mirror of https://github.com/coqui-ai/TTS.git
89 lines
4.0 KiB
Python
89 lines
4.0 KiB
Python
# coding: utf-8
|
|
from torch import nn
|
|
from layers.tacotron import Encoder, Decoder, PostCBHG
|
|
from layers.gst_layers import GST
|
|
from utils.generic_utils import sequence_mask
|
|
|
|
|
|
class TacotronGST(nn.Module):
|
|
def __init__(self,
|
|
num_chars,
|
|
num_speakers,
|
|
r=5,
|
|
linear_dim=1025,
|
|
mel_dim=80,
|
|
memory_size=5,
|
|
attn_win=False,
|
|
attn_norm="sigmoid",
|
|
prenet_type="original",
|
|
prenet_dropout=True,
|
|
forward_attn=False,
|
|
trans_agent=False,
|
|
forward_attn_mask=False,
|
|
location_attn=True,
|
|
separate_stopnet=True):
|
|
super(TacotronGST, self).__init__()
|
|
self.r = r
|
|
self.mel_dim = mel_dim
|
|
self.linear_dim = linear_dim
|
|
self.embedding = nn.Embedding(num_chars, 256)
|
|
self.embedding.weight.data.normal_(0, 0.3)
|
|
if num_speakers > 1:
|
|
self.speaker_embedding = nn.Embedding(num_speakers, 256)
|
|
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
|
self.encoder = Encoder(256)
|
|
self.gst = GST(num_mel=80, num_heads=4, num_style_tokens=10, embedding_dim=256)
|
|
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win,
|
|
attn_norm, prenet_type, prenet_dropout,
|
|
forward_attn, trans_agent, forward_attn_mask,
|
|
location_attn, separate_stopnet)
|
|
self.postnet = PostCBHG(mel_dim)
|
|
self.last_linear = nn.Sequential(
|
|
nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim),
|
|
nn.Sigmoid())
|
|
|
|
def forward(self, characters, text_lengths, mel_specs, speaker_ids=None):
|
|
B = characters.size(0)
|
|
mask = sequence_mask(text_lengths).to(characters.device)
|
|
inputs = self.embedding(characters)
|
|
encoder_outputs = self.encoder(inputs)
|
|
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
|
speaker_ids)
|
|
gst_outputs = self.gst(mel_specs)
|
|
gst_outputs = gst_outputs.expand(-1, encoder_outputs.size(1), -1)
|
|
encoder_outputs = encoder_outputs + gst_outputs
|
|
mel_outputs, alignments, stop_tokens = self.decoder(
|
|
encoder_outputs, mel_specs, mask)
|
|
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
|
|
linear_outputs = self.postnet(mel_outputs)
|
|
linear_outputs = self.last_linear(linear_outputs)
|
|
return mel_outputs, linear_outputs, alignments, stop_tokens
|
|
|
|
def inference(self, characters, speaker_ids=None, style_mel=None):
|
|
B = characters.size(0)
|
|
inputs = self.embedding(characters)
|
|
encoder_outputs = self.encoder(inputs)
|
|
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
|
speaker_ids)
|
|
if style_mel is not None:
|
|
gst_outputs = self.gst(style_mel)
|
|
gst_outputs = gst_outputs.expand(-1, encoder_outputs.size(1), -1)
|
|
encoder_outputs = encoder_outputs + gst_outputs
|
|
mel_outputs, alignments, stop_tokens = self.decoder.inference(
|
|
encoder_outputs)
|
|
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
|
|
linear_outputs = self.postnet(mel_outputs)
|
|
linear_outputs = self.last_linear(linear_outputs)
|
|
return mel_outputs, linear_outputs, alignments, stop_tokens
|
|
|
|
def _add_speaker_embedding(self, encoder_outputs, speaker_ids):
|
|
if hasattr(self, "speaker_embedding") and speaker_ids is not None:
|
|
speaker_embeddings = self.speaker_embedding(speaker_ids)
|
|
|
|
speaker_embeddings.unsqueeze_(1)
|
|
speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0),
|
|
encoder_outputs.size(1),
|
|
-1)
|
|
encoder_outputs = encoder_outputs + speaker_embeddings
|
|
return encoder_outputs
|