TTS/layers/attention.py

95 lines
2.9 KiB
Python

import torch
from torch.autograd import Variable
from torch import nn
from torch.nn import functional as F
class BahdanauAttention(nn.Module):
def __init__(self, dim):
super(BahdanauAttention, self).__init__()
self.query_layer = nn.Linear(dim, dim, bias=False)
self.tanh = nn.Tanh()
self.v = nn.Linear(dim, 1, bias=False)
def forward(self, query, processed_inputs):
"""
Args:
query: (batch, 1, dim) or (batch, dim)
processed_inputs: (batch, max_time, dim)
"""
if query.dim() == 2:
# insert time-axis for broadcasting
query = query.unsqueeze(1)
# (batch, 1, dim)
processed_query = self.query_layer(query)
# (batch, max_time, 1)
alignment = self.v(self.tanh(processed_query + processed_inputs))
# (batch, max_time)
return alignment.squeeze(-1)
def get_mask_from_lengths(inputs, inputs_lengths):
"""Get mask tensor from list of length
Args:
inputs: (batch, max_time, dim)
inputs_lengths: array like
"""
mask = inputs.data.new(inputs.size(0), inputs.size(1)).byte().zero_()
for idx, l in enumerate(inputs_lengths):
mask[idx][:l] = 1
return ~mask
class AttentionWrapper(nn.Module):
def __init__(self, rnn_cell, alignment_model,
score_mask_value=-float("inf")):
super(AttentionWrapper, self).__init__()
self.rnn_cell = rnn_cell
self.alignment_model = alignment_model
self.score_mask_value = score_mask_value
def forward(self, query, context_vec, cell_state, inputs,
processed_inputs=None, mask=None, inputs_lengths=None):
if processed_inputs is None:
processed_inputs = inputs
if inputs_lengths is not None and mask is None:
mask = get_mask_from_lengths(inputs, inputs_lengths)
# Alignment
# (batch, max_time)
# e_{ij} = a(s_{i-1}, h_j)
# import ipdb
# ipdb.set_trace()
alignment = self.alignment_model(cell_state, processed_inputs)
if mask is not None:
mask = mask.view(query.size(0), -1)
alignment.data.masked_fill_(mask, self.score_mask_value)
# Normalize context_vec weight
alignment = F.softmax(alignment, dim=-1)
# Attention context vector
# (batch, 1, dim)
# c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j
context_vec = torch.bmm(alignment.unsqueeze(1), inputs)
context_vec = context_vec.squeeze(1)
# Concat input query and previous context_vec context
cell_input = torch.cat((query, context_vec), -1)
#cell_input = cell_input.unsqueeze(1)
# Feed it to RNN
# s_i = f(y_{i-1}, c_{i}, s_{i-1})
cell_output = self.rnn_cell(cell_input, cell_state)
context_vec = context_vec.squeeze(1)
return cell_output, context_vec, alignment