TTS/tests/test_loader.py

194 lines
7.4 KiB
Python

import os
import unittest
import shutil
import numpy as np
from torch.utils.data import DataLoader
from utils.generic_utils import load_config
from utils.audio import AudioProcessor
from datasets import TTSDataset
from datasets.preprocess import ljspeech
file_path = os.path.dirname(os.path.realpath(__file__))
OUTPATH = os.path.join(file_path, "outputs/loader_tests/")
os.makedirs(OUTPATH, exist_ok=True)
c = load_config(os.path.join(file_path, 'test_config.json'))
ok_ljspeech = os.path.exists(c.data_path)
DATA_EXIST = True
if not os.path.exists(c.data_path):
DATA_EXIST = False
print(" > Dynamic data loader test: {}".format(DATA_EXIST))
class TestTTSDataset(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestTTSDataset, self).__init__(*args, **kwargs)
self.max_loader_iter = 4
self.ap = AudioProcessor(**c.audio)
def _create_dataloader(self, batch_size, r, bgs):
dataset = TTSDataset.MyDataset(
c.data_path,
'metadata.csv',
r,
c.text_cleaner,
preprocessor=ljspeech,
ap=self.ap,
batch_group_size=bgs,
min_seq_len=c.min_seq_len,
max_seq_len=float("inf"),
use_phonemes=False)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=True,
num_workers=c.num_loader_workers)
return dataloader, dataset
def test_loader(self):
if ok_ljspeech:
dataloader, dataset = self._create_dataloader(2, c.r, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
neg_values = text_input[text_input < 0]
check_count = len(neg_values)
assert check_count == 0, \
" !! Negative values in text_input: {}".format(check_count)
# TODO: more assertion here
assert linear_input.shape[0] == c.batch_size
assert linear_input.shape[2] == self.ap.num_freq
assert mel_input.shape[0] == c.batch_size
assert mel_input.shape[2] == c.audio['num_mels']
# check normalization ranges
if self.ap.symmetric_norm:
assert mel_input.max() <= self.ap.max_norm
assert mel_input.min() >= -self.ap.max_norm
assert mel_input.min() < 0
else:
assert mel_input.max() <= self.ap.max_norm
assert mel_input.min() >= 0
def test_batch_group_shuffle(self):
if ok_ljspeech:
dataloader, dataset = self._create_dataloader(2, c.r, 16)
last_length = 0
frames = dataset.items
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
avg_length = mel_lengths.numpy().mean()
assert avg_length >= last_length
dataloader.dataset.sort_items()
assert frames[0] != dataloader.dataset.items[0]
def test_padding_and_spec(self):
if ok_ljspeech:
dataloader, dataset = self._create_dataloader(1, 1, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
# check mel_spec consistency
wav = self.ap.load_wav(item_idx[0])
mel = self.ap.melspectrogram(wav)
mel_dl = mel_input[0].cpu().numpy()
assert (abs(mel.T).astype("float32")
- abs(mel_dl[:-1])
).sum() == 0
# check mel-spec correctness
mel_spec = mel_input[0].cpu().numpy()
wav = self.ap.inv_mel_spectrogram(mel_spec.T)
self.ap.save_wav(wav, OUTPATH + '/mel_inv_dataloader.wav')
shutil.copy(item_idx[0], OUTPATH + '/mel_target_dataloader.wav')
# check linear-spec
linear_spec = linear_input[0].cpu().numpy()
wav = self.ap.inv_spectrogram(linear_spec.T)
self.ap.save_wav(wav, OUTPATH + '/linear_inv_dataloader.wav')
shutil.copy(item_idx[0],
OUTPATH + '/linear_target_dataloader.wav')
# check the last time step to be zero padded
assert linear_input[0, -1].sum() == 0
assert linear_input[0, -2].sum() != 0
assert mel_input[0, -1].sum() == 0
assert mel_input[0, -2].sum() != 0
assert stop_target[0, -1] == 1
assert stop_target[0, -2] == 0
assert stop_target.sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[0] == linear_input[0].shape[0]
assert mel_lengths[0] == mel_input[0].shape[0]
# Test for batch size 2
dataloader, dataset = self._create_dataloader(2, 1, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
if mel_lengths[0] > mel_lengths[1]:
idx = 0
else:
idx = 1
# check the first item in the batch
assert linear_input[idx, -1].sum() == 0
assert linear_input[idx, -2].sum() != 0, linear_input
assert mel_input[idx, -1].sum() == 0
assert mel_input[idx, -2].sum() != 0, mel_input
assert stop_target[idx, -1] == 1
assert stop_target[idx, -2] == 0
assert stop_target[idx].sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[idx] == mel_input[idx].shape[0]
assert mel_lengths[idx] == linear_input[idx].shape[0]
# check the second itme in the batch
assert linear_input[1 - idx, -1].sum() == 0
assert mel_input[1 - idx, -1].sum() == 0
assert stop_target[1 - idx, -1] == 1
assert len(mel_lengths.shape) == 1
# check batch conditions
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0