mirror of https://github.com/coqui-ai/TTS.git
62 lines
2.2 KiB
Python
62 lines
2.2 KiB
Python
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch import optim
|
|
|
|
from TTS.vocoder.models.wavegrad import Wavegrad
|
|
|
|
# pylint: disable=unused-variable
|
|
|
|
torch.manual_seed(1)
|
|
use_cuda = torch.cuda.is_available()
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
class WavegradTrainTest(unittest.TestCase):
|
|
def test_train_step(self): # pylint: disable=no-self-use
|
|
"""Test if all layers are updated in a basic training cycle"""
|
|
input_dummy = torch.rand(8, 1, 20 * 300).to(device)
|
|
mel_spec = torch.rand(8, 80, 20).to(device)
|
|
|
|
criterion = torch.nn.L1Loss().to(device)
|
|
model = Wavegrad(
|
|
in_channels=80,
|
|
out_channels=1,
|
|
upsample_factors=[5, 5, 3, 2, 2],
|
|
upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]],
|
|
)
|
|
|
|
model_ref = Wavegrad(
|
|
in_channels=80,
|
|
out_channels=1,
|
|
upsample_factors=[5, 5, 3, 2, 2],
|
|
upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]],
|
|
)
|
|
model.train()
|
|
model.to(device)
|
|
betas = np.linspace(1e-6, 1e-2, 1000)
|
|
model.compute_noise_level(betas)
|
|
model_ref.load_state_dict(model.state_dict())
|
|
model_ref.to(device)
|
|
count = 0
|
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
|
|
assert (param - param_ref).sum() == 0, param
|
|
count += 1
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
|
for i in range(5):
|
|
y_hat = model.forward(input_dummy, mel_spec, torch.rand(8).to(device))
|
|
optimizer.zero_grad()
|
|
loss = criterion(y_hat, input_dummy)
|
|
loss.backward()
|
|
optimizer.step()
|
|
# check parameter changes
|
|
count = 0
|
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
|
|
# ignore pre-higway layer since it works conditional
|
|
# if count not in [145, 59]:
|
|
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(
|
|
count, param.shape, param, param_ref
|
|
)
|
|
count += 1
|