mirror of https://github.com/coqui-ai/TTS.git
178 lines
11 KiB
JSON
178 lines
11 KiB
JSON
{
|
||
"model": "Tacotron",
|
||
"run_name": "test_sample_dataset_run",
|
||
"run_description": "sample dataset test run",
|
||
|
||
// AUDIO PARAMETERS
|
||
"audio":{
|
||
// stft parameters
|
||
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||
"win_length": 1024, // stft window length in ms.
|
||
"hop_length": 256, // stft window hop-lengh in ms.
|
||
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||
|
||
// Audio processing parameters
|
||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate.
|
||
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||
|
||
// Silence trimming
|
||
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true)
|
||
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
||
|
||
// Griffin-Lim
|
||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||
|
||
// MelSpectrogram parameters
|
||
"num_mels": 80, // size of the mel spec frame.
|
||
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||
"spec_gain": 20.0,
|
||
|
||
// Normalization parameters
|
||
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||
"min_level_db": -100, // lower bound for normalization
|
||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||
"clip_norm": true, // clip normalized values into the range.
|
||
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||
},
|
||
|
||
// VOCABULARY PARAMETERS
|
||
// if custom character set is not defined,
|
||
// default set in symbols.py is used
|
||
// "characters":{
|
||
// "pad": "_",
|
||
// "eos": "~",
|
||
// "bos": "^",
|
||
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
|
||
// "punctuations":"!'(),-.:;? ",
|
||
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
|
||
// },
|
||
|
||
// DISTRIBUTED TRAINING
|
||
"distributed":{
|
||
"backend": "nccl",
|
||
"url": "tcp:\/\/localhost:54321"
|
||
},
|
||
|
||
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
|
||
|
||
// TRAINING
|
||
"batch_size": 1, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
||
"eval_batch_size":1,
|
||
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
|
||
"gradual_training": [[0, 7, 4], [1, 5, 2]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
|
||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||
"ga_alpha": 10.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
||
"mixed_precision": false,
|
||
|
||
// VALIDATION
|
||
"run_eval": true,
|
||
"test_delay_epochs": 0, //Until attention is aligned, testing only wastes computation time.
|
||
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
|
||
|
||
// LOSS SETTINGS
|
||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||
"decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled
|
||
"postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled
|
||
"postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||
"decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled
|
||
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled
|
||
"ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
||
"stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples.
|
||
|
||
// OPTIMIZER
|
||
"noam_schedule": false, // use noam warmup and lr schedule.
|
||
"grad_clip": 1.0, // upper limit for gradients for clipping.
|
||
"epochs": 1, // total number of epochs to train.
|
||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||
"wd": 0.000001, // Weight decay weight.
|
||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
|
||
|
||
// TACOTRON PRENET
|
||
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
|
||
"prenet_type": "bn", // "original" or "bn".
|
||
"prenet_dropout": false, // enable/disable dropout at prenet.
|
||
|
||
// TACOTRON ATTENTION
|
||
"attention_type": "original", // 'original' , 'graves', 'dynamic_convolution'
|
||
"attention_heads": 4, // number of attention heads (only for 'graves')
|
||
"attention_norm": "sigmoid", // softmax or sigmoid.
|
||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster.
|
||
"forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode.
|
||
"transition_agent": false, // enable/disable transition agent of forward attention.
|
||
"location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
|
||
"double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
|
||
"ddc_r": 7, // reduction rate for coarse decoder.
|
||
|
||
// STOPNET
|
||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||
|
||
// TENSORBOARD and LOGGING
|
||
"print_step": 1, // Number of steps to log training on console.
|
||
"tb_plot_step": 100, // Number of steps to plot TB training figures.
|
||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||
"keep_all_best": true, // If true, keeps all best_models after keep_after steps
|
||
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
|
||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||
|
||
// DATA LOADING
|
||
"text_cleaner": "phoneme_cleaners",
|
||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||
"num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||
"num_eval_loader_workers": 0, // number of evaluation data loader processes.
|
||
"batch_group_size": 0, //Number of batches to shuffle after bucketing.
|
||
"min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training
|
||
"max_seq_len": 153, // DATASET-RELATED: maximum text length
|
||
"compute_input_seq_cache": true,
|
||
|
||
// PATHS
|
||
"output_path": "tests/train_outputs/",
|
||
|
||
// PHONEMES
|
||
"phoneme_cache_path": "tests/train_outputs/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||
"use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||
|
||
// MULTI-SPEAKER and GST
|
||
"use_d_vector_file": false,
|
||
"d_vector_file": null,
|
||
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
|
||
"use_gst": true, // use global style tokens
|
||
"gst": { // gst parameter if gst is enabled
|
||
"gst_style_input": null, // Condition the style input either on a
|
||
// -> wave file [path to wave] or
|
||
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
|
||
// with the dictionary being len(dict) == len(gst_style_tokens).
|
||
"gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST.
|
||
"gst_embedding_dim": 512,
|
||
"gst_num_heads": 4,
|
||
"gst_style_tokens": 10
|
||
},
|
||
|
||
// DATASETS
|
||
"train_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments.
|
||
"eval_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments.
|
||
"datasets": // List of datasets. They all merged and they get different speaker_ids.
|
||
[
|
||
{
|
||
"name": "ljspeech",
|
||
"path": "tests/data/ljspeech/",
|
||
"meta_file_train": "metadata.csv",
|
||
"meta_file_val": "metadata.csv"
|
||
}
|
||
]
|
||
|
||
}
|
||
|