTPRoute) has matching, filtering, and routing rules that get applied to Gateways that can process HTTP and HTTPS traffic. Similarly, there are [TCPRoutes](https://gateway-api.sigs.k8s.io/v1alpha1/references/spec/#networking.x-k8s.io/v1alpha1.TCPRoute), [UDPRoutes](https://gateway-api.sigs.k8s.io/v1alpha1/references/spec/#networking.x-k8s.io/v1alpha1.UDPRoute), and [TLSRoutes](https://gateway-api.sigs.k8s.io/v1alpha1/references/spec/#networking.x-k8s.io/v1alpha1.TLSRoute) which also have protocol-specific semantics. This model also allows the Gateway API to incrementally expand its protocol support in the future.
|
||||
|
||||

|
||||
|
||||
### Gateway Controller Implementations
|
||||
|
||||
The good news is that although Gateway is in [Alpha](https://github.com/kubernetes-sigs/gateway-api/releases), there are already several [Gateway controller implementations](https://gateway-api.sigs.k8s.io/implementations/) that you can run. Since it’s a standardized spec, the following example could be run on any of them and should function the exact same way. Check out [getting started](https://gateway-api.sigs.k8s.io/guides/getting-started/) to see how to install and use one of these Gateway controllers.
|
||||
The good news is that although Gateway is in [Alpha](https://github.com/kubernetes-sigs/gateway-api/releases), there are already several [Gateway controller implementations](https://gateway-api.sigs.k8s.io/implementations/) that you can run. Since it’s a standardized spec, the following example could be run on any of them and should function the exact same way. Check out [getting started](https://gateway-api.sigs.k8s.io/v1alpha1/guides/getting-started/) to see how to install and use one of these Gateway controllers.
|
||||
|
||||
## Getting Hands-on with the Gateway API
|
||||
|
||||
|
@ -134,7 +134,7 @@ spec:
|
|||
|
||||
So we have two HTTPRoutes matching and routing traffic to different Services. You might be wondering, where are these Services accessible? Through which networks or IPs are they exposed?
|
||||
|
||||
How Routes are exposed to clients is governed by [Route binding](https://gateway-api.sigs.k8s.io/concepts/api-overview/#route-binding), which describes how Routes and Gateways create a bidirectional relationship between each other. When Routes are bound to a Gateway it means their collective routing rules are configured on the underlying load balancers or proxies and the Routes are accessible through the Gateway. Thus, a Gateway is a logical representation of a networking data plane that can be configured through Routes.
|
||||
How Routes are exposed to clients is governed by [Route binding](https://gateway-api.sigs.k8s.io/concepts/api-overview/#route-resources), which describes how Routes and Gateways create a bidirectional relationship between each other. When Routes are bound to a Gateway it means their collective routing rules are configured on the underlying load balancers or proxies and the Routes are accessible through the Gateway. Thus, a Gateway is a logical representation of a networking data plane that can be configured through Routes.
|
||||
|
||||
|
||||

|
||||
|
@ -192,6 +192,6 @@ When you put it all together, you have a single load balancing infrastructure th
|
|||
|
||||
There are many resources to check out to learn more.
|
||||
|
||||
* Check out the [user guides](https://gateway-api.sigs.k8s.io/guides/getting-started/) to see what use-cases can be addressed.
|
||||
* Check out the [user guides](https://gateway-api.sigs.k8s.io/v1alpha1/guides/getting-started/) to see what use-cases can be addressed.
|
||||
* Try out one of the [existing Gateway controllers ](https://gateway-api.sigs.k8s.io/implementations/)
|
||||
* Or [get involved](https://gateway-api.sigs.k8s.io/contributing/community/) and help design and influence the future of Kubernetes service networking!
|
||||
|
|
Loading…
Reference in New Issue