mirror of https://github.com/coqui-ai/TTS.git
65 lines
3.1 KiB
Python
65 lines
3.1 KiB
Python
from math import sqrt
|
|
import torch
|
|
from torch.autograd import Variable
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from layers.tacotron2 import Encoder, Decoder, Postnet
|
|
from utils.generic_utils import sequence_mask
|
|
|
|
|
|
# TODO: match function arguments with tacotron
|
|
class Tacotron2(nn.Module):
|
|
def __init__(self, num_chars, r, attn_win=False, attn_norm="softmax", prenet_type="original", forward_attn=False, trans_agent=False):
|
|
super(Tacotron2, self).__init__()
|
|
self.n_mel_channels = 80
|
|
self.n_frames_per_step = r
|
|
self.embedding = nn.Embedding(num_chars, 512)
|
|
std = sqrt(2.0 / (num_chars + 512))
|
|
val = sqrt(3.0) * std # uniform bounds for std
|
|
self.embedding.weight.data.uniform_(-val, val)
|
|
self.encoder = Encoder(512)
|
|
self.decoder = Decoder(512, self.n_mel_channels, r, attn_win, attn_norm, prenet_type, forward_attn, trans_agent)
|
|
self.postnet = Postnet(self.n_mel_channels)
|
|
|
|
def shape_outputs(self, mel_outputs, mel_outputs_postnet, alignments):
|
|
mel_outputs = mel_outputs.transpose(1, 2)
|
|
mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
|
|
return mel_outputs, mel_outputs_postnet, alignments
|
|
|
|
def forward(self, text, text_lengths, mel_specs=None):
|
|
# compute mask for padding
|
|
mask = sequence_mask(text_lengths).to(text.device)
|
|
embedded_inputs = self.embedding(text).transpose(1, 2)
|
|
encoder_outputs = self.encoder(embedded_inputs, text_lengths)
|
|
mel_outputs, stop_tokens, alignments = self.decoder(
|
|
encoder_outputs, mel_specs, mask)
|
|
mel_outputs_postnet = self.postnet(mel_outputs)
|
|
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
|
|
mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
|
|
mel_outputs, mel_outputs_postnet, alignments)
|
|
return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
|
|
|
|
def inference(self, text):
|
|
embedded_inputs = self.embedding(text).transpose(1, 2)
|
|
encoder_outputs = self.encoder.inference(embedded_inputs)
|
|
mel_outputs, stop_tokens, alignments = self.decoder.inference(
|
|
encoder_outputs)
|
|
mel_outputs_postnet = self.postnet(mel_outputs)
|
|
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
|
|
mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
|
|
mel_outputs, mel_outputs_postnet, alignments)
|
|
return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
|
|
|
|
|
|
def inference_truncated(self, text):
|
|
"""
|
|
Preserve model states for continuous inference
|
|
"""
|
|
embedded_inputs = self.embedding(text).transpose(1, 2)
|
|
encoder_outputs = self.encoder.inference_truncated(embedded_inputs)
|
|
mel_outputs, stop_tokens, alignments = self.decoder.inference_truncated(encoder_outputs)
|
|
mel_outputs_postnet = self.postnet(mel_outputs)
|
|
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
|
|
mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
|
|
mel_outputs, mel_outputs_postnet, alignments)
|
|
return mel_outputs, mel_outputs_postnet, alignments, stop_tokens |