TTS/synthesize.py

183 lines
6.2 KiB
Python

# pylint: disable=redefined-outer-name, unused-argument
import os
import time
import argparse
import torch
import json
import string
from TTS.utils.synthesis import synthesis
from TTS.utils.generic_utils import setup_model
from TTS.utils.io import load_config
from TTS.utils.text.symbols import make_symbols, symbols, phonemes
from TTS.utils.audio import AudioProcessor
def tts(model,
vocoder_model,
C,
VC,
text,
ap,
ap_vocoder,
use_cuda,
batched_vocoder,
speaker_id=None,
figures=False):
t_1 = time.time()
use_vocoder_model = vocoder_model is not None
waveform, alignment, _, postnet_output, stop_tokens, _ = synthesis(
model, text, C, use_cuda, ap, speaker_id, style_wav=False,
truncated=False, enable_eos_bos_chars=C.enable_eos_bos_chars,
use_griffin_lim=(not use_vocoder_model), do_trim_silence=True)
if C.model == "Tacotron" and use_vocoder_model:
postnet_output = ap.out_linear_to_mel(postnet_output.T).T
# correct if there is a scale difference b/w two models
if use_vocoder_model:
postnet_output = ap._denormalize(postnet_output)
postnet_output = ap_vocoder._normalize(postnet_output)
vocoder_input = torch.FloatTensor(postnet_output.T).unsqueeze(0)
waveform = vocoder_model.generate(
vocoder_input.cuda() if use_cuda else vocoder_input,
batched=batched_vocoder,
target=8000,
overlap=400)
print(" > Run-time: {}".format(time.time() - t_1))
return alignment, postnet_output, stop_tokens, waveform
if __name__ == "__main__":
global symbols, phonemes
parser = argparse.ArgumentParser()
parser.add_argument('text', type=str, help='Text to generate speech.')
parser.add_argument('config_path',
type=str,
help='Path to model config file.')
parser.add_argument(
'model_path',
type=str,
help='Path to model file.',
)
parser.add_argument(
'out_path',
type=str,
help='Path to save final wav file. Wav file will be names as the text given.',
)
parser.add_argument('--use_cuda',
type=bool,
help='Run model on CUDA.',
default=False)
parser.add_argument(
'--vocoder_path',
type=str,
help=
'Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).',
default="",
)
parser.add_argument('--vocoder_config_path',
type=str,
help='Path to vocoder model config file.',
default="")
parser.add_argument(
'--batched_vocoder',
type=bool,
help="If True, vocoder model uses faster batch processing.",
default=True)
parser.add_argument('--speakers_json',
type=str,
help="JSON file for multi-speaker model.",
default="")
parser.add_argument(
'--speaker_id',
type=int,
help="target speaker_id if the model is multi-speaker.",
default=None)
args = parser.parse_args()
if args.vocoder_path != "":
assert args.use_cuda, " [!] Enable cuda for vocoder."
from WaveRNN.models.wavernn import Model as VocoderModel
# load the config
C = load_config(args.config_path)
C.forward_attn_mask = True
# load the audio processor
ap = AudioProcessor(**C.audio)
# if the vocabulary was passed, replace the default
if 'characters' in C.keys():
symbols, phonemes = make_symbols(**C.characters)
# load speakers
if args.speakers_json != '':
speakers = json.load(open(args.speakers_json, 'r'))
num_speakers = len(speakers)
else:
num_speakers = 0
# load the model
num_chars = len(phonemes) if C.use_phonemes else len(symbols)
model = setup_model(num_chars, num_speakers, C)
cp = torch.load(args.model_path)
model.load_state_dict(cp['model'])
model.eval()
if args.use_cuda:
model.cuda()
model.decoder.set_r(cp['r'])
# load vocoder model
if args.vocoder_path != "":
VC = load_config(args.vocoder_config_path)
ap_vocoder = AudioProcessor(**VC.audio)
bits = 10
vocoder_model = VocoderModel(rnn_dims=512,
fc_dims=512,
mode=VC.mode,
mulaw=VC.mulaw,
pad=VC.pad,
upsample_factors=VC.upsample_factors,
feat_dims=VC.audio["num_mels"],
compute_dims=128,
res_out_dims=128,
res_blocks=10,
hop_length=ap.hop_length,
sample_rate=ap.sample_rate,
use_aux_net=True,
use_upsample_net=True)
check = torch.load(args.vocoder_path)
vocoder_model.load_state_dict(check['model'])
vocoder_model.eval()
if args.use_cuda:
vocoder_model.cuda()
else:
vocoder_model = None
VC = None
ap_vocoder = None
# synthesize voice
print(" > Text: {}".format(args.text))
_, _, _, wav = tts(model,
vocoder_model,
C,
VC,
args.text,
ap,
ap_vocoder,
args.use_cuda,
args.batched_vocoder,
speaker_id=args.speaker_id,
figures=False)
# save the results
file_name = args.text.replace(" ", "_")
file_name = file_name.translate(
str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
out_path = os.path.join(args.out_path, file_name)
print(" > Saving output to {}".format(out_path))
ap.save_wav(wav, out_path)