mirror of https://github.com/coqui-ai/TTS.git
134 lines
6.5 KiB
Python
134 lines
6.5 KiB
Python
import copy
|
|
import torch
|
|
from math import sqrt
|
|
from torch import nn
|
|
from TTS.layers.tacotron2 import Encoder, Decoder, Postnet
|
|
from TTS.utils.generic_utils import sequence_mask
|
|
|
|
|
|
# TODO: match function arguments with tacotron
|
|
class Tacotron2(nn.Module):
|
|
def __init__(self,
|
|
num_chars,
|
|
num_speakers,
|
|
r,
|
|
postnet_output_dim=80,
|
|
decoder_output_dim=80,
|
|
attn_type='original',
|
|
attn_win=False,
|
|
attn_norm="softmax",
|
|
prenet_type="original",
|
|
prenet_dropout=True,
|
|
forward_attn=False,
|
|
trans_agent=False,
|
|
forward_attn_mask=False,
|
|
location_attn=True,
|
|
attn_K=5,
|
|
separate_stopnet=True,
|
|
bidirectional_decoder=False):
|
|
super(Tacotron2, self).__init__()
|
|
self.postnet_output_dim = postnet_output_dim
|
|
self.decoder_output_dim = decoder_output_dim
|
|
self.n_frames_per_step = r
|
|
self.bidirectional_decoder = bidirectional_decoder
|
|
decoder_dim = 512 if num_speakers > 1 else 512
|
|
encoder_dim = 512 if num_speakers > 1 else 512
|
|
proj_speaker_dim = 80 if num_speakers > 1 else 0
|
|
# embedding layer
|
|
self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)
|
|
std = sqrt(2.0 / (num_chars + 512))
|
|
val = sqrt(3.0) * std # uniform bounds for std
|
|
self.embedding.weight.data.uniform_(-val, val)
|
|
if num_speakers > 1:
|
|
self.speaker_embedding = nn.Embedding(num_speakers, 512)
|
|
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
|
self.speaker_embeddings = None
|
|
self.speaker_embeddings_projected = None
|
|
self.encoder = Encoder(encoder_dim)
|
|
self.decoder = Decoder(decoder_dim, self.decoder_output_dim, r, attn_type, attn_win,
|
|
attn_norm, prenet_type, prenet_dropout,
|
|
forward_attn, trans_agent, forward_attn_mask,
|
|
location_attn, attn_K, separate_stopnet, proj_speaker_dim)
|
|
if self.bidirectional_decoder:
|
|
self.decoder_backward = copy.deepcopy(self.decoder)
|
|
self.postnet = Postnet(self.postnet_output_dim)
|
|
|
|
def _init_states(self):
|
|
self.speaker_embeddings = None
|
|
self.speaker_embeddings_projected = None
|
|
|
|
@staticmethod
|
|
def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
|
|
mel_outputs = mel_outputs.transpose(1, 2)
|
|
mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
|
|
return mel_outputs, mel_outputs_postnet, alignments
|
|
|
|
def forward(self, text, text_lengths, mel_specs=None, speaker_ids=None):
|
|
self._init_states()
|
|
# compute mask for padding
|
|
mask = sequence_mask(text_lengths).to(text.device)
|
|
embedded_inputs = self.embedding(text).transpose(1, 2)
|
|
encoder_outputs = self.encoder(embedded_inputs, text_lengths)
|
|
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
|
speaker_ids)
|
|
decoder_outputs, alignments, stop_tokens = self.decoder(
|
|
encoder_outputs, mel_specs, mask)
|
|
postnet_outputs = self.postnet(decoder_outputs)
|
|
postnet_outputs = decoder_outputs + postnet_outputs
|
|
decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
|
|
decoder_outputs, postnet_outputs, alignments)
|
|
if self.bidirectional_decoder:
|
|
decoder_outputs_backward, alignments_backward = self._backward_inference(mel_specs, encoder_outputs, mask)
|
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
|
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens
|
|
|
|
@torch.no_grad()
|
|
def inference(self, text, speaker_ids=None):
|
|
embedded_inputs = self.embedding(text).transpose(1, 2)
|
|
encoder_outputs = self.encoder.inference(embedded_inputs)
|
|
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
|
speaker_ids)
|
|
mel_outputs, alignments, stop_tokens = self.decoder.inference(
|
|
encoder_outputs)
|
|
mel_outputs_postnet = self.postnet(mel_outputs)
|
|
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
|
|
mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
|
|
mel_outputs, mel_outputs_postnet, alignments)
|
|
return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
|
|
|
|
def inference_truncated(self, text, speaker_ids=None):
|
|
"""
|
|
Preserve model states for continuous inference
|
|
"""
|
|
embedded_inputs = self.embedding(text).transpose(1, 2)
|
|
encoder_outputs = self.encoder.inference_truncated(embedded_inputs)
|
|
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
|
speaker_ids)
|
|
mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated(
|
|
encoder_outputs)
|
|
mel_outputs_postnet = self.postnet(mel_outputs)
|
|
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
|
|
mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
|
|
mel_outputs, mel_outputs_postnet, alignments)
|
|
return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
|
|
|
|
def _backward_inference(self, mel_specs, encoder_outputs, mask):
|
|
decoder_outputs_b, alignments_b, _ = self.decoder_backward(
|
|
encoder_outputs, torch.flip(mel_specs, dims=(1,)), mask,
|
|
self.speaker_embeddings_projected)
|
|
decoder_outputs_b = decoder_outputs_b.transpose(1, 2)
|
|
return decoder_outputs_b, alignments_b
|
|
|
|
def _add_speaker_embedding(self, encoder_outputs, speaker_ids):
|
|
if hasattr(self, "speaker_embedding") and speaker_ids is None:
|
|
raise RuntimeError(" [!] Model has speaker embedding layer but speaker_id is not provided")
|
|
if hasattr(self, "speaker_embedding") and speaker_ids is not None:
|
|
speaker_embeddings = self.speaker_embedding(speaker_ids)
|
|
|
|
speaker_embeddings.unsqueeze_(1)
|
|
speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0),
|
|
encoder_outputs.size(1),
|
|
-1)
|
|
encoder_outputs = encoder_outputs + speaker_embeddings
|
|
return encoder_outputs
|