mirror of https://github.com/coqui-ai/TTS.git
89 lines
3.1 KiB
Python
89 lines
3.1 KiB
Python
import torch as T
|
|
|
|
from TTS.tts.utils.helpers import average_over_durations, generate_path, rand_segments, segment, sequence_mask
|
|
|
|
|
|
def average_over_durations_test(): # pylint: disable=no-self-use
|
|
pitch = T.rand(1, 1, 128)
|
|
|
|
durations = T.randint(1, 5, (1, 21))
|
|
coeff = 128.0 / durations.sum()
|
|
durations = T.floor(durations * coeff)
|
|
diff = 128.0 - durations.sum()
|
|
durations[0, -1] += diff
|
|
durations = durations.long()
|
|
|
|
pitch_avg = average_over_durations(pitch, durations)
|
|
|
|
index = 0
|
|
for idx, dur in enumerate(durations[0]):
|
|
assert abs(pitch_avg[0, 0, idx] - pitch[0, 0, index : index + dur.item()].mean()) < 1e-5
|
|
index += dur
|
|
|
|
|
|
def seqeunce_mask_test():
|
|
lengths = T.randint(10, 15, (8,))
|
|
mask = sequence_mask(lengths)
|
|
for i in range(8):
|
|
l = lengths[i].item()
|
|
assert mask[i, :l].sum() == l
|
|
assert mask[i, l:].sum() == 0
|
|
|
|
|
|
def segment_test():
|
|
x = T.range(0, 11)
|
|
x = x.repeat(8, 1).unsqueeze(1)
|
|
segment_ids = T.randint(0, 7, (8,))
|
|
|
|
segments = segment(x, segment_ids, segment_size=4)
|
|
for idx, start_indx in enumerate(segment_ids):
|
|
assert x[idx, :, start_indx : start_indx + 4].sum() == segments[idx, :, :].sum()
|
|
|
|
try:
|
|
segments = segment(x, segment_ids, segment_size=10)
|
|
raise Exception("Should have failed")
|
|
except:
|
|
pass
|
|
|
|
segments = segment(x, segment_ids, segment_size=10, pad_short=True)
|
|
for idx, start_indx in enumerate(segment_ids):
|
|
assert x[idx, :, start_indx : start_indx + 10].sum() == segments[idx, :, :].sum()
|
|
|
|
|
|
def rand_segments_test():
|
|
x = T.rand(2, 3, 4)
|
|
x_lens = T.randint(3, 4, (2,))
|
|
segments, seg_idxs = rand_segments(x, x_lens, segment_size=3)
|
|
assert segments.shape == (2, 3, 3)
|
|
assert all(seg_idxs >= 0), seg_idxs
|
|
try:
|
|
segments, _ = rand_segments(x, x_lens, segment_size=5)
|
|
raise Exception("Should have failed")
|
|
except:
|
|
pass
|
|
x_lens_back = x_lens.clone()
|
|
segments, seg_idxs = rand_segments(x, x_lens.clone(), segment_size=5, pad_short=True, let_short_samples=True)
|
|
assert segments.shape == (2, 3, 5)
|
|
assert all(seg_idxs >= 0), seg_idxs
|
|
assert all(x_lens_back == x_lens)
|
|
|
|
|
|
def generate_path_test():
|
|
durations = T.randint(1, 4, (10, 21))
|
|
x_length = T.randint(18, 22, (10,))
|
|
x_mask = sequence_mask(x_length).unsqueeze(1).long()
|
|
durations = durations * x_mask.squeeze(1)
|
|
y_length = durations.sum(1)
|
|
y_mask = sequence_mask(y_length).unsqueeze(1).long()
|
|
attn_mask = (T.unsqueeze(x_mask, -1) * T.unsqueeze(y_mask, 2)).squeeze(1).long()
|
|
print(attn_mask.shape)
|
|
path = generate_path(durations, attn_mask)
|
|
assert path.shape == (10, 21, durations.sum(1).max().item())
|
|
for b in range(durations.shape[0]):
|
|
current_idx = 0
|
|
for t in range(durations.shape[1]):
|
|
assert all(path[b, t, current_idx : current_idx + durations[b, t].item()] == 1.0)
|
|
assert all(path[b, t, :current_idx] == 0.0)
|
|
assert all(path[b, t, current_idx + durations[b, t].item() :] == 0.0)
|
|
current_idx += durations[b, t].item()
|