mirror of https://github.com/coqui-ai/TTS.git
186 lines
6.2 KiB
Python
186 lines
6.2 KiB
Python
import os
|
|
import re
|
|
import sys
|
|
import glob
|
|
import time
|
|
import shutil
|
|
import datetime
|
|
import json
|
|
import torch
|
|
import subprocess
|
|
import numpy as np
|
|
from collections import OrderedDict
|
|
from torch.autograd import Variable
|
|
from utils.text import text_to_sequence
|
|
|
|
|
|
class AttrDict(dict):
|
|
def __init__(self, *args, **kwargs):
|
|
super(AttrDict, self).__init__(*args, **kwargs)
|
|
self.__dict__ = self
|
|
|
|
|
|
def load_config(config_path):
|
|
config = AttrDict()
|
|
with open(config_path, "r") as f:
|
|
input_str = f.read()
|
|
input_str = re.sub(r'\\\n', '', input_str)
|
|
input_str = re.sub(r'//.*\n', '\n', input_str)
|
|
data = json.loads(input_str)
|
|
config.update(data)
|
|
return config
|
|
|
|
|
|
def get_commit_hash():
|
|
"""https://stackoverflow.com/questions/14989858/get-the-current-git-hash-in-a-python-script"""
|
|
# try:
|
|
# subprocess.check_output(['git', 'diff-index', '--quiet',
|
|
# 'HEAD']) # Verify client is clean
|
|
# except:
|
|
# raise RuntimeError(
|
|
# " !! Commit before training to get the commit hash.")
|
|
commit = subprocess.check_output(['git', 'rev-parse', '--short',
|
|
'HEAD']).decode().strip()
|
|
print(' > Git Hash: {}'.format(commit))
|
|
return commit
|
|
|
|
|
|
def create_experiment_folder(root_path, model_name, debug):
|
|
""" Create a folder with the current date and time """
|
|
date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I+%M%p")
|
|
if debug:
|
|
commit_hash = 'debug'
|
|
else:
|
|
commit_hash = get_commit_hash()
|
|
output_folder = os.path.join(
|
|
root_path, date_str + '-' + model_name + '-' + commit_hash)
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
print(" > Experiment folder: {}".format(output_folder))
|
|
return output_folder
|
|
|
|
|
|
def remove_experiment_folder(experiment_path):
|
|
"""Check folder if there is a checkpoint, otherwise remove the folder"""
|
|
|
|
checkpoint_files = glob.glob(experiment_path + "/*.pth.tar")
|
|
if len(checkpoint_files) < 1:
|
|
if os.path.exists(experiment_path):
|
|
shutil.rmtree(experiment_path)
|
|
print(" ! Run is removed from {}".format(experiment_path))
|
|
else:
|
|
print(" ! Run is kept in {}".format(experiment_path))
|
|
|
|
|
|
def copy_config_file(config_file, path):
|
|
config_name = os.path.basename(config_file)
|
|
out_path = os.path.join(path, config_name)
|
|
shutil.copyfile(config_file, out_path)
|
|
|
|
|
|
def _trim_model_state_dict(state_dict):
|
|
r"""Remove 'module.' prefix from state dictionary. It is necessary as it
|
|
is loded for the next time by model.load_state(). Otherwise, it complains
|
|
about the torch.DataParallel()"""
|
|
|
|
new_state_dict = OrderedDict()
|
|
for k, v in state_dict.items():
|
|
name = k[7:] # remove `module.`
|
|
new_state_dict[name] = v
|
|
return new_state_dict
|
|
|
|
|
|
def save_checkpoint(model, optimizer, optimizer_st, model_loss, out_path,
|
|
current_step, epoch):
|
|
checkpoint_path = 'checkpoint_{}.pth.tar'.format(current_step)
|
|
checkpoint_path = os.path.join(out_path, checkpoint_path)
|
|
print(" | | > Checkpoint saving : {}".format(checkpoint_path))
|
|
|
|
new_state_dict = model.state_dict()
|
|
state = {
|
|
'model': new_state_dict,
|
|
'optimizer': optimizer.state_dict(),
|
|
'optimizer_st': optimizer_st.state_dict(),
|
|
'step': current_step,
|
|
'epoch': epoch,
|
|
'linear_loss': model_loss,
|
|
'date': datetime.date.today().strftime("%B %d, %Y")
|
|
}
|
|
torch.save(state, checkpoint_path)
|
|
|
|
|
|
def save_best_model(model, optimizer, model_loss, best_loss, out_path,
|
|
current_step, epoch):
|
|
if model_loss < best_loss:
|
|
new_state_dict = model.state_dict()
|
|
state = {
|
|
'model': new_state_dict,
|
|
'optimizer': optimizer.state_dict(),
|
|
'step': current_step,
|
|
'epoch': epoch,
|
|
'linear_loss': model_loss,
|
|
'date': datetime.date.today().strftime("%B %d, %Y")
|
|
}
|
|
best_loss = model_loss
|
|
bestmodel_path = 'best_model.pth.tar'
|
|
bestmodel_path = os.path.join(out_path, bestmodel_path)
|
|
print(" | > Best model saving with loss {0:.5f} : {1:}".format(
|
|
model_loss, bestmodel_path))
|
|
torch.save(state, bestmodel_path)
|
|
return best_loss
|
|
|
|
|
|
def check_update(model, grad_clip):
|
|
r'''Check model gradient against unexpected jumps and failures'''
|
|
skip_flag = False
|
|
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
|
|
if np.isinf(grad_norm):
|
|
print(" | > Gradient is INF !!")
|
|
skip_flag = True
|
|
return grad_norm, skip_flag
|
|
|
|
|
|
def lr_decay(init_lr, global_step, warmup_steps):
|
|
r'''from https://github.com/r9y9/tacotron_pytorch/blob/master/train.py'''
|
|
warmup_steps = float(warmup_steps)
|
|
step = global_step + 1.
|
|
lr = init_lr * warmup_steps**0.5 * np.minimum(step * warmup_steps**-1.5,
|
|
step**-0.5)
|
|
return lr
|
|
|
|
|
|
class NoamLR(torch.optim.lr_scheduler._LRScheduler):
|
|
def __init__(self, optimizer, warmup_steps=0.1, last_epoch=-1):
|
|
self.warmup_steps = float(warmup_steps)
|
|
super(NoamLR, self).__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self):
|
|
step = max(self.last_epoch, 1)
|
|
return [
|
|
base_lr * self.warmup_steps**0.5 * min(
|
|
step * self.warmup_steps**-1.5, step**-0.5)
|
|
for base_lr in self.base_lrs
|
|
]
|
|
|
|
|
|
def mk_decay(init_mk, max_epoch, n_epoch):
|
|
return init_mk * ((max_epoch - n_epoch) / max_epoch)
|
|
|
|
|
|
def count_parameters(model):
|
|
r"""Count number of trainable parameters in a network"""
|
|
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
|
|
|
|
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
|
|
def sequence_mask(sequence_length, max_len=None):
|
|
if max_len is None:
|
|
max_len = sequence_length.data.max()
|
|
batch_size = sequence_length.size(0)
|
|
seq_range = torch.arange(0, max_len).long()
|
|
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
|
|
if sequence_length.is_cuda:
|
|
seq_range_expand = seq_range_expand.cuda()
|
|
seq_length_expand = (sequence_length.unsqueeze(1)
|
|
.expand_as(seq_range_expand))
|
|
return seq_range_expand < seq_length_expand
|