TTS/server/synthesizer.py

79 lines
2.7 KiB
Python

import io
import os
import librosa
import torch
import scipy
import numpy as np
import soundfile as sf
from TTS.utils.text import text_to_sequence
from TTS.utils.generic_utils import load_config
from TTS.utils.audio import AudioProcessor
from TTS.models.tacotron import Tacotron
from matplotlib import pylab as plt
class Synthesizer(object):
def load_model(self, model_path, model_name, model_config, use_cuda):
model_config = os.path.join(model_path, model_config)
self.model_file = os.path.join(model_path, model_name)
print(" > Loading model ...")
print(" | > model config: ", model_config)
print(" | > model file: ", self.model_file)
config = load_config(model_config)
self.config = config
self.use_cuda = use_cuda
self.model = Tacotron(config.embedding_size, config.num_freq,
config.num_mels, config.r)
self.ap = AudioProcessor(
config.sample_rate,
config.num_mels,
config.min_level_db,
config.frame_shift_ms,
config.frame_length_ms,
config.preemphasis,
config.ref_level_db,
config.num_freq,
config.power,
griffin_lim_iters=60)
# load model state
if use_cuda:
cp = torch.load(self.model_file)
else:
cp = torch.load(
self.model_file, map_location=lambda storage, loc: storage)
# load the model
self.model.load_state_dict(cp['model'])
if use_cuda:
self.model.cuda()
self.model.eval()
def save_wav(self, wav, path):
wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
librosa.output.write_wav(path, wav.astype(np.int16),
self.config.sample_rate)
def tts(self, text):
text_cleaner = [self.config.text_cleaner]
wavs = []
for sen in text.split('.'):
if len(sen) < 3:
continue
sen = sen.strip()
sen += '.'
print(sen)
sen = sen.strip()
seq = np.array(text_to_sequence(text, text_cleaner))
chars_var = torch.from_numpy(seq).unsqueeze(0).long()
if self.use_cuda:
chars_var = chars_var.cuda()
mel_out, linear_out, alignments, stop_tokens = self.model.forward(
chars_var)
linear_out = linear_out[0].data.cpu().numpy()
wav = self.ap.inv_spectrogram(linear_out.T)
# wav = wav[:self.ap.find_endpoint(wav)]
out = io.BytesIO()
wavs.append(wav)
wavs.append(np.zeros(10000))
self.save_wav(wav, out)
return out