TTS/models/tacotron.py

53 lines
2.1 KiB
Python

# coding: utf-8
import torch
from torch import nn
from math import sqrt
from layers.tacotron import Prenet, Encoder, Decoder, PostCBHG
from utils.generic_utils import sequence_mask
class Tacotron(nn.Module):
def __init__(self,
num_chars,
linear_dim=1025,
mel_dim=80,
r=5,
padding_idx=None,
memory_size=5,
attn_win=False,
attn_norm="sigmoid"):
super(Tacotron, self).__init__()
self.r = r
self.mel_dim = mel_dim
self.linear_dim = linear_dim
self.embedding = nn.Embedding(num_chars, 256, padding_idx=padding_idx)
self.embedding.weight.data.normal_(0, 0.3)
self.encoder = Encoder(256)
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win, attn_norm)
self.postnet = PostCBHG(mel_dim)
self.last_linear = nn.Sequential(
nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim),
nn.Sigmoid())
def forward(self, characters, text_lengths, mel_specs):
B = characters.size(0)
mask = sequence_mask(text_lengths).to(characters.device)
inputs = self.embedding(characters)
encoder_outputs = self.encoder(inputs)
mel_outputs, alignments, stop_tokens = self.decoder(
encoder_outputs, mel_specs, mask)
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments, stop_tokens
def inference(self, characters):
B = characters.size(0)
inputs = self.embedding(characters)
encoder_outputs = self.encoder(inputs)
mel_outputs, alignments, stop_tokens = self.decoder.inference(
encoder_outputs)
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments, stop_tokens