TTS/datasets/preprocess.py

169 lines
5.9 KiB
Python

import os
from glob import glob
import re
import sys
def get_preprocessor_by_name(name):
"""Returns the respective preprocessing function."""
thismodule = sys.modules[__name__]
return getattr(thismodule, name.lower())
def tweb(root_path, meta_file):
"""Normalize TWEB dataset.
https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset
"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "tweb"
with open(txt_file, 'r') as ttf:
for line in ttf:
cols = line.split('\t')
wav_file = os.path.join(root_path, cols[0] + '.wav')
text = cols[1]
items.append([text, wav_file, speaker_name])
return items
# def kusal(root_path, meta_file):
# txt_file = os.path.join(root_path, meta_file)
# texts = []
# wavs = []
# with open(txt_file, "r", encoding="utf8") as f:
# frames = [
# line.split('\t') for line in f
# if line.split('\t')[0] in self.wav_files_dict.keys()
# ]
# # TODO: code the rest
# return {'text': texts, 'wavs': wavs}
def mozilla_old(root_path, meta_file):
"""Normalizes Mozilla meta data files to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "mozilla_old"
with open(txt_file, 'r') as ttf:
for line in ttf:
cols = line.split('|')
batch_no = int(cols[1].strip().split("_")[0])
wav_folder = "batch{}".format(batch_no)
wav_file = os.path.join(root_path, wav_folder, "wavs_no_processing", cols[1].strip())
text = cols[0].strip()
items.append([text, wav_file, speaker_name])
return items
def mozilla(root_path, meta_file):
"""Normalizes Mozilla meta data files to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "mozilla"
with open(txt_file, 'r') as ttf:
for line in ttf:
cols = line.split('|')
wav_file = cols[1].strip()
text = cols[0].strip()
wav_file = os.path.join(root_path, "wavs", wav_file)
items.append([text, wav_file, speaker_name])
return items
def mailabs(root_path, meta_files=None):
"""Normalizes M-AI-Labs meta data files to TTS format"""
speaker_regex = re.compile("by_book/(male|female)/(?P<speaker_name>[^/]+)/")
if meta_files is None:
csv_files = glob(root_path+"/**/metadata.csv", recursive=True)
else:
csv_files = meta_files
# meta_files = [f.strip() for f in meta_files.split(",")]
items = []
for csv_file in csv_files:
txt_file = os.path.join(root_path, csv_file)
folder = os.path.dirname(txt_file)
# determine speaker based on folder structure...
speaker_name_match = speaker_regex.search(txt_file)
if speaker_name_match is None:
continue
speaker_name = speaker_name_match.group("speaker_name")
print(" | > {}".format(csv_file))
with open(txt_file, 'r') as ttf:
for line in ttf:
cols = line.split('|')
if meta_files is None:
wav_file = os.path.join(folder, 'wavs', cols[0] + '.wav')
else:
wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), 'wavs', cols[0] + '.wav')
if os.path.isfile(wav_file):
text = cols[1].strip()
items.append([text, wav_file, speaker_name])
else:
raise RuntimeError("> File %s is not exist!"%(wav_file))
return items
def ljspeech(root_path, meta_file):
"""Normalizes the Nancy meta data file to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "ljspeech"
with open(txt_file, 'r') as ttf:
for line in ttf:
cols = line.split('|')
wav_file = os.path.join(root_path, 'wavs', cols[0] + '.wav')
text = cols[1]
items.append([text, wav_file, speaker_name])
return items
def nancy(root_path, meta_file):
"""Normalizes the Nancy meta data file to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "nancy"
with open(txt_file, 'r') as ttf:
for line in ttf:
utt_id = line.split()[1]
text = line[line.find('"') + 1:line.rfind('"') - 1]
wav_file = os.path.join(root_path, "wavn", utt_id + ".wav")
items.append([text, wav_file, speaker_name])
return items
def common_voice(root_path, meta_file):
"""Normalize the common voice meta data file to TTS format."""
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, 'r') as ttf:
for line in ttf:
if line.startswith("client_id"):
continue
cols = line.split("\t")
text = cols[2]
speaker_name = cols[0]
wav_file = os.path.join(root_path, "clips", cols[1] + ".wav")
items.append([text, wav_file, speaker_name])
return items
def libri_tts(root_path, meta_files=None):
"""https://ai.google/tools/datasets/libri-tts/"""
items = []
if meta_files is None:
meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True)
for meta_file in meta_files:
_meta_file = os.path.basename(meta_file).split('.')[0]
speaker_name = _meta_file.split('_')[0]
chapter_id = _meta_file.split('_')[1]
_root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}")
with open(meta_file, 'r') as ttf:
for line in ttf:
cols = line.split('\t')
wav_file = os.path.join(_root_path, cols[0] + '.wav')
text = cols[1]
items.append([text, wav_file, speaker_name])
for item in items:
assert os.path.exists(item[1]), f" [!] wav file is not exist - {item[1]}"
return items