TTS/tests/tts_tests/test_tacotron2_tf_model.py

154 lines
5.6 KiB
Python

import os
import unittest
import numpy as np
import tensorflow as tf
import torch
from TTS.tts.configs import Tacotron2Config
from TTS.tts.tf.models.tacotron2 import Tacotron2
from TTS.tts.tf.utils.tflite import convert_tacotron2_to_tflite, load_tflite_model
tf.get_logger().setLevel("INFO")
# pylint: disable=unused-variable
torch.manual_seed(1)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
c = Tacotron2Config()
class TacotronTFTrainTest(unittest.TestCase):
@staticmethod
def generate_dummy_inputs():
chars_seq = torch.randint(0, 24, (8, 128)).long().to(device)
chars_seq_lengths = torch.randint(100, 128, (8,)).long().to(device)
chars_seq_lengths = torch.sort(chars_seq_lengths, descending=True)[0]
mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device)
mel_postnet_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device)
mel_lengths = torch.randint(20, 30, (8,)).long().to(device)
stop_targets = torch.zeros(8, 30, 1).float().to(device)
speaker_ids = torch.randint(0, 5, (8,)).long().to(device)
chars_seq = tf.convert_to_tensor(chars_seq.cpu().numpy())
chars_seq_lengths = tf.convert_to_tensor(chars_seq_lengths.cpu().numpy())
mel_spec = tf.convert_to_tensor(mel_spec.cpu().numpy())
return chars_seq, chars_seq_lengths, mel_spec, mel_postnet_spec, mel_lengths, stop_targets, speaker_ids
def test_train_step(self):
"""test forward pass"""
(
chars_seq,
chars_seq_lengths,
mel_spec,
mel_postnet_spec,
mel_lengths,
stop_targets,
speaker_ids,
) = self.generate_dummy_inputs()
for idx in mel_lengths:
stop_targets[:, int(idx.item()) :, 0] = 1.0
stop_targets = stop_targets.view(chars_seq.shape[0], stop_targets.size(1) // c.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5)
# training pass
output = model(chars_seq, chars_seq_lengths, mel_spec, training=True)
# check model output shapes
assert np.all(output[0].shape == mel_spec.shape)
assert np.all(output[1].shape == mel_spec.shape)
assert output[2].shape[2] == chars_seq.shape[1]
assert output[2].shape[1] == (mel_spec.shape[1] // model.decoder.r)
assert output[3].shape[1] == (mel_spec.shape[1] // model.decoder.r)
# inference pass
output = model(chars_seq, training=False)
def test_forward_attention(
self,
):
(
chars_seq,
chars_seq_lengths,
mel_spec,
mel_postnet_spec,
mel_lengths,
stop_targets,
speaker_ids,
) = self.generate_dummy_inputs()
for idx in mel_lengths:
stop_targets[:, int(idx.item()) :, 0] = 1.0
stop_targets = stop_targets.view(chars_seq.shape[0], stop_targets.size(1) // c.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, forward_attn=True)
# training pass
output = model(chars_seq, chars_seq_lengths, mel_spec, training=True)
# check model output shapes
assert np.all(output[0].shape == mel_spec.shape)
assert np.all(output[1].shape == mel_spec.shape)
assert output[2].shape[2] == chars_seq.shape[1]
assert output[2].shape[1] == (mel_spec.shape[1] // model.decoder.r)
assert output[3].shape[1] == (mel_spec.shape[1] // model.decoder.r)
# inference pass
output = model(chars_seq, training=False)
def test_tflite_conversion(
self,
): # pylint:disable=no-self-use
model = Tacotron2(
num_chars=24,
num_speakers=0,
r=3,
out_channels=80,
decoder_output_dim=80,
attn_type="original",
attn_win=False,
attn_norm="sigmoid",
prenet_type="original",
prenet_dropout=True,
forward_attn=False,
trans_agent=False,
forward_attn_mask=False,
location_attn=True,
attn_K=0,
separate_stopnet=True,
bidirectional_decoder=False,
enable_tflite=True,
)
model.build_inference()
convert_tacotron2_to_tflite(model, output_path="test_tacotron2.tflite", experimental_converter=True)
# init tflite model
tflite_model = load_tflite_model("test_tacotron2.tflite")
# fake input
inputs = tf.random.uniform([1, 4], maxval=10, dtype=tf.int32) # pylint:disable=unexpected-keyword-arg
# run inference
# get input and output details
input_details = tflite_model.get_input_details()
output_details = tflite_model.get_output_details()
# reshape input tensor for the new input shape
tflite_model.resize_tensor_input(
input_details[0]["index"], inputs.shape
) # pylint:disable=unexpected-keyword-arg
tflite_model.allocate_tensors()
detail = input_details[0]
input_shape = detail["shape"]
tflite_model.set_tensor(detail["index"], inputs)
# run the tflite_model
tflite_model.invoke()
# collect outputs
decoder_output = tflite_model.get_tensor(output_details[0]["index"])
postnet_output = tflite_model.get_tensor(output_details[1]["index"])
# remove tflite binary
os.remove("test_tacotron2.tflite")