**NOTE:** A [`Deployment`](/docs/concepts/workloads/controllers/deployment/) that configures a [`ReplicaSet`](/docs/concepts/workloads/controllers/replicaset/) is now the recommended way to set up replication.
The `.spec.template` is a [pod template](/docs/concepts/workloads/pods/pod-overview/#pod-templates). It has exactly the same schema as a [pod](/docs/concepts/workloads/pods/pod/), except it is nested and does not have an `apiVersion` or `kind`.
Only a [`.spec.template.spec.restartPolicy`](/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy) equal to `Always` is allowed, which is the default if not specified.
When using the REST API or go client library, simply delete the ReplicationController object.
Once the original is deleted, you can create a new ReplicationController to replace it. As long
as the old and new `.spec.selector` are the same, then the new one will adopt the old pods.
However, it will not make any effort to make existing pods match a new, different pod template.
To update pods to a new spec in a controlled way, use a [rolling update](#rolling-updates).
### Isolating pods from a ReplicationController
Pods may be removed from a ReplicationController's target set by changing their labels. This technique may be used to remove pods from service for debugging, data recovery, etc. Pods that are removed in this way will be replaced automatically (assuming that the number of replicas is not also changed).
As mentioned above, whether you have 1 pod you want to keep running, or 1000, a ReplicationController will ensure that the specified number of pods exists, even in the event of node failure or pod termination (for example, due to an action by another control agent).
The ReplicationController makes it easy to scale the number of replicas up or down, either manually or by an auto-scaling control agent, by simply updating the `replicas` field.
### Rolling updates
The ReplicationController is designed to facilitate rolling updates to a service by replacing pods one-by-one.
As explained in [#1353](http://issue.k8s.io/1353), the recommended approach is to create a new ReplicationController with 1 replica, scale the new (+1) and old (-1) controllers one by one, and then delete the old controller after it reaches 0 replicas. This predictably updates the set of pods regardless of unexpected failures.
Ideally, the rolling update controller would take application readiness into account, and would ensure that a sufficient number of pods were productively serving at any given time.
The two ReplicationControllers would need to create pods with at least one differentiating label, such as the image tag of the primary container of the pod, since it is typically image updates that motivate rolling updates.
[`kubectl rolling-update`](/docs/reference/generated/kubectl/kubectl-commands#rolling-update). Visit [`kubectl rolling-update` task](/docs/tasks/run-application/rolling-update-replication-controller/) for more concrete examples.
In addition to running multiple releases of an application while a rolling update is in progress, it's common to run multiple releases for an extended period of time, or even continuously, using multiple release tracks. The tracks would be differentiated by labels.
For instance, a service might target all pods with `tier in (frontend), environment in (prod)`. Now say you have 10 replicated pods that make up this tier. But you want to be able to 'canary' a new version of this component. You could set up a ReplicationController with `replicas` set to 9 for the bulk of the replicas, with labels `tier=frontend, environment=prod, track=stable`, and another ReplicationController with `replicas` set to 1 for the canary, with labels `tier=frontend, environment=prod, track=canary`. Now the service is covering both the canary and non-canary pods. But you can mess with the ReplicationControllers separately to test things out, monitor the results, etc.
### Using ReplicationControllers with Services
Multiple ReplicationControllers can sit behind a single service, so that, for example, some traffic
goes to the old version, and some goes to the new version.
A ReplicationController will never terminate on its own, but it isn't expected to be as long-lived as services. Services may be composed of pods controlled by multiple ReplicationControllers, and it is expected that many ReplicationControllers may be created and destroyed over the lifetime of a service (for instance, to perform an update of pods that run the service). Both services themselves and their clients should remain oblivious to the ReplicationControllers that maintain the pods of the services.
Pods created by a ReplicationController are intended to be fungible and semantically identical, though their configurations may become heterogeneous over time. This is an obvious fit for replicated stateless servers, but ReplicationControllers can also be used to maintain availability of master-elected, sharded, and worker-pool applications. Such applications should use dynamic work assignment mechanisms, such as the [RabbitMQ work queues](https://www.rabbitmq.com/tutorials/tutorial-two-python.html), as opposed to static/one-time customization of the configuration of each pod, which is considered an anti-pattern. Any pod customization performed, such as vertical auto-sizing of resources (for example, cpu or memory), should be performed by another online controller process, not unlike the ReplicationController itself.
The ReplicationController simply ensures that the desired number of pods matches its label selector and are operational. Currently, only terminated pods are excluded from its count. In the future, [readiness](http://issue.k8s.io/620) and other information available from the system may be taken into account, we may add more controls over the replacement policy, and we plan to emit events that could be used by external clients to implement arbitrarily sophisticated replacement and/or scale-down policies.
The ReplicationController is forever constrained to this narrow responsibility. It itself will not perform readiness nor liveness probes. Rather than performing auto-scaling, it is intended to be controlled by an external auto-scaler (as discussed in [#492](http://issue.k8s.io/492)), which would change its `replicas` field. We will not add scheduling policies (for example, [spreading](http://issue.k8s.io/367#issuecomment-48428019)) to the ReplicationController. Nor should it verify that the pods controlled match the currently specified template, as that would obstruct auto-sizing and other automated processes. Similarly, completion deadlines, ordering dependencies, configuration expansion, and other features belong elsewhere. We even plan to factor out the mechanism for bulk pod creation ([#170](http://issue.k8s.io/170)).
The ReplicationController is intended to be a composable building-block primitive. We expect higher-level APIs and/or tools to be built on top of it and other complementary primitives for user convenience in the future. The "macro" operations currently supported by kubectl (run, scale, rolling-update) are proof-of-concept examples of this. For instance, we could imagine something like [Asgard](http://techblog.netflix.com/2012/06/asgard-web-based-cloud-management-and.html) managing ReplicationControllers, auto-scalers, services, scheduling policies, canaries, etc.
[`ReplicaSet`](/docs/concepts/workloads/controllers/replicaset/) is the next-generation ReplicationController that supports the new [set-based label selector](/docs/concepts/overview/working-with-objects/labels/#set-based-requirement).
Note that we recommend using Deployments instead of directly using Replica Sets, unless you require custom update orchestration or don’t require updates at all.
Unlike in the case where a user directly created pods, a ReplicationController replaces pods that are deleted or terminated for any reason, such as in the case of node failure or disruptive node maintenance, such as a kernel upgrade. For this reason, we recommend that you use a ReplicationController even if your application requires only a single pod. Think of it similarly to a process supervisor, only it supervises multiple pods across multiple nodes instead of individual processes on a single node. A ReplicationController delegates local container restarts to some agent on the node (for example, Kubelet or Docker).
Use a [`Job`](/docs/concepts/jobs/run-to-completion-finite-workloads/) instead of a ReplicationController for pods that are expected to terminate on their own