TTS/notebooks/utils.py

54 lines
1.8 KiB
Python

import io
import librosa
import torch
import numpy as np
from TTS.utils.text import text_to_sequence
from matplotlib import pylab as plt
hop_length = 250
def create_speech(m, s, CONFIG, use_cuda, ap):
text_cleaner = [CONFIG.text_cleaner]
seq = np.array(text_to_sequence(s, text_cleaner))
# mel = np.zeros([seq.shape[0], CONFIG.num_mels, 1], dtype=np.float32)
if use_cuda:
chars_var = torch.autograd.Variable(
torch.from_numpy(seq), volatile=True).unsqueeze(0).cuda()
# mel_var = torch.autograd.Variable(torch.from_numpy(mel).type(torch.cuda.FloatTensor), volatile=True).cuda()
else:
chars_var = torch.autograd.Variable(
torch.from_numpy(seq), volatile=True).unsqueeze(0)
# mel_var = torch.autograd.Variable(torch.from_numpy(mel).type(torch.FloatTensor), volatile=True)
mel_out, linear_out, alignments = m.forward(chars_var)
linear_out = linear_out[0].data.cpu().numpy()
alignment = alignments[0].cpu().data.numpy()
spec = ap._denormalize(linear_out)
wav = ap.inv_spectrogram(linear_out.T)
wav = wav[:ap.find_endpoint(wav)]
out = io.BytesIO()
ap.save_wav(wav, out)
return wav, alignment, spec
def visualize(alignment, spectrogram, CONFIG):
label_fontsize = 16
plt.figure(figsize=(16, 16))
plt.subplot(2, 1, 1)
plt.imshow(alignment.T, aspect="auto", origin="lower", interpolation=None)
plt.xlabel("Decoder timestamp", fontsize=label_fontsize)
plt.ylabel("Encoder timestamp", fontsize=label_fontsize)
plt.colorbar()
plt.subplot(2, 1, 2)
librosa.display.specshow(spectrogram.T, sr=CONFIG.sample_rate,
hop_length=hop_length, x_axis="time", y_axis="linear")
plt.xlabel("Time", fontsize=label_fontsize)
plt.ylabel("Hz", fontsize=label_fontsize)
plt.tight_layout()
plt.colorbar()