mirror of https://github.com/coqui-ai/TTS.git
275 lines
11 KiB
Python
275 lines
11 KiB
Python
import os
|
|
import unittest
|
|
import numpy as np
|
|
|
|
from torch.utils.data import DataLoader
|
|
from TTS.utils.generic_utils import load_config
|
|
from TTS.datasets.LJSpeech import LJSpeechDataset
|
|
|
|
file_path = os.path.dirname(os.path.realpath(__file__))
|
|
c = load_config(os.path.join(file_path, 'test_config.json'))
|
|
|
|
|
|
class TestLJSpeechDataset(unittest.TestCase):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super(TestLJSpeechDataset, self).__init__(*args, **kwargs)
|
|
self.max_loader_iter = 4
|
|
|
|
def test_loader(self):
|
|
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
|
|
os.path.join(c.data_path_LJSpeech, 'wavs'),
|
|
c.r,
|
|
c.sample_rate,
|
|
c.text_cleaner,
|
|
c.num_mels,
|
|
c.min_level_db,
|
|
c.frame_shift_ms,
|
|
c.frame_length_ms,
|
|
c.preemphasis,
|
|
c.ref_level_db,
|
|
c.num_freq,
|
|
c.power
|
|
)
|
|
|
|
dataloader = DataLoader(dataset, batch_size=2,
|
|
shuffle=True, collate_fn=dataset.collate_fn,
|
|
drop_last=True, num_workers=c.num_loader_workers)
|
|
|
|
for i, data in enumerate(dataloader):
|
|
if i == self.max_loader_iter:
|
|
break
|
|
text_input = data[0]
|
|
text_lengths = data[1]
|
|
linear_input = data[2]
|
|
mel_input = data[3]
|
|
mel_lengths = data[4]
|
|
stop_target = data[5]
|
|
item_idx = data[6]
|
|
|
|
neg_values = text_input[text_input < 0]
|
|
check_count = len(neg_values)
|
|
assert check_count == 0, \
|
|
" !! Negative values in text_input: {}".format(check_count)
|
|
# TODO: more assertion here
|
|
assert linear_input.shape[0] == c.batch_size
|
|
assert mel_input.shape[0] == c.batch_size
|
|
assert mel_input.shape[2] == c.num_mels
|
|
|
|
def test_padding(self):
|
|
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
|
|
os.path.join(c.data_path_LJSpeech, 'wavs'),
|
|
1,
|
|
c.sample_rate,
|
|
c.text_cleaner,
|
|
c.num_mels,
|
|
c.min_level_db,
|
|
c.frame_shift_ms,
|
|
c.frame_length_ms,
|
|
c.preemphasis,
|
|
c.ref_level_db,
|
|
c.num_freq,
|
|
c.power
|
|
)
|
|
|
|
# Test for batch size 1
|
|
dataloader = DataLoader(dataset, batch_size=1,
|
|
shuffle=False, collate_fn=dataset.collate_fn,
|
|
drop_last=True, num_workers=c.num_loader_workers)
|
|
|
|
for i, data in enumerate(dataloader):
|
|
if i == self.max_loader_iter:
|
|
break
|
|
text_input = data[0]
|
|
text_lengths = data[1]
|
|
linear_input = data[2]
|
|
mel_input = data[3]
|
|
mel_lengths = data[4]
|
|
stop_target = data[5]
|
|
item_idx = data[6]
|
|
|
|
# check the last time step to be zero padded
|
|
assert mel_input[0, -1].sum() == 0
|
|
assert mel_input[0, -2].sum() != 0
|
|
assert linear_input[0, -1].sum() == 0
|
|
assert linear_input[0, -2].sum() != 0
|
|
assert stop_target[0, -1] == 1
|
|
assert stop_target[0, -2] == 0
|
|
assert stop_target.sum() == 1
|
|
assert len(mel_lengths.shape) == 1
|
|
assert mel_lengths[0] == mel_input[0].shape[0]
|
|
|
|
# Test for batch size 2
|
|
dataloader = DataLoader(dataset, batch_size=2,
|
|
shuffle=False, collate_fn=dataset.collate_fn,
|
|
drop_last=False, num_workers=c.num_loader_workers)
|
|
|
|
for i, data in enumerate(dataloader):
|
|
if i == self.max_loader_iter:
|
|
break
|
|
text_input = data[0]
|
|
text_lengths = data[1]
|
|
linear_input = data[2]
|
|
mel_input = data[3]
|
|
mel_lengths = data[4]
|
|
stop_target = data[5]
|
|
item_idx = data[6]
|
|
|
|
if mel_lengths[0] > mel_lengths[1]:
|
|
idx = 0
|
|
else:
|
|
idx = 1
|
|
|
|
# check the first item in the batch
|
|
assert mel_input[idx, -1].sum() == 0
|
|
assert mel_input[idx, -2].sum() != 0, mel_input
|
|
assert linear_input[idx, -1].sum() == 0
|
|
assert linear_input[idx, -2].sum() != 0
|
|
assert stop_target[idx, -1] == 1
|
|
assert stop_target[idx, -2] == 0
|
|
assert stop_target[idx].sum() == 1
|
|
assert len(mel_lengths.shape) == 1
|
|
assert mel_lengths[idx] == mel_input[idx].shape[0]
|
|
|
|
# check the second itme in the batch
|
|
assert mel_input[1-idx, -1].sum() == 0
|
|
assert linear_input[1-idx, -1].sum() == 0
|
|
assert stop_target[1-idx, -1] == 1
|
|
assert len(mel_lengths.shape) == 1
|
|
|
|
# check batch conditions
|
|
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
|
|
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
|
|
|
|
|
|
# class TestTWEBDataset(unittest.TestCase):
|
|
|
|
# def __init__(self, *args, **kwargs):
|
|
# super(TestTWEBDataset, self).__init__(*args, **kwargs)
|
|
# self.max_loader_iter = 4
|
|
|
|
# def test_loader(self):
|
|
# dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
|
|
# os.path.join(c.data_path_TWEB, 'wavs'),
|
|
# c.r,
|
|
# c.sample_rate,
|
|
# c.text_cleaner,
|
|
# c.num_mels,
|
|
# c.min_level_db,
|
|
# c.frame_shift_ms,
|
|
# c.frame_length_ms,
|
|
# c.preemphasis,
|
|
# c.ref_level_db,
|
|
# c.num_freq,
|
|
# c.power
|
|
# )
|
|
|
|
# dataloader = DataLoader(dataset, batch_size=2,
|
|
# shuffle=True, collate_fn=dataset.collate_fn,
|
|
# drop_last=True, num_workers=c.num_loader_workers)
|
|
|
|
# for i, data in enumerate(dataloader):
|
|
# if i == self.max_loader_iter:
|
|
# break
|
|
# text_input = data[0]
|
|
# text_lengths = data[1]
|
|
# linear_input = data[2]
|
|
# mel_input = data[3]
|
|
# mel_lengths = data[4]
|
|
# stop_target = data[5]
|
|
# item_idx = data[6]
|
|
|
|
# neg_values = text_input[text_input < 0]
|
|
# check_count = len(neg_values)
|
|
# assert check_count == 0, \
|
|
# " !! Negative values in text_input: {}".format(check_count)
|
|
# # TODO: more assertion here
|
|
# assert linear_input.shape[0] == c.batch_size
|
|
# assert mel_input.shape[0] == c.batch_size
|
|
# assert mel_input.shape[2] == c.num_mels
|
|
|
|
# def test_padding(self):
|
|
# dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
|
|
# os.path.join(c.data_path_TWEB, 'wavs'),
|
|
# 1,
|
|
# c.sample_rate,
|
|
# c.text_cleaner,
|
|
# c.num_mels,
|
|
# c.min_level_db,
|
|
# c.frame_shift_ms,
|
|
# c.frame_length_ms,
|
|
# c.preemphasis,
|
|
# c.ref_level_db,
|
|
# c.num_freq,
|
|
# c.power
|
|
# )
|
|
|
|
# # Test for batch size 1
|
|
# dataloader = DataLoader(dataset, batch_size=1,
|
|
# shuffle=False, collate_fn=dataset.collate_fn,
|
|
# drop_last=False, num_workers=c.num_loader_workers)
|
|
|
|
# for i, data in enumerate(dataloader):
|
|
# if i == self.max_loader_iter:
|
|
# break
|
|
|
|
# text_input = data[0]
|
|
# text_lengths = data[1]
|
|
# linear_input = data[2]
|
|
# mel_input = data[3]
|
|
# mel_lengths = data[4]
|
|
# stop_target = data[5]
|
|
# item_idx = data[6]
|
|
|
|
# # check the last time step to be zero padded
|
|
# assert mel_input[0, -1].sum() == 0
|
|
# assert mel_input[0, -2].sum() != 0, "{} -- {}".format(item_idx, i)
|
|
# assert linear_input[0, -1].sum() == 0
|
|
# assert linear_input[0, -2].sum() != 0
|
|
# assert stop_target[0, -1] == 1
|
|
# assert stop_target[0, -2] == 0
|
|
# assert stop_target.sum() == 1
|
|
# assert len(mel_lengths.shape) == 1
|
|
# assert mel_lengths[0] == mel_input[0].shape[0]
|
|
|
|
# # Test for batch size 2
|
|
# dataloader = DataLoader(dataset, batch_size=2,
|
|
# shuffle=False, collate_fn=dataset.collate_fn,
|
|
# drop_last=False, num_workers=c.num_loader_workers)
|
|
|
|
# for i, data in enumerate(dataloader):
|
|
# if i == self.max_loader_iter:
|
|
# break
|
|
# text_input = data[0]
|
|
# text_lengths = data[1]
|
|
# linear_input = data[2]
|
|
# mel_input = data[3]
|
|
# mel_lengths = data[4]
|
|
# stop_target = data[5]
|
|
# item_idx = data[6]
|
|
|
|
# if mel_lengths[0] > mel_lengths[1]:
|
|
# idx = 0
|
|
# else:
|
|
# idx = 1
|
|
|
|
# # check the first item in the batch
|
|
# assert mel_input[idx, -1].sum() == 0
|
|
# assert mel_input[idx, -2].sum() != 0, mel_input
|
|
# assert linear_input[idx, -1].sum() == 0
|
|
# assert linear_input[idx, -2].sum() != 0
|
|
# assert stop_target[idx, -1] == 1
|
|
# assert stop_target[idx, -2] == 0
|
|
# assert stop_target[idx].sum() == 1
|
|
# assert len(mel_lengths.shape) == 1
|
|
# assert mel_lengths[idx] == mel_input[idx].shape[0]
|
|
|
|
# # check the second itme in the batch
|
|
# assert mel_input[1-idx, -1].sum() == 0
|
|
# assert linear_input[1-idx, -1].sum() == 0
|
|
# assert stop_target[1-idx, -1] == 1
|
|
# assert len(mel_lengths.shape) == 1
|
|
|
|
# # check batch conditions
|
|
# assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
|
|
# assert (linear_input * stop_target.unsqueeze(2)).sum() == 0 |