mirror of https://github.com/coqui-ai/TTS.git
76 lines
5.5 KiB
JSON
76 lines
5.5 KiB
JSON
{
|
|
"run_name": "ljspeech",
|
|
"run_description": "finetune 4241 for align with architectural changes",
|
|
|
|
"audio":{
|
|
// Audio processing parameters
|
|
"num_mels": 80, // size of the mel spec frame.
|
|
"num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame.
|
|
"sample_rate": 22050, // wav sample-rate. If different than the original data, it is resampled.
|
|
"frame_length_ms": 50, // stft window length in ms.
|
|
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
|
|
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
|
"min_level_db": -100, // normalization range
|
|
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
|
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
|
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
|
// Normalization parameters
|
|
"signal_norm": true, // normalize the spec values in range [0, 1]
|
|
"symmetric_norm": false, // move normalization to range [-1, 1]
|
|
"max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
|
"clip_norm": true, // clip normalized values into the range.
|
|
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
|
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
|
"do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
|
},
|
|
|
|
"distributed":{
|
|
"backend": "nccl",
|
|
"url": "tcp:\/\/localhost:54321"
|
|
},
|
|
|
|
"reinit_layers": [], //set which layers to be reinitialized in finetunning. Only used if --restore_model is provided.
|
|
|
|
"model": "Tacotron2", // one of the model in models/
|
|
"grad_clip": 1, // upper limit for gradients for clipping.
|
|
"epochs": 1000, // total number of epochs to train.
|
|
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
|
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
|
|
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
|
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
|
"memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
|
|
"attention_norm": "softmax", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
|
|
"prenet_type": "bn", // ONLY TACOTRON2 - "original" or "bn".
|
|
"use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster.
|
|
"transition_agent": true, // ONLY TACOTRON2 - enable/disable transition agent of forward attention.
|
|
"loss_masking": false, // enable / disable loss masking against the sequence padding.
|
|
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
|
|
|
|
|
"batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
|
"eval_batch_size":16,
|
|
"r": 1, // Number of frames to predict for step.
|
|
"wd": 0.000001, // Weight decay weight.
|
|
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
|
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
|
"print_step": 100, // Number of steps to log traning on console.
|
|
"tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
|
"batch_group_size": 8, // Number of batches to shuffle after bucketing.
|
|
|
|
"run_eval": true,
|
|
"test_delay_epochs": 2, //Until attention is aligned, testing only wastes computation time.
|
|
"data_path": "/home/erogol/Data/LJSpeech-1.1", // DATASET-RELATED: can overwritten from command argument
|
|
"meta_file_train": "metadata_train.csv", // DATASET-RELATED: metafile for training dataloader.
|
|
"meta_file_val": "metadata_val.csv", // DATASET-RELATED: metafile for evaluation dataloader.
|
|
"dataset": "ljspeech", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
|
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
|
|
"max_seq_len": 150, // DATASET-RELATED: maximum text length
|
|
"output_path": "/media/erogol/data_ssd/Data/models/ljspeech_models/", // DATASET-RELATED: output path for all training outputs.
|
|
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
|
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
|
"phoneme_cache_path": "ljspeech_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder.
|
|
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
|
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
|
"text_cleaner": "phoneme_cleaners"
|
|
}
|