mirror of https://github.com/coqui-ai/TTS.git
183 lines
6.2 KiB
Python
183 lines
6.2 KiB
Python
# pylint: disable=redefined-outer-name, unused-argument
|
|
import os
|
|
import time
|
|
import argparse
|
|
import torch
|
|
import json
|
|
import string
|
|
|
|
from TTS.utils.synthesis import synthesis
|
|
from TTS.utils.generic_utils import setup_model
|
|
from TTS.utils.io import load_config
|
|
from TTS.utils.text.symbols import make_symbols, symbols, phonemes
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
|
|
def tts(model,
|
|
vocoder_model,
|
|
C,
|
|
VC,
|
|
text,
|
|
ap,
|
|
ap_vocoder,
|
|
use_cuda,
|
|
batched_vocoder,
|
|
speaker_id=None,
|
|
figures=False):
|
|
t_1 = time.time()
|
|
use_vocoder_model = vocoder_model is not None
|
|
waveform, alignment, _, postnet_output, stop_tokens, _ = synthesis(
|
|
model, text, C, use_cuda, ap, speaker_id, style_wav=False,
|
|
truncated=False, enable_eos_bos_chars=C.enable_eos_bos_chars,
|
|
use_griffin_lim=(not use_vocoder_model), do_trim_silence=True)
|
|
|
|
if C.model == "Tacotron" and use_vocoder_model:
|
|
postnet_output = ap.out_linear_to_mel(postnet_output.T).T
|
|
# correct if there is a scale difference b/w two models
|
|
if use_vocoder_model:
|
|
postnet_output = ap._denormalize(postnet_output)
|
|
postnet_output = ap_vocoder._normalize(postnet_output)
|
|
vocoder_input = torch.FloatTensor(postnet_output.T).unsqueeze(0)
|
|
waveform = vocoder_model.generate(
|
|
vocoder_input.cuda() if use_cuda else vocoder_input,
|
|
batched=batched_vocoder,
|
|
target=8000,
|
|
overlap=400)
|
|
print(" > Run-time: {}".format(time.time() - t_1))
|
|
return alignment, postnet_output, stop_tokens, waveform
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
global symbols, phonemes
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('text', type=str, help='Text to generate speech.')
|
|
parser.add_argument('config_path',
|
|
type=str,
|
|
help='Path to model config file.')
|
|
parser.add_argument(
|
|
'model_path',
|
|
type=str,
|
|
help='Path to model file.',
|
|
)
|
|
parser.add_argument(
|
|
'out_path',
|
|
type=str,
|
|
help='Path to save final wav file. Wav file will be names as the text given.',
|
|
)
|
|
parser.add_argument('--use_cuda',
|
|
type=bool,
|
|
help='Run model on CUDA.',
|
|
default=False)
|
|
parser.add_argument(
|
|
'--vocoder_path',
|
|
type=str,
|
|
help=
|
|
'Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).',
|
|
default="",
|
|
)
|
|
parser.add_argument('--vocoder_config_path',
|
|
type=str,
|
|
help='Path to vocoder model config file.',
|
|
default="")
|
|
parser.add_argument(
|
|
'--batched_vocoder',
|
|
type=bool,
|
|
help="If True, vocoder model uses faster batch processing.",
|
|
default=True)
|
|
parser.add_argument('--speakers_json',
|
|
type=str,
|
|
help="JSON file for multi-speaker model.",
|
|
default="")
|
|
parser.add_argument(
|
|
'--speaker_id',
|
|
type=int,
|
|
help="target speaker_id if the model is multi-speaker.",
|
|
default=None)
|
|
args = parser.parse_args()
|
|
|
|
if args.vocoder_path != "":
|
|
assert args.use_cuda, " [!] Enable cuda for vocoder."
|
|
from WaveRNN.models.wavernn import Model as VocoderModel
|
|
|
|
# load the config
|
|
C = load_config(args.config_path)
|
|
C.forward_attn_mask = True
|
|
|
|
# load the audio processor
|
|
ap = AudioProcessor(**C.audio)
|
|
|
|
# if the vocabulary was passed, replace the default
|
|
if 'characters' in C.keys():
|
|
symbols, phonemes = make_symbols(**C.characters)
|
|
|
|
# load speakers
|
|
if args.speakers_json != '':
|
|
speakers = json.load(open(args.speakers_json, 'r'))
|
|
num_speakers = len(speakers)
|
|
else:
|
|
num_speakers = 0
|
|
|
|
# load the model
|
|
num_chars = len(phonemes) if C.use_phonemes else len(symbols)
|
|
model = setup_model(num_chars, num_speakers, C)
|
|
cp = torch.load(args.model_path)
|
|
model.load_state_dict(cp['model'])
|
|
model.eval()
|
|
if args.use_cuda:
|
|
model.cuda()
|
|
model.decoder.set_r(cp['r'])
|
|
|
|
# load vocoder model
|
|
if args.vocoder_path != "":
|
|
VC = load_config(args.vocoder_config_path)
|
|
ap_vocoder = AudioProcessor(**VC.audio)
|
|
bits = 10
|
|
vocoder_model = VocoderModel(rnn_dims=512,
|
|
fc_dims=512,
|
|
mode=VC.mode,
|
|
mulaw=VC.mulaw,
|
|
pad=VC.pad,
|
|
upsample_factors=VC.upsample_factors,
|
|
feat_dims=VC.audio["num_mels"],
|
|
compute_dims=128,
|
|
res_out_dims=128,
|
|
res_blocks=10,
|
|
hop_length=ap.hop_length,
|
|
sample_rate=ap.sample_rate,
|
|
use_aux_net=True,
|
|
use_upsample_net=True)
|
|
|
|
check = torch.load(args.vocoder_path)
|
|
vocoder_model.load_state_dict(check['model'])
|
|
vocoder_model.eval()
|
|
if args.use_cuda:
|
|
vocoder_model.cuda()
|
|
else:
|
|
vocoder_model = None
|
|
VC = None
|
|
ap_vocoder = None
|
|
|
|
# synthesize voice
|
|
print(" > Text: {}".format(args.text))
|
|
_, _, _, wav = tts(model,
|
|
vocoder_model,
|
|
C,
|
|
VC,
|
|
args.text,
|
|
ap,
|
|
ap_vocoder,
|
|
args.use_cuda,
|
|
args.batched_vocoder,
|
|
speaker_id=args.speaker_id,
|
|
figures=False)
|
|
|
|
# save the results
|
|
file_name = args.text.replace(" ", "_")
|
|
file_name = file_name.translate(
|
|
str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
|
|
out_path = os.path.join(args.out_path, file_name)
|
|
print(" > Saving output to {}".format(out_path))
|
|
ap.save_wav(wav, out_path)
|