mirror of https://github.com/coqui-ai/TTS.git
144 lines
4.9 KiB
Python
144 lines
4.9 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import argparse
|
|
import json
|
|
# pylint: disable=redefined-outer-name, unused-argument
|
|
import os
|
|
import string
|
|
import time
|
|
|
|
import torch
|
|
|
|
from mozilla_voice_tts.tts.utils.generic_utils import setup_model
|
|
from mozilla_voice_tts.tts.utils.synthesis import synthesis
|
|
from mozilla_voice_tts.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
|
from mozilla_voice_tts.utils.audio import AudioProcessor
|
|
from mozilla_voice_tts.utils.io import load_config
|
|
from mozilla_voice_tts.vocoder.utils.generic_utils import setup_generator
|
|
|
|
|
|
def tts(model, vocoder_model, text, CONFIG, use_cuda, ap, use_gl, speaker_id):
|
|
t_1 = time.time()
|
|
waveform, _, _, mel_postnet_spec, _, _ = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, None, False, CONFIG.enable_eos_bos_chars, use_gl)
|
|
if CONFIG.model == "Tacotron" and not use_gl:
|
|
mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T
|
|
if not use_gl:
|
|
waveform = vocoder_model.inference(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0))
|
|
if use_cuda and not use_gl:
|
|
waveform = waveform.cpu()
|
|
if not use_gl:
|
|
waveform = waveform.numpy()
|
|
waveform = waveform.squeeze()
|
|
rtf = (time.time() - t_1) / (len(waveform) / ap.sample_rate)
|
|
tps = (time.time() - t_1) / len(waveform)
|
|
print(" > Run-time: {}".format(time.time() - t_1))
|
|
print(" > Real-time factor: {}".format(rtf))
|
|
print(" > Time per step: {}".format(tps))
|
|
return waveform
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
global symbols, phonemes
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('text', type=str, help='Text to generate speech.')
|
|
parser.add_argument('config_path',
|
|
type=str,
|
|
help='Path to model config file.')
|
|
parser.add_argument(
|
|
'model_path',
|
|
type=str,
|
|
help='Path to model file.',
|
|
)
|
|
parser.add_argument(
|
|
'out_path',
|
|
type=str,
|
|
help='Path to save final wav file. Wav file will be names as the text given.',
|
|
)
|
|
parser.add_argument('--use_cuda',
|
|
type=bool,
|
|
help='Run model on CUDA.',
|
|
default=False)
|
|
parser.add_argument(
|
|
'--vocoder_path',
|
|
type=str,
|
|
help=
|
|
'Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).',
|
|
default="",
|
|
)
|
|
parser.add_argument('--vocoder_config_path',
|
|
type=str,
|
|
help='Path to vocoder model config file.',
|
|
default="")
|
|
parser.add_argument(
|
|
'--batched_vocoder',
|
|
type=bool,
|
|
help="If True, vocoder model uses faster batch processing.",
|
|
default=True)
|
|
parser.add_argument('--speakers_json',
|
|
type=str,
|
|
help="JSON file for multi-speaker model.",
|
|
default="")
|
|
parser.add_argument(
|
|
'--speaker_id',
|
|
type=int,
|
|
help="target speaker_id if the model is multi-speaker.",
|
|
default=None)
|
|
args = parser.parse_args()
|
|
|
|
# load the config
|
|
C = load_config(args.config_path)
|
|
C.forward_attn_mask = True
|
|
|
|
# load the audio processor
|
|
ap = AudioProcessor(**C.audio)
|
|
|
|
# if the vocabulary was passed, replace the default
|
|
if 'characters' in C.keys():
|
|
symbols, phonemes = make_symbols(**C.characters)
|
|
|
|
# load speakers
|
|
if args.speakers_json != '':
|
|
speakers = json.load(open(args.speakers_json, 'r'))
|
|
num_speakers = len(speakers)
|
|
else:
|
|
num_speakers = 0
|
|
|
|
# load the model
|
|
num_chars = len(phonemes) if C.use_phonemes else len(symbols)
|
|
model = setup_model(num_chars, num_speakers, C)
|
|
cp = torch.load(args.model_path, map_location=torch.device('cpu'))
|
|
model.load_state_dict(cp['model'])
|
|
model.eval()
|
|
if args.use_cuda:
|
|
model.cuda()
|
|
model.decoder.set_r(cp['r'])
|
|
|
|
# load vocoder model
|
|
if args.vocoder_path != "":
|
|
VC = load_config(args.vocoder_config_path)
|
|
vocoder_model = setup_generator(VC)
|
|
vocoder_model.load_state_dict(torch.load(args.vocoder_path, map_location="cpu")["model"])
|
|
vocoder_model.remove_weight_norm()
|
|
if args.use_cuda:
|
|
vocoder_model.cuda()
|
|
vocoder_model.eval()
|
|
else:
|
|
vocoder_model = None
|
|
VC = None
|
|
|
|
# synthesize voice
|
|
use_griffin_lim = args.vocoder_path == ""
|
|
print(" > Text: {}".format(args.text))
|
|
wav = tts(model, vocoder_model, args.text, C, args.use_cuda, ap, use_griffin_lim, args.speaker_id)
|
|
|
|
# save the results
|
|
file_name = args.text.replace(" ", "_")
|
|
file_name = file_name.translate(
|
|
str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
|
|
out_path = os.path.join(args.out_path, file_name)
|
|
print(" > Saving output to {}".format(out_path))
|
|
ap.save_wav(wav, out_path)
|