mirror of https://github.com/coqui-ai/TTS.git
679 lines
226 KiB
Plaintext
679 lines
226 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"#function example with several unknowns (variables) for optimization\n",
|
|
"#Gerald Schuller, Nov. 2016\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"def functionexamp(x):\n",
|
|
" #x: array with 2 variables\n",
|
|
" \n",
|
|
" y=np.sin(x[0])+np.cos(x[1])\n",
|
|
" return y"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" fun: -1.9999999999888387\n",
|
|
" jac: array([4.7236681e-06, 0.0000000e+00])\n",
|
|
" message: 'Optimization terminated successfully.'\n",
|
|
" nfev: 12\n",
|
|
" nit: 2\n",
|
|
" njev: 3\n",
|
|
" status: 0\n",
|
|
" success: True\n",
|
|
" x: array([-1.5707916 , -3.14159265])\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"#Optimization example, see also:\n",
|
|
"#https://docs.scipy.org/doc/scipy-0.18.1/reference/optimize.html\n",
|
|
"#Gerald Schuller, Nov. 2016\n",
|
|
"#run it with \"python optimizationExample.py\" in a termina shell\n",
|
|
"#or type \"ipython\" in a termina shell and copy lines below:\n",
|
|
"\n",
|
|
"import numpy as np\n",
|
|
"import scipy.optimize as optimize\n",
|
|
"\n",
|
|
"#Example for 2 unknowns, args: function-name, starting point, method:\n",
|
|
"xmin = optimize.minimize(functionexamp, [-1.0, -3.0], method='CG')\n",
|
|
"print(xmin)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"function [p,passedge] = opt_filter(filtorder,N)\n",
|
|
"\n",
|
|
"% opt_filter Create Lowpass Prototype Filter for the Pseudo-QMF \n",
|
|
"% Filter Bank with N Subbands\n",
|
|
"%\n",
|
|
"% Adapted from the paper by C. D. Creusere and S. K. Mitra, titled \n",
|
|
"% \"A simple method for designing high-quality prototype filters for \n",
|
|
"% M-band pseudo-QMF banks,\" IEEE Trans. Signal Processing,vol. 43, \n",
|
|
"% pp. 1005-1007, Apr. 1995 and the book by S. K. Mitra titled \"\n",
|
|
"% Digital Signal Processing: A Computer-Based Approach, McGraw-Hill, 2001\n",
|
|
"%\n",
|
|
"% Arguments:\n",
|
|
"% filtorder Filter order (i.e., filter length - 1)\n",
|
|
"% N Number of subbands\n",
|
|
"\n",
|
|
"stopedge = 1/N; % Stopband edge fixed at (1/N)pi\n",
|
|
"passedge = 1/(4*N); % Start value for passband edge\n",
|
|
"tol = 0.000001; % Tolerance\n",
|
|
"step = 0.1*passedge; % Step size for searching the passband edge\n",
|
|
"way = -1; % Search direction, increase or reduce the passband edge\n",
|
|
"tcost = 0; % Current error calculated with the cost function\n",
|
|
"pcost = 10; % Previous error calculated with the cost function\n",
|
|
"flag = 0; % Set to 1 to stop the search\n",
|
|
"\n",
|
|
"while flag == 0\n",
|
|
" \n",
|
|
"% Design the lowpass filter using Parks-McClellan algorithm\n",
|
|
" \n",
|
|
" p = remez(filtorder,[0,passedge,stopedge,1],[1,1,0,0],[5,1]);\n",
|
|
" \n",
|
|
"% Calculates the cost function according to Eq. (2.36)\n",
|
|
"\n",
|
|
" P = fft(p,4096);\n",
|
|
" OptRange = floor(2048/N); % 0 to pi/N\n",
|
|
" phi = zeros(OptRange,1); % Initialize to zeros\n",
|
|
"\n",
|
|
"% Compute the flatness in the range from 0 to pi/N\n",
|
|
"\n",
|
|
"\tfor k = 1:OptRange\n",
|
|
" phi(k) = abs(P(OptRange-k+2))^2 + abs(P(k))^2;\n",
|
|
"\tend\n",
|
|
"\ttcost = max(abs(phi - ones(max(size(phi)),1)));\n",
|
|
" \t\n",
|
|
"\tif tcost > pcost % If search in wrong direction\n",
|
|
"\t\tstep = step/2; % Reduce step size by half \n",
|
|
"\t\tway = -way; % Change the search direction \n",
|
|
"\tend\n",
|
|
"\t\n",
|
|
"\tif abs(pcost - tcost) < tol % If improvement is below tol \n",
|
|
"\t\tflag = 1; % Stop the search \n",
|
|
"\tend\n",
|
|
"\t\n",
|
|
"\tpcost = tcost;\n",
|
|
"\tpassedge = passedge + way*step; % Adjust the passband edge\n",
|
|
" \n",
|
|
"end"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"sig.remez"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 101,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0.0125"
|
|
]
|
|
},
|
|
"execution_count": 101,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"1 / 4. / 20.0"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 90,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"ename": "ValueError",
|
|
"evalue": "Band edges should be less than 1/2 the sampling frequency",
|
|
"output_type": "error",
|
|
"traceback": [
|
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
|
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[0;32m<ipython-input-90-fb4445f5709b>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremez\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m16.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m4.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
|
"\u001b[0;32m~/miniconda3/lib/python3.7/site-packages/scipy/signal/fir_filter_design.py\u001b[0m in \u001b[0;36mremez\u001b[0;34m(numtaps, bands, desired, weight, Hz, type, maxiter, grid_density, fs)\u001b[0m\n\u001b[1;32m 854\u001b[0m \u001b[0mbands\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbands\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 855\u001b[0m return sigtools._remez(numtaps, bands, desired, weight, tnum, fs,\n\u001b[0;32m--> 856\u001b[0;31m maxiter, grid_density)\n\u001b[0m\u001b[1;32m 857\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 858\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
|
"\u001b[0;31mValueError\u001b[0m: Band edges should be less than 1/2 the sampling frequency"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"p = sig.remez(65, [0, 1/16.0, 1/4.0, 1], [1, 0], [5, 1])\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def create_pqmf_filter(filter_len=64, N=4):\n",
|
|
" stop_edge = 1 / N\n",
|
|
" pass_edge = 1 / (4 * N)\n",
|
|
" tol = 1e-8\n",
|
|
" cutoff = 0.1 * pass_edge\n",
|
|
" cost = 0\n",
|
|
" cost_prev = float('inf')\n",
|
|
" \n",
|
|
" p = sig.remez(filter_len, [0, pass_edge, stop_edge, 1], [1, 1, 0, 0], [5, 1])\n",
|
|
" \n",
|
|
" P = sig.freqz(p, workN=2048)\n",
|
|
" opt_range = 2048 // N\n",
|
|
" phi = np.zeros(opt_range)\n",
|
|
" \n",
|
|
" H = np.abs(P)\n",
|
|
" phi = H[opt_range + 2] \n",
|
|
" for i in range(opt_range):\n",
|
|
" phi[i] = abs(P(opt_range - i + 2)) ** 2 + abs(P[i]) ** 2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 81,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import scipy as sp\n",
|
|
"import scipy.signal as sig\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"%matplotlib inline\n",
|
|
"\n",
|
|
"\n",
|
|
"def optimfuncQMF(x):\n",
|
|
" \"\"\"Optimization function for a PQMF Filterbank\n",
|
|
" x: coefficients to optimize (first half of prototype h because of symmetry)\n",
|
|
" err: resulting total error\n",
|
|
" \"\"\"\n",
|
|
" K = ntaps * N \n",
|
|
" h = np.append(x, np.flipud(x))\n",
|
|
" cutoff = 0.15\n",
|
|
" \n",
|
|
"# breakpoint()\n",
|
|
" f, H_im = sig.freqz(h, worN=K)\n",
|
|
" H = np.abs(H_im) #only keeping the real part\n",
|
|
" \n",
|
|
" posfreq = np.square(H[0:K//N])\n",
|
|
" \n",
|
|
" #Negative frequencies are symmetric around 0:\n",
|
|
" negfreq = np.flipud(np.square(H[0:K//N]))\n",
|
|
" \n",
|
|
" #Sum of magnitude squared frequency responses should be closed to unity (or N)\n",
|
|
" unitycond = np.sum(np.abs(posfreq + negfreq - 2*(N*N)*np.ones(K//N)))/K\n",
|
|
" \n",
|
|
" #plt.plot(posfreq+negfreq)\n",
|
|
" \n",
|
|
" #High attenuation after the next subband:\n",
|
|
" att = np.sum(np.abs(H[int(cutoff*K//N):]))/K\n",
|
|
" \n",
|
|
" #Total (weighted) error:\n",
|
|
" err = unitycond + 100*att\n",
|
|
" return err"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 85,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(32,)"
|
|
]
|
|
},
|
|
"execution_count": 85,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"xmin.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 86,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"8.684549400499243\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEWCAYAAABIVsEJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy9h23ruAAAgAElEQVR4nO3dd3xUVfr48c+TRgglhSQQEkLvHQMIoqCAYEVX17Wsoqvr6vbid7/6dVdd19113aJbv/74KnaxF0SFRQTpJbQQauikkUYSEtLz/P6YC44xIT035Xm/XvPK3Dvnzjz3zmSeOefce46oKsYYY0x9+bgdgDHGmLbJEogxxpgGsQRijDGmQSyBGGOMaRBLIMYYYxrEEogxxpgGsQRiWpyIrBKRe87z+LMi8uuWjKmtEJFYESkQEd8Gbn9URGY1dVytiYjsFpEZbsfREVgC6eCcL5Qi50spXUReFJGuLfj6d4rIWu91qnqfqv62GV6rn4ios68Fzr4/6PW4iMh/iUiSc0yOi8jvRSTAq8yLznPMq/LcTzvr7/Tarwqv1yoQkX9WE9MtIrK3yrrlNax7UFWPq2pXVa1oosPSpETkMREpq7Lfv2zG13tRRJ7wXqeqI1V1VXO9pvmSJRADcI2qdgXGAeOBh1yOp7mFOPt7C/CIiMx11v8duBe4A+gGXAHMAt6osv0BpwwAIuIH3AQcqlJug/Nlf/b2w2piWQ0ME5EIr+caC3Susm6KU7YteLPKfj/ldkCmeVgCMeeoajqwDE8iAUBELhSR9SKSKyI7vZsGnF/Zh0XktIgcEZHbnPWPicirXuXO/vL38349ERkOPAtMcX6p5jrrz/2qFJEZIpIsIr8QkQwRSRORu7yeo4eIfCQi+SKyRUSeqFqjOc/+bgB2A6NEZDDwfeA2Vd2gquWquhu4AbhKRKZ7bfoRME1EQp3luUACkF6X160SQwpwGLjEWTXBiemLKut8gC1Vj6XTHPhbEVnnvA//EZFwr+Nzu4gcE5FsEXnY+7VFpJOIPCMiqc7tGRHp5Dz2hYjc4Ny/yHnNq5zlmSKyoz77Wdtnog77Mc3rc3jC+ezdC9wG/NL5/HzklD3XTFfLPp73s2VqZwnEnCMiMXh+dR90lqOBj4EngDDgAeBdEYkQkS54frFfoardgKlAvb5UVHUvcB9f/lIPqaFoLyAYiAbuBv7l9eX9L6DQKTPfudVlX0VELgJGAtuBmUCyqm6uEuMJYCNwudfqYuBD4GZn+Q7g5bq8bg1W82WyuARYA6ytsm6jqpbVsP2twF1AJBCA531CREYA/wvcDvQGegAxXts9DFyI5wfDWGAS8CvnsS+AGc796Xw1yU13Hm9qNe1HX+BT4B9AhBPvDlVdALwGPOV8fq6p5jnPt49w/s+WqYUlEAPwgYicBk4AGcCjzvpvA5+o6ieqWqmqy4F44Ern8Uo8v947q2qa84u9OZQBj6tqmap+AhQAQ8XTkXwD8KiqnlHVPcBLdXi+LCAHeA54UFVXAOFAWg3l0/B8cXl7GbhDRELwfKF+UM12Fzq/mM/eLqzh+b1rGxfjSSBrqqw73xf2C6p6QFWLgLf4sgZ5I7BEVVeragnwazzv2Vm34TmuGaqaCfwGT7I5G9PZWtclwB+8lmtLIDdV2e/e5ylbl/24FfhMVRc5n4FsVa3rj5Xz7SPU8Nmq43N3eJZADMB1Ti1iBjAMz5cpQF/gm95fBsA0IEpVC4Fv4alBpInIxyIyrJniy1bVcq/lM0BXPF/qfngS31ne92sSrqqhqjpcVf/urMsComooH+U8fo6qrnVe/2E8X9JF1Wy3UVVDvG4ba3j+1cAY55fvhXhqZPuAKGfdNM7f/+HddHb22ICn1nHueDjvWbZX2d7AMa/lY846gA3AEBHpieeL/GWgj9OsNKmWeN6qst+p5ylbl/3ow9f7l+rqfPsINX+2TB1YAjHnqOoXwIvAn51VJ4BXqnwZdFHVJ53yy1R1Np4v2H3A/znbFQJBXk/d63wv24iQM4Fyvtos06eBz/U5ni/ISd4rRaQPni/1VdVs8yrwCxrXfIWqHgZS8XTgH1fVAuehDc66rnia0eorDa/jISJBeJqxzkrF8yPhrFhnHap6BtgK/ARIVNVSYD3wc+CQqn4lodZBfT4TVZ0ABtbwWG2fnxr30TSeJRBT1TPAbBEZi+cL8hoRmSMiviIS6HQ8xohITxGZ5/SFlOCp+p9tHtkBXCKeaxaCOf9ZXSeBGPE6VbaunFNZ3wMeE5EgpwZ0Ry2b1fRcB/B06L8mnhMHfEVkJPAuni/Oz6rZ7O/AbJrm7Kg1eL6c13itW+usi6+hhlObd4CrnQ7oAOBxvvo/vwj4ldOnFQ48guc9P+sL4Id82Vy1qspyfdTnM1HVa8AsEblJRPzEc+LE2eatk8CA82xb2z6aRrAEYr7CaSd+GXjE6UCeB/wPnl/7J4D/wvO58cHz5ZaKpz9hOnC/8xzLgTfxnJm0FVhynpf8HM9ZR+kiUt9fteD5QgvG0/zxCp4vjJIGPM/Z53oOzxfMGSART5PHdapaWbWwquao6gptmkl1vsDTeex9BtkaZ12DEpTTJ/UD4HU8tZFTQLJXkSfw9GklALuAbc4675i6eb1+1eX6xFKfz0TVbY/j6Xf7BZ7P2g48HeIAzwMjnCbW6vqhattH0whiE0qZ9kRE/gj0UtU6nY1Vy3P9BrgeuERVcxsdnDHtjNVATJsmIsNEZIxzWu4kPKdivt8Uz62qjwIL8PSBGGOqsBqIadNEZCKeZqveeNrDFwBPNlGzkjHmPCyBGGOMaRBrwjLGGNMgfrUXaT/Cw8O1X79+bodhjDFtytatW7NUtepoDB0rgfTr14/4+Hi3wzDGmDZFRI5Vt96asIwxxjSIJRBjjDENYgnEGGNMg1gCMcYY0yCWQIwxxjSIJRBjjDENYgnEGGNMg1gCaSGf7krjUGZB7QWNMcZRWaks2nycnMJSt0OpliWQesg8XcI/ViRRWFJee2Ev6w5mcf9r23hscXNNGW6MaY9WJ2Xy0Hu7eODtndR33MLP9pxk2e702gs2giWQevj1B4n8ZfkB/rXyYJ23KSgp55fvJOAjsCYpi+PZZ5oxQmNMe7Jo83F8BD7fl8G721LqvF1KbhE/XLSNH72+vVlbPiyB1NHn+06ydHc6Ed068dyaI3VOBH/4ZC+peUX845YJ+Ai8seV4M0dqjGkPMvKL+WxvBndP68/EfqH85qPdpOcV12nbJz/dhyp08vfh1x8k1rv2UleWQOqgqLSCRz7czaDIrrx3/1T8fIXffbLnvNsUl1Xwt8+SeG3Tce6+qD9XjYnismE9eSs+mbKKr82OiqqycO0RLvvLKo5mFTbXrhhjWomH39/Fbc9tJON09Unh7a3JVFQqt0yK5akbx1JWUcm9r8SzP/30eZ9385EcPtqZyvemD+SXc4ex/lA2i3emNscuWAKpi398nkTyqSKeuG4UfcKC+MGlg1i2+ySrD2R+rWxeURkfbE9h7jOrefqzA1w1JooH5gwF4NbJfcgqKGHF3pNf2aasopL/eT+Rx5fs4XBmIb/+8Ku/GMqrSTjGmLbF+/941f4MXtt0nHUHs7nun+vYk5r/lbJnO8+nDOjBgIiu9A/vwtM3jeN4zhmu/PsaHv9oD/vS879WsyirqOTxJbuJCg7k/ukDuXVSLGNjgvntkj3kFZU1+T65OhqviMwF/gb4As+p6pNVHu8EvAxcAGQD31LVo85jD+GZvrQC+LGqLmuuOCsqlZviYrhwQA8A7p7Wn3e2JvP917ax4I4LmDownMSUPJ5atp/1B7Mor1QGhHfh5e9M4pIhX46APH1IJFHBgfzj84McyiykslLZd/I0246dIi2vmO/PGEh41048vmQPSxLSmD40gh8v2s7BjAL+87NLCAqo/e3al57PvrTTXDc+urkOhzEd3omcM6xJyuLWybF1Kv/vVQd5dtUh/nbLeKYM6MEjH+5mQEQX/vzNsXz/1W1c9+91jOsTwtiYYEK7BJCRX0LyqSJ+OXfYuee4YnQUkwf04E/L9vHC+iMsXHeEmNDO3DGlL3dd1J/yCuX+17aSmJLPv26dQOcAXwB+d/1o/uudBLIKSgju7N+kx8G1GQlFxBc4AMwGkoEtwC2quserzPeBMap6n4jcDFyvqt8SkRF4pjGdhGcq08+AIapacb7XjIuL04YO566qiMi55fS8Ym5/fhPHss8wZ1QvPk5IJaxLAN+M68Os4ZGM6xOKr4987XmeW3OYJz7ee245OqQzY/sEc+3Y3swdFUVFpXLdv9aRnl9McGd/jmQVUlGp/M+Vw7j3koG1xnn785tYfyib7Y/Mpntg035YjDEeD723i0Wbj7P0pxczrFf385bNO1PGtD9+TlFZBZWqTOofxsbDObx+z2SmDgonI7+Y//3iENuP57InLZ/Sck9NJTYsiOU/v4ROfr5fe86M/GJW7MtgSUIq6w5mM6RnV4IC/EhIzuV314/mlklfTWxVv7/qS0S2qmpc1fVu1kAmAQdV9TCAiLwBzAO8OxfmAY85998B/imeozAPeENVS4AjInLQeb4NzRVs1YPfKziQt++bwl0vbmFJQiq3X9iXX1w+tNYMf8/FA7hzaj8qVFGFQP+vfjh8fYTfXT+Kef9aR2l5Ja/ePZl/rzrIgtWHuf3Cfud+VVQn43Qx6w5mUamw4VA2c0b2avgOG2NqtPagp/n6wx2pDJt7/gTy/LojnC4p5937p/LsF4dYvuck14+PZuqgcAAiuwfy6DUjAU8zV3ml4usj+PlIjV/6kd0DuWVSLLdMimX5npM8tng3R7PO8K9bJ3DF6KivlW9M8jgfNxNINHDCazkZmFxTGVUtF5E8oIezfmOVbVu8zSYkKIA3751CZkEJ0SGd67ydn6/PeQ/8mJgQXr/nQmJCO9MnLAh/X+HGZzfw2qZj3HPxgHPlSsorOJhRwMjewQB8nJBGpYK/r7DuYJYlEGOawfHsM5zIKcLfV1i8I5X/unwoPj5CVkEJRaUV9AkLOlc2r6iMF9YdYc7InlzQN5T/9+0L+M+ek0wbHF7tc/v5+lBNheO8Zo/oycWDwzl1ppSo4Lp/DzWFdt+JLiL3iki8iMRnZn6907uxAvx86pU86mrKwB7nPohx/cK4aFAPnv3i8LmLGHPPlHL785u56u9rWZLgOcPiwx2pjIjqzrRB4axNymrymIwxsMapfXzvkoGk5Bax7fgpikor+OazG5j99Bf8x+vivefXHuF0cTk/njkYAB8fYe6oXnTt1LS/3QP9fVs8eYC7NZAUoI/XcoyzrroyySLiBwTj6Uyvy7YAqOoCYAF4+kCaJHIX/GTmEG76fxuY/qeV3DIplk92pXEip4i+PYL49QeJ9OoeyI4TuTx0xTD8fH1YuX8PKblFzZLcjOnI1iZlERUcyH0zBvLc2sN8sCOFj3elcSSrkEGRXfneq1v53iUD2Xkilw2Hs5kzsue5VoL2xs0ayBZgsIj0F5EA4GZgcZUyi4H5zv0bgc/V0+u/GLhZRDqJSH9gMLC5heJ2xaT+YSz67oWMiQnhH58fJKuglFfunsTz8+MoLK3gzhe2IALXjuvNxU71eG1S09e4jOnIKiqV9YeymTYonK6d/Jg1vCfvbUvhhXVHmT+lLx/9cBqzhvfk2S8OcTS7kAevGMZfbhrndtjNxrUaiNOn8UNgGZ7TeBeq6m4ReRyIV9XFwPPAK04neQ6eJINT7i08He7lwA9qOwOrPZgysAdTBvbgWHYhAX4+56qsD1w+hN9/so/J/cOICu5Mr+5KZLdOrD2Yzbcm1u00Q2NM7RJT8sgrKjvXhzFvXDRLEtLo1yOI/75iGJ0DfHn22xeQkJzLqOhg/H3bdy+Bq9eBqOonwCdV1j3idb8Y+GYN2/4O+F2zBthK9e3R5SvLd08bQGpuMZeP6Al4zriYNiicVQcyqaxUfKo5ndgYU39rD3r6Fi9yzqCaPiSCm+Ji+PaFfc9dp+XrI4yPDXUtxpbUvtNjB+HrIzx27chzpwUCTBscTk5hKTuTc12MzJj2Q1VZuS+D4VHdCe/aCfCcRPPUjWMZExPicnTusATSTs0YGklIkD8/eWNHjWPtGGPq7unlB4g/dopv2CgP51gCaafCugTwwp0TyTxdwp0Lt5Bf3PTj4BjTUby0/ih///wgN8XFcM/F/d0Op9WwBNKOjY8N5dnbL+DAydP86v1Et8Mxpk3acSKXxz7azewRPfn99aOb7arutsgSSDs3fUgEt0/py9LEdKuFGNMA725NppOfD09/axx+7fysqvqyo9EBXDu2N6UVlfxn98naCxtjzimvqOSTXWnMHN6zya8ebw8sgXQA4/qEEBPamY+8JpU5klVIcVm7v3TGmHo7mFFwbtK3DYezyS4s5ZoxvV2OqnWyBNIBiAjXjO3NuoNZ5BSWsu34KWb/9Qu++3I8lZVtdnQXY5rcqv0ZzPrrF/zirZ2oKkt2ptG1kx8zhkbUvnEHZAmkg7h6TBTllcpb8Sf40evb6eTnw5qkLBauO+J2aMa0CpmnS3jg7Z10CfBl8c5UXt98nE8T07h8RM+vTbtgPCyBdBAjorozIKILT366j5P5xbxyz2Rmj+jJH5fuIzElz+3wjHFVZaXywNs7OV1czjv3T2XKgB48/H4i+cXlXDPWmq9qYgmkgxCRc+24D8wZyoTYUP54wxjCugTwwNs7vza3sjEdyXvbU/jiQCa/umo4w6O688zN4wjrEkBIkP+5YUvM19lpBR3I3Rf3p194EPPGeq6kDesSwM9mDeHB93axKyWvww7HYMxbW04wKLIr376wLwA9uwfy6t2TKSgpJ8DPfmfXxI5MB9I90J/rx8d8ZXDFK0ZF4e8rfLgj9TxbGtN+peQWsfloDvPG9v7KRYIjendnUv8wFyNr/SyBdHDBQf7MGBrJkoRUKuyMLNMBLXFOb792nPV11JclEMO1Y3tzMr+EzUdy3A7FmBa3eGcqY/uEfG2aBFM7SyCGWcN7EuScupieV8z8hZt5Ysket8MyplnsSc3n8qe/4P3tyRzMKGB3aj7X2plWDWKd6IbOAb7MHtGTJQmpLN+TTlZBKauTMvnGhBhG9O7udnjGNKnff7KXAycL+NmbOxkQ3gURz3VSpv6sBmIAmDeuN6eLywkJCuDd+6fQPdCfp5btczssY5rUmqRM1h7M4n+uHMb3LhnA4axCpgzoQc/ugW6H1iZZDcQAcOnQSF68ayIT+4XRpZMf358xkD98uo8Nh7KZMrCH2+EZ02iVlcofl+4jOqQz86f2o5OfL3NG9aKXJY8Gc6UGIiJhIrJcRJKcv9VOICwi850ySSIy31kXJCIfi8g+EdktIk+2bPTtk4gwY2gkXZwRR+dP7UdUcCBPLt1n42WZduHjXWkkpuTz89lD6OTnGZpkQmwovUM6uxxZ2+VWE9aDwApVHQyscJa/QkTCgEeBycAk4FGvRPNnVR0GjAcuEpErWibsjiPQ35efzx7CzhO5vLj+qNvhGNMoWQUl/OajPQyP6s51NiVtk3ErgcwDXnLuvwRcV02ZOcByVc1R1VPAcmCuqp5R1ZUAqloKbANiWiDmDufGC2KYNTySJz/dx960fLfDMaZBVJVfvpNAfnEZf71pLL4+NqNgU3ErgfRU1TTnfjrQs5oy0cAJr+VkZ905IhICXIOnFlMtEblXROJFJD4zM7NxUXcwIsIfbxhDcJA/P1603eYPMW3SyxuO8fm+DB66YhjDo+yswqbUbAlERD4TkcRqbvO8y6lnFL96N7KLiB+wCPi7qh6uqZyqLlDVOFWNi4iwMf3rq0fXTvz1prEkZRSwYHWNh9mYVimnsJTff7KXGUMjuHNqP7fDaXea7SwsVZ1V02MiclJEolQ1TUSigIxqiqUAM7yWY4BVXssLgCRVfaYJwjXncfHgCKYNCuedrcn86LJBXxkvyJjWbElCKiXllfz33GH2uW0GbjVhLQbmO/fnAx9WU2YZcLmIhDqd55c76xCRJ4Bg4KctEKsBrh8fzfGcM2w7fsrtUIyps/e2pTCsVzdrumombiWQJ4HZIpIEzHKWEZE4EXkOQFVzgN8CW5zb46qaIyIxwMPACGCbiOwQkXvc2ImOZM6oXgT6+/DethS3QzGmTg5nFrDjRC7fmGBnXTUXVy4kVNVsYGY16+OBe7yWFwILq5RJBqwu2sK6dvJjzsheLElI45FrRpw7j96Y1uqD7Sn4CMwbZwmkudhQJqbOrh8fTV5RGSv32dlspnVTVd7fkcJFg8JtmJJmZAnE1Nm0QeGEd+3E+9uT3Q7FmPOKP3aKEzlFXG8XDTYrSyCmzvx8fbhmbBQr92dSUFLudjjG1GjJzlQC/X2YM7KX26G0a5ZATL1cOTqK0vJKVu6r7sxrY9xXWaks232S6UMizo3tZpqHJRBTLxNiQwnv2omlu9PdDsWYau1MziU9v5i5o6z20dwsgZh68fURLh/Zk5X7MmxoE9MqLU1Mx99XuGxYdSMkmaZkCcTU2xWjenGmtII1SVluh2LMV6gqS3enM3VgOMGd/d0Op92zBGLq7cIBPege6MfSRGvGMq3LvvTTHMs+Y81XLcQSiKk3f18fZo3oyWd7T1JWUel2OMac82liOiIwe4Q1X7UESyCmQa4YFUVeURnffm4TH+1MpbTcEolxz8GM0/zmo90sXHuEif3CCO/aye2QOgRLIKZBZg6L5OErh5OSW8SPFm3ngbd3uh2S6aC2Hz/FnGfW8OrGY8wYGsGT3xjtdkgdhiUQ0yA+PsJ3LxnA6v+6lDum9OXjXWlk5Be7HZbpgF7ZcIwgf1/WPXgZ/7x1AgMiurodUodhCcQ0io+PcNdF/amoVN7eakOcmJaVd6aMj3elMW98byK72ZhXLc0SiGm0/uFdmNw/jLfiT1BZWe/JJY1psA93plBSXsnNE2PdDqVDsgRimsTNk/pwLPsMGw9nux2K6SBUlUWbTzCyd3dGRQe7HU6HZAnENIkrRkXRPdCPRVtOuB2K6SASkvPYm5bPzZOs9uEWG2nMNIlAf1+uHx/Nq5uOU1BcxsWDI7hlUiydA2ziKdO0Nh/JYfHOFFbszSDQ34d543q7HVKHZQnENJmfzR6CiLD6QCYr9+/hWHYhv5k3yu2wTDtyNKuQmxdsINDfl6kDe3Db5L50D7QhS9xiCcQ0mZCgAB67diQAP3ljO+9tS+HBK4ZbLcQ0mTe2nEBE+PwXM+gVbGdduc21PhARCROR5SKS5PwNraHcfKdMkojMr+bxxSKS2PwRm/q4dVIsp0vK+Sgh1e1QTDtRWl7JO1tPcNmwSEserYSbnegPAitUdTCwwln+ChEJAx4FJgOTgEe9E42IfAMoaJlwTX1M6h/GoMiuLNp83O1QTDuxfM9JsgpKuXWydZq3Fm4mkHnAS879l4DrqikzB1iuqjmqegpYDswFEJGuwM+BJ1ogVlNPIsItk2LZfjyXvWn5bodj2oHXNx8jOqQzlwyOcDsU43AzgfRU1TTnfjpQ3fCZ0YD3eaHJzjqA3wJ/Ac6c70VE5F4RiReR+MzMzEaGbOrjhgnRBPj58Pomq4WYxjmaVci6g9ncPLEPvj7idjjG0awJREQ+E5HEam7zvMupqgJ1voRZRMYBA1X1/drKquoCVY1T1biICPvl0pJCggK4Zkxv3txygs1HctwOx7RRpeWVPPTeLgJ8fbhpYh+3wzFemjWBqOosVR1Vze1D4KSIRAE4fzOqeYoUwPsTE+OsmwLEichRYC0wRERWNee+mIb59dXDiQntzL2vxHMkq9DtcEwbo6o8/P4uNhzO5o83jqZnd+s8b03cbMJaDJw9q2o+8GE1ZZYBl4tIqNN5fjmwTFX/V1V7q2o/YBpwQFVntEDMpp5CggJ44a6JCPCdF7eQX1zmdkimDVmw+jBvb03mxzMHc/34GLfDMVW4mUCeBGaLSBIwy1lGROJE5DkAVc3B09exxbk97qwzbUjfHl34920XcCSrkPe3pbgdjmkjissq+MfnB5k1PJKfzRrsdjimGq5dSKiq2cDMatbHA/d4LS8EFp7neY4CdrlzKzdlYA+G9OzKxwlpzJ/az+1wTBuw+kAmBSXl3DGlHyLWcd4a2WCKpsVcPaY3W47lkJ5nE0+Z2i1JSCM0yJ+pA3u4HYqpgSUQ02KuGhOFKnyyK632wqZDKyqt4LO9J5k7Kgo/X/uaaq3snTEtZmBEV4ZHdWeJDW9iarFqfwZnSiu4ZkyU26GY87AEYlrU1WOi2HY8l5TcIrdDMa3YkoQ0wrsGMKl/mNuhmPOwBGJa1NXOL8pPrRnL1OBMaTkr9p3kCmu+avXs3TEtqm+PLozs3Z2lieluh2JaqdUHsiguq+TK0dZ81dpZAjEtbuawSLYdP0XumVK3QzGt0Mp9GXQL9COuX7UzPJhWxBKIaXEzhkVSqbA6KcvtUEwro6qs3J/BJYMj8Lfmq1bP3iHT4sbGhBDWJYBV+6ob/sx0ZHvS8sk4XcKlwyLdDsXUgSUQ0+J8fYTpQyJYdSCTiso6D8JsOoCVzo+K6UNs5Oy2wBKIccWMoRHkFJaSkJzrdiimFVm5P5MxMcFEdOvkdiimDiyBGFdMHxKBj3i+MIwBOFVYyvbjp5gx1Jqv2gpLIMYVIUEBTIgNPddkYczqpEwqFS6z/o82wxKIcc2lwyLZlZLH1mM2Qn9HV1GpvLrxGOFdAxgTHex2OKaOLIEY19wxpS99wjrz0zd3cNommurQnv3iEFuOnuKhK4bjY3OetxmWQIxrugX688y3xpFyqohHF+92Oxzjkp0ncnl6+QGuHhPFNyZEux2OqQdLIMZVF/QN40eXDea9bSl8tuek2+GYFlZZqfzsrR1EduvE764bbRNHtTGWQIzrfnTZILoH+vH5futQ72iOZhdyOLOQH80cTHCQv9vhmHqqcwIRkaCmelERCROR5SKS5PytdtAbEZnvlEkSkfle6wNEZIGIHBCRfSJyQ1PFZlqen68Po6KD2Z2S53YopoUlpuYDntEJTNtTawIRkakisgfY5yyPFZF/N/J1HwRWqOpgYIWzXPV1w4BHgcnAJOBRr0TzMJChqkOAEcAXjYBN6I0AAB+3SURBVIzHuGxUdDB7009TVlHpdiimBe1OySPA14fBPbu6HYppgLrUQJ4G5gDZAKq6E7ikka87D3jJuf8ScF01ZeYAy1U1R1VPAcuBuc5j3wH+4MRTqao2Kl8bN7J3d0rLKzmYUeB2KKYFJabmMSyqmw2c2EbV6V1T1RNVVlU08nV7qurZGYXSgZ7VlIkGvF83GYgWkbN13d+KyDYReVtEqtseABG5V0TiRSQ+M9Ouem6tRjnn/u+yZqwOQ1VJTMlnZG+77qOtqksCOSEiUwEVEX8ReQDYW9tGIvKZiCRWc5vnXU5VFajPiHp+QAywXlUnABuAP9dUWFUXqGqcqsZFRNgAba1V/x5d6BLga/0gHUjyqSLyisoYFd3d7VBMA/nVocx9wN/w1AhSgP8AP6htI1WdVdNjInJSRKJUNU1EooDqTr9JAWZ4LccAq/A0pZ0B3nPWvw3cXetemFbNx0cY0bv7uU5V0/7tTvX8WBhlNZA2q9YaiKpmqeptqtpTVSNV9duqmt3I110MnD2raj7wYTVllgGXi0io03l+ObDMqbF8xJfJZSawp5HxmFZgZO9g9qTm2xDvHURiSj6+PsLQXt3cDsU0UK01EBF5gWqamFT1O4143SeBt0TkbuAYcJPzWnHAfap6j6rmiMhvgS3ONo+r6tlBk/4beEVEngEygbsaEYtpJUZFB/Pi+qMcySpgUKR9qbR3ial5DI7sSqC/r9uhmAaqSxPWEq/7gcD1QGpjXtSpwcysZn08cI/X8kJgYTXljtH4M8FMK3O2LTwxJZ/YsC5sOZrD1IE97OrkduRQZgF+PkJsWBCJKXk2dHsbV2sCUdV3vZdFZBGwttkiMh3WoIiudPLzYfmek7yw7gg7k/N47o44Zo2o8SQ708bc/eIWUvOK+dGlg8gqKGVUb+tAb8sacvL1YMB+Npgm5+frw7Co7ny8K43DWYUE+Pmw/lBju9tMa5GaW8TR7DN0D/TnL8sPAF+evm3aprr0gZzG0wcizt90PH0QxjS5GyZEE9LZnyeuG8Uv30lg0xFLIO3F2ffyxbsm8sWBTNYkZVoCaePq0oRlvZmmxdwxpR93TOkHwKT+Yfz98yTyisoI7mwD7bV1mw7n0C3Qj+FR3RkVHcwPLh3kdkimkWpMICIy4Xwbquq2pg/HmC9NHhCGroD4oznMHG79IG3dpiM5TOoXhq9NGNVunK8G8pfzPKbAZU0cizFfMSE2lABfHzYfsQTS1mXkF3Mkq5BbJvVxOxTThGpMIKp6aUsGYkxVgf6+jO0TzMYjNmd6W7fJeQ8n9+/hciSmKdXlOhBEZBSeYdMDz65T1ZebKyhjzprUP4xnvzhMQUk5XTvV6eNqWqFNR7LpEuDLSDttt12py3wgjwL/cG6XAk8B1zZzXMYAnl+sFZXK1mOn3A7FNMKmwzlc0C8MPxu2vV2py7t5I56rxtNV9S5gLGDn3pkWcUHfUHx9hI2H7XTetiqroISkjAIm9w9zOxTTxOqSQIpVtRIoF5HueEbOtZ4w0yK6dPJj2qBwXtt4jMzTJW6HYxrgHyuSEIGZw+364/amxgQiIv8SkWnAZmcSp/8DtgLb8MzBYUyLeOSaERSXVfL4Eht0ua3ZdvwUL288xvwp/RjWy/o/2pvz9UoeAP4E9AYKgUXAbKC7qia0QGzGADAwois/vGwQf11+gG+Mj+bSYfZLti0oq6jkoXd30at7IA/MGep2OKYZ1FgDUdW/qeoUPKPeZuMZFXcpcL2IDG6h+IwB4L7pAxkc2ZVffZBIVoE1ZbUFf/ssif0nT/PbeaPsDLp2qi4TSh1T1T+q6njgFuA6YF+zR2aMlwA/H/78zbFkF5Ywf+Fm8ovL3A7JnMfLG47yz5UHuSkuxkZTbsfqchqvn4hcIyKvAZ8C+4FvNHtkxlQxtk8Iz377Ag6cPM09L8ZTVFrhdkimGh9sT+GRD3cza3hPfn/9aLfDMc3ofJ3os0VkIZAMfBf4GBioqjeranVT0BrT7GYMjeTpb41jy7Ec/rkyye1wTBUn84v55TsJXDggjH/eOt6u+2jnzvfuPgSsB4ar6rWq+rqqFrZQXMbU6OoxvZk7shevbjxOYUm52+EYLy+uP0p5ZSVP3TDWpqrtAM7XiX6Zqj6nqnYJsGl17rl4AHlFZbwdf8LtUIyjoKSc1zYeY+6oXsT2CHI7HNMCXKtfikiYiCwXkSTnb2gN5eY7ZZJEZL7X+ltEZJeIJIjIUhEJb7nojdsu6BvKBX1DeX7dESoq1e1wDPDWlhPkF5fz3YsHuB2KaSFuNlA+CKxQ1cHACmf5K0QkDHgUmAxMAh4VkVAR8QP+BlyqqmOABOCHLRa5aRW+e3F/TuQUsWx3utuhdHjlFZUsXHeEuL6hjI+t9regaYfcTCDzgJec+y/hOT24qjnAclXNcZrSlgNz8UyvK0AXERGgO5Da/CGb1mT2iF707RHEgtWHUbVaiJuW7k4n+VQR373Eah8diZsJpKeqpjn304HqThaPBrwbuZOBaFUtA+4HduFJHCOA56t7ERG5V0TiRSQ+MzOzyYI37vP1Ee6e1p8dJ3JttF4XqSr/t/ow/XoEMcsm/upQmjWBiMhnIpJYzW2edzn1/Hys809IEfHHk0DG4xlqJQHPWWNfo6oLVDVOVeMiIiIavjOmVbrxghhCgvxZsPqw26F0WFuOnmJnch53XzzApqvtYJp1fAFVnVXTYyJyUkSiVDVNRKLwjPJbVQoww2s5BlgFjHOe/5DzXG9RTR+Kaf+CAvy4/cK+/HPlQY5kFdI/vIvbIXU4/7fmMKFB/tw4IcbtUEwLc7MJazFw9qyq+UB1FycuAy53Os5DgcuddSnACBE5W6WYDext5nhNK3X7lL74+/jw/FqrhbS0Q5kFfLb3JLdf2JfOAXbdR0fjZgJ5EpgtIknALGcZEYkTkecAVDUH+C2wxbk97nSopwK/AVaLSAKeGsnvXdgH0wpEdgvk+vHRvB2fTE5hqdvhdCgL1x7B39eH26f0czsU4wLXhshU1Ww8Mx1WXR8P3OO1vBDPSMBVyz0LPNucMZq24+ZJfXgz/gQbDmVz1Zgot8PpMD7fl8HsET2J6NbJ7VCMC2ygGtMujOjdnQBfHxJSct0OpcPIOF1MWl4x4/uEuB2KcYklENMudPLzZVhUN3Yl57kdSoeRmOI51mNiLIF0VJZATLsxKjqYXSl5dlFhC9mVnI8IjOxtU9V2VJZATLsxJjqY08XlHMs+43YoHcKulFwGRnSli8022GFZAjHtxqjoYAASUqwZqyUkJOcx2jnmpmOyBGLajSE9uxHg53Oubd40n5P5xWScLrEE0sFZAjHtRoCfD8OjupOQbGdiNbezJyuMibEE0pFZAjHtyujo7iSm5FNpc4Q0q4SUPHzEc/q06bgsgZh2ZUx0CAUl5RzNttmXm1NiSh6DIrsSFGAd6B2ZJRDTrox2mlR2WT9Is1FVpwPdrv/o6CyBmHZlcGRXOvn5sP249YM0l9S8YrIKShgdbc1XHZ0lENOu+Pn6cPHgCD7YkUJBSbnb4bRLr248hghcMsTm1+noLIGYdueHlw0i90wZr2485nYo7U7umVJeXn+Uq0ZHMSCiq9vhGJdZAjHtzrg+IVw8OJzn1hymqLTC7XDalYXrjlJYWsEPLxvkdiimFbAEYtqlH88cTFZBKa9vPu52KO1GfnEZL6w7wpyRPRnWy/o/jCUQ005N7BfGhQPC+H9fHKK8otLtcNqF1zYe53RxOT+6bLDboZhWwhKIabfmT+lHxukSttkZWU3i08Q0JsSGnBtzzBhLIKbdmjY4HD8fYeX+DLdDafMyT5eQkJzHzOE93Q7FtCKuJBARCROR5SKS5PwNraHcUhHJFZElVdb3F5FNInJQRN4UkYCWidy0Jd0C/ZnYL4yV+yyBNNYqJwnPGGqn7povuVUDeRBYoaqDgRXOcnX+BNxezfo/Ak+r6iDgFHB3s0Rp2rxLh0WwL/00qblFbofSpq3an0lkt06MiLLOc/MltxLIPOAl5/5LwHXVFVLVFcBp73UiIsBlwDu1bW/MpUMjAc8XIMCTn+7jwXcT3AypTYg/msO1/1xLSm4RZRWVrE7K5NKhkXj+/YzxcCuB9FTVNOd+OlCfhtUeQK6qnr3MOBmIrqmwiNwrIvEiEp+ZmdmwaE2bNSiyKzGhnVm5P4NPdqXx7BeHeDP+BFkFJW6H1qq9vvk4Ccl5/PSN7Ww5ksPp4nIuHRbpdlimlWm2BCIin4lIYjW3ed7l1DOBdbONva2qC1Q1TlXjIiKs/bajEREuHRrJ2qQsHnw3gT5hnVGFz/acdDu0VqusopIVezPoE9aZLUdP8Yu3d+LvK1w0qIfboZlWptkSiKrOUtVR1dw+BE6KSBSA87c+vZzZQIiInB1HOgZIadroTXty6bAIisoqqFR49e7J9AnrzNLd6W6H1WptOpxDXlEZv7pqBNePjyYtr5iJ/cLoFujvdmimlXGrCWsxMN+5Px/4sK4bOjWWlcCNDdnedDxTBoQzITaEp24cQ98eXZgzohfrD2aTX1zmdmit0rLd6QT6+3DJ4AgenzeSCweEccukWLfDMq2QWwnkSWC2iCQBs5xlRCRORJ47W0hE1gBvAzNFJFlE5jgP/TfwcxE5iKdP5PkWjd60KZ0DfHnv+xdx5egoAOaO6kVpRaWd3luNykpl2e50ZgyJpHOAL90C/Xnj3ilcM7a326GZVsiV6cRUNRuYWc36eOAer+WLa9j+MDCp2QI07dqE2FDCu3biP7tPMm9cjedfdEg7knPJOF3CnFF2waCpnV2JbjocHx/h8pE9Wbk/g+IyG63X27LEdPx8hMuGWQIxtbMEYjqkOSN7caa0grVJWW6H0mqoepqvpgzsQXBn6zA3tbMEYjqkKQN60C3Qj2V2NtY5B04WcDT7DHNH9XI7FNNGWAIxHVKAnw8zh0Xy2d6TNty7Y2liOiIwe4Q1X5m6sQRiOqy5o3px6kwZm4/muB1Kq7BsdzoXxIYS2S3Q7VBMG2EJxHRYlwyJoJOfD8sSrRnrRM4Z9qTlM2ekNV+ZurMEYjqsoAA/pg+JYNnuk1RWNttoOm3C2b4gSyCmPiyBmA5tzshepOcXk5CS53YorlqamM7wqO7E9ghyOxTThlgCMR3azOGR+PkInyam1V64ncrIL2br8VPMtdqHqSdLIKZDCwkKYMbQSN7dmkxJece8qHDR5hOowrXjbLgSUz+WQEyHN39qX7IKSvlkV8erhZRVVPLapmNMHxJB//Aubodj2hhLIKbDmzYonAERXXhx/TG3Q2lxSxPTyThdwp1T+7kdimmDLIGYDk9EmD+lHztP5LLjRK7b4bSolzccJTYsiOlDbLI1U3+WQIwBvjEhmi4Bvry8/qjbobSY3al5bDl6ijum9MXHx+Y6N/VnCcQYoFugPzdeEMNHCansSc13O5xmp6r8edl+Ovv78s0L+rgdjmmjLIEY4/jxzMGEBgXwo0XbOFNa7nY4zerF9UdZuT+TX84dSnCQjbxrGsYSiDGOHl078fS3xnE4q5DHP9rjdjjNJjEljz98so9ZwyOt89w0iiszEhrTWl00KJz7pw/k36sOkXyqiLh+ocwbF93mT3Etr6jk/e0pbDqSw6r9GYR28eepG8ciYn0fpuEsgRhTxc9mD6FClS/2Z/K3FUm8vuk4a//7MgL82m6FfcGawzy1dD9hXQKYEBvKT2YOJqxLgNthmTbOlf8IEQkTkeUikuT8Da2h3FIRyRWRJVXWvyYi+0UkUUQWiog14pom4+/rw0NXDGfpTy9h4fyJZJwuadMXGZZVVPLy+mNMGxTO1l/N4rn5cYyOCXY7LNMOuPWT6kFghaoOBlY4y9X5E3B7NetfA4YBo4HOwD3NEaQx04dEMDCiCwvXHUG1bY7Y+2liOun5xdw9rb81WZkm5VYCmQe85Nx/CbiuukKqugI4Xc36T9QBbAZimitQ07H5+Ah3XtSfhOQ8th475XY4DbJw7REGhHexiwVNk3MrgfRU1bNtAulAg+bQdJqubgeWnqfMvSISLyLxmZmZDXkZ08HdMCGa7oF+LFx3xO1Q6m3b8VPsOJHLnRf1s4sFTZNrtgQiIp85fRRVb/O8yzm1iIa2DfwbWK2qa2oqoKoLVDVOVeMiIuwXmKm/oAA/bpkcy9LEdJJPnXE7nHpZuPYI3QL9uGGCVdJN02u2BKKqs1R1VDW3D4GTIhIF4PzNqO/zi8ijQATw86aN3Jivu2NKP0SEVza0nQEXU3OL+DQxnVsmxdKlk51waZqeW01Yi4H5zv35wIf12VhE7gHmALeoamUTx2bM10SHdGbuqF4s2nycwpK2cZX6yxuOoarcMaWv26GYdsqtBPIkMFtEkoBZzjIiEiciz50tJCJrgLeBmSKSLCJznIeexdNvskFEdojIIy0bvumIvnNRf/KLy3lvW7LbodTqTGk5izYfZ+6oXsSE2jS1pnm4Uq9V1WxgZjXr4/E6JVdVL65he6uPmxY3ITaEsX1CeGHdUW6b3LpHsH1/ewp5RWV856L+bodi2rG2e2mtMS1MRPjORf04nFXI5/vq3W3XYsoqKnlh3VFGRwdzQd9qr9E1pklYAjGmHq4YFUVMaGfuf20rf/hkL6eLy9wO6StW7s9g7jOrOZhRwPemD7ALB02zsgRiTD0E+Pnw3vencv34aBasOcwVf1tDUWmF22EB8OwXh7jrhS1UKjw/P46rx/R2OyTTzlkCMaaeIrsF8tSNY1l450SSTxXxVvwJt0OisKSc/111iOlDIlj200uYObxB1+YaUy+WQIxpoEuHRnJB31D+b81hyisqUVUeW7ybxxbvbvbXTkzJ45p/rOVIViEAizYfJ6+ojJ/MGtymRw02bYt90oxphPumDyT5VBEf70rjlY3HeHH9Ud7YcpyS8uZt1vpoZyq7UvK475Wt5BWV8fzaI0zqH8aEWOs0Ny3HEogxjTBzWCSDI7vy1NL9/HbJHqJDOlNcVsmO47nnyvxr5UHWH8xq8GuUlFfwyIeJnMj5chiV9YeyiQoO5EDGaa771zrS8oq5f/rARu2LMfVlCcSYRvDxEe69ZAApuUX0DunMG/deiI/AukPZAKTkFvGnZft5bm3DB2LcevQUL284xgvrjgKQd6aMxNQ8bp4YywOXD+VIViHDenVjxlAb6820LLsgz5hGmjcumhM5Z7h2XG/6hAUxOjqYDYeyYPYQPknwDDq9/fgpVLVBp9VuO+4ZRv6TXWn86qrhbDicjSpMHdSDC5wmq4sGhdspu6bFWQ3EmEYK8PPh55cPZVBkNwCmDgpn+/FcCkvKWZKQCsCpM2UczW7YSL7bneaw9Pxi4o+dYsOhLIICfBkbE4KPj/CDSwcxrk9I0+yMMfVgCcSYJjZ1YA/KK5X3tiWzMzmPb0yIBjy1kPpSVbafyOXK0b3o5OfDkoRU1h/KZmK/MDvbyrjOPoHGNLG4vmH4+wp//s8BAH46cwhdO/mda4oqLCnnp29sZ+uxnK9tW1peyUPv7WLF3pMAHMs+Q05hKdMGRXDZsEg+2J5CUkYBUwf2aLkdMqYGlkCMaWKdA3wZHxtKXlEZ4/qEENsjiHF9Qs41RX2wI4UPdqRy78tbSc0t+sq2T3y8h0Wbj/O7T/Y6tQ9P0pnQN4Srx/Qmv9gzlPzUgeEtu1PGVMMSiDHN4GwN4eoxUQCMjw1hX/ppzpSW8/qm48SGBVFSXsl9r26luMxzzchb8Sd4ecMxRvbuzuHMQjYezmHbsVy6BPgyOLIblw2LJCjAl+6Bfozo3d21fTPmLDsLy5hmcO3Y3mw4lM28cZ7+j/GxIVRUKq9uPMbu1Hx+O28kvYI7892X45nzzGqCO/uzL+00Fw3qwf+7PY6pf1jB65uPcySrgLF9QvD1EToH+HLf9IFUquLbioeSNx2HJRBjmsGAiK68+b0p55bH9/Gcbvv08iQ6+/syb3w03QP9+eMNo1mamA7A1WOj+NVVI+jayY9vTIjhtU3HqFS+coHgj2cObtkdMeY8LIEY0wJCuwTQP7wLR7IK+VZcH7oH+gPwrYmxfGti7NfK3zY5lhfXHwU8tRdjWiPrAzGmhZxNBLdM/nrCqGpwz25M7BfqbGfjW5nWyZUaiIiEAW8C/YCjwE2q+rWT5EVkKXAhsFZVr67m8b8D31HVrs0asDFN4K6p/enfowtjY4LrVP5/rvRcdR7WJaCZIzOmYdyqgTwIrFDVwcAKZ7k6fwJur+4BEYkD7KeZaTNGxwTzo5mD6zzkyPjYUL4/Y1AzR2VMw7mVQOYBLzn3XwKuq66Qqq4ATlddLyK+eJLLL5srQGOMMefnVgLpqappzv10oL7Tp/0QWOz1HMYYY1pYs/WBiMhnQK9qHnrYe0FVVUS0Hs/bG/gmMKOO5e8F7gWIja2989IYY0zdNFsCUdVZNT0mIidFJEpV00QkCsiox1OPBwYBB5225CAROaiq1TYWq+oCYAFAXFxcnROVMcaY83OrCWsxMN+5Px/4sK4bqurHqtpLVfupaj/gTE3JwxhjTPNxK4E8CcwWkSRglrOMiMSJyHNnC4nIGuBtYKaIJIvIHFeiNcYY8zWuXAeiqtnAzGrWxwP3eC1fXIfnsmtAjDHGBXYlujHGmAYR1Y7TrywimcCxBm4eDmQ1YTgtzeJ3l8XvLou/cfqqakTVlR0qgTSGiMSrapzbcTSUxe8ui99dFn/zsCYsY4wxDWIJxBhjTINYAqm7BW4H0EgWv7ssfndZ/M3A+kCMMcY0iNVAjDHGNIglEGOMMQ1iCaQORGSuiOwXkYMiUtPkV62CiPQRkZUiskdEdovIT5z1YSKyXESSnL+tejIuEfEVke0issRZ7i8im5z34E0RabXT9IlIiIi8IyL7RGSviExpS8dfRH7mfHYSRWSRiAS25uMvIgtFJENEEr3WVXu8xePvzn4kiMgE9yI/F2t18f/J+fwkiMj7IhLi9dhDTvz73R7eyRJILZzJq/4FXAGMAG4RkRHuRnVe5cAvVHUEnumAf+DEW9dZIFuLnwB7vZb/CDztDJx5Crjblajq5m/AUlUdBozFsx9t4viLSDTwYyBOVUcBvsDNtO7j/yIwt8q6mo73FcBg53Yv8L8tFOP5vMjX418OjFLVMcAB4CEA53/5ZmCks82/ne8oV1gCqd0k4KCqHlbVUuANPDMqtkqqmqaq25z7p/F8eUVTx1kgWwMRiQGuAp5zlgW4DHjHKdJq4xeRYOAS4HkAVS1V1Vza0PHHM0ZeZxHxA4KANFrx8VfV1UBOldU1He95wMvqsREIcaaUcE118avqf1S13FncCMQ49+cBb6hqiaoeAQ7i+Y5yhSWQ2kUDJ7yWk511rZ6I9MMzf8omGj8LZEt6Bs90xZXOcg8g1+sfqjW/B/2BTOAFpwnuORHpQhs5/qqaAvwZOI4nceQBW2k7x/+smo53W/x//g7wqXO/VcVvCaSdEpGuwLvAT1U13/sx9Zy73SrP3xaRq4EMVd3qdiwN5AdMAP5XVccDhVRprmrlxz8Uz6/c/kBvoAtfb15pU1rz8a6NiDyMp1n6NbdjqY4lkNqlAH28lmOcda2WiPjjSR6vqep7zuqTZ6vqDZgFsiVdBFwrIkfxNBdehqdPIcRpUoHW/R4kA8mquslZfgdPQmkrx38WcERVM1W1DHgPz3vSVo7/WTUd7zbz/ywidwJXA7fplxfstar4LYHUbgsw2DkLJQBPB9Zil2OqkdNf8DywV1X/6vVQg2eBbEmq+pCqxjizTd4MfK6qtwErgRudYq05/nTghIgMdVbNBPbQRo4/nqarC0UkyPksnY2/TRx/LzUd78XAHc7ZWBcCeV5NXa2GiMzF04x7raqe8XpoMXCziHQSkf54TgbY7EaMAKiq3Wq5AVfiORPiEPCw2/HUEus0PNX1BGCHc7sSTz/CCiAJ+AwIczvWOuzLDGCJc38Ann+Ug3hmqezkdnzniXscEO+8Bx8AoW3p+AO/AfYBicArQKfWfPyBRXj6a8rw1ADvrul4A4LnrMpDwC48Z5u1xvgP4unrOPs//KxX+Yed+PcDV7gZuw1lYowxpkGsCcsYY0yDWAIxxhjTIJZAjDHGNIglEGOMMQ1iCcQYY0yDWAIxppFE5GFn9NoEEdkhIpOb8bVWiUhccz2/MfXhV3sRY0xNRGQKnquFJ6hqiYiEA61mqHNjmpPVQIxpnCggS1VLAFQ1S1VTReQREdnizKmxwLmq+2wN4mkRiXfmCpkoIu8581Y84ZTp58wF8ZpT5h0RCar6wiJyuYhsEJFtIvK2M/6ZMS3GEogxjfMfoI+IHBCRf4vIdGf9P1V1onrm1OiMp5ZyVqmqxgHP4hli4wfAKOBOEenhlBkK/FtVhwP5wPe9X9Sp6fwKmKWqE/Bc+f7z5tlFY6pnCcSYRlDVAuACPJMTZQJvOoPgXerM4LcLz4CQI702OzuW2i5gt3rmcCkBDvPlQHknVHWdc/9VPEPUeLsQzwRn60RkB57xnvo26c4ZUwvrAzGmkVS1AlgFrHISxveAMXjGWTohIo8BgV6blDh/K73un10++z9ZdYyhqssCLFfVWxq9A8Y0kNVAjGkEERkqIoO9Vo3DM8gdQJbTL3Hj17esVazTQQ9wK7C2yuMbgYtEZJATRxcRGdKA1zGmwawGYkzjdAX+ISIheCb+OYinOSsXz2i26XimBKiv/Xjms1+IZzj1r8zdraqZTlPZIhHp5Kz+FZ5Ro41pETYarzGtjDMV8RKnA96YVsuasIwxxjSI1UCMMcY0iNVAjDHGNIglEGOMMQ1iCcQYY0yDWAIxxhjTIJZAjDHGNMj/B22bEVUzrx2PAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEWCAYAAACNJFuYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy9h23ruAAAgAElEQVR4nOy9d5wcd33//3pvL7d7e10n3alasmS5YFs2NjYY3DAYMNWhBAgJIbSQQvmFEAIJIZhOiGkGvgEDMRhjSmyDK7Zxt2TZlmVJVtcVXW/b6+f3x2c+s5+Zndlyt3t70n2ej8c97m52duazszOfd39/iDEGhUKhUChkHM0egEKhUCiWHko4KBQKhaIEJRwUCoVCUYISDgqFQqEoQQkHhUKhUJSghINCoVAoSlDCQWELEd1PRO8t8/p3iejTizmm5Q4R/Z6I3l3H45X9jhXLFyUcThCI6AgRJYkoRkQjRPQjImpZxPP/BRE9JG9jjL2fMfa5BpxrLREx7bPGtM/+T9LrREQfJ6L92jU5RkT/SUQeaZ8face4xnTsr2vb/0L6XHnpXDEiut5mXPdr7z3LtP3X2vaX1/M6WMEYexVj7MfS2B+q9J5GUOk7Upz4KOFwYvFaxlgLgBcBOBvAJ5s8nkYT0T7v2wD8KxFdpW3/JoD3AXgXgBCAVwG4HMDPTe9/QdsHAEBELgDXAjho2u9RxliL9PPhMmMyH7MDwIUAxmv9cCcJ4jt6M4BPE9EVzR6Qoj4o4XACwhgbAXAnuJAAABDRBUT0CBHNENEzsharaZiHiChKRIeJ6B3a9s8S0U+l/YQ26JLPR0RbAHwXwIWaljijbf8REf2H9vfLiWiQiD5KRGNEdJyI3iMdo4OI/o+I5ojoSSL6j2q1XsbYowB2AzidiDYC+CCAdzDGHmWM5RhjuwG8CcDVRHSJ9Nb/A3AxEbVp/18F4FkAI9Wc14afAfgzInJq/78NwK8BZKTPej4RPap9F8eJ6HqTVXMlEe0jolki+jYRPSBcO8IaIKKvENG09n29Snrv/UT03jLficFNZLYuiOgKItqrnft6ACR/OCL6SyLao537TiJaU81FYYxtB/+O5HvS8lia5fd17T6ZI6JdRHS69tqPiLsr79bu1wfkMRDRS7T7Z1b7/RLTtfkcET2svfcuIurUXvMR0U+JaFL7Xp4koh7ttVYi+qH2XQ1p96b4fpctSjicgBBRH7i2fED7fxWA2wH8B4B2AB8D8Csi6iKiILim/SrGWAjASwA8Xcv5GGN7ALwfRQ07YrPrCgCtAFYB+CsA35Im5m8BiGv7vFv7qeazEhFdBGArgJ0ALgMwyBh7wjTGAQCPAbhS2pwC8FsAb9X+fxeAG6s5bxmGATwvncfqmHkA/wCgE9yquAxcoEGbrG4Bt/o6AOwD/05kXqxt7wTwJQA/JCLDJF7Dd6KjnftWAP+iHfsggIuk168B8M8A3gigC8CfANxU6bjaey8AcDqK92S5Y10J4GUANoHfL9cCmJQO9w4An9PG+DS4QAYRtYPf598Ev3ZfA3A7cetN8HYA7wHQDcAD/iwA/H5rBdCvvff9AJLaaz8CkANwCrhFfiWAZR+HUcLhxOI3RBQFMABgDMBntO1/DuAOxtgdjLECY+xuANsBvFp7vQCudfsZY8c1TbsRZAH8O2Msyxi7A0AMwKmaFvYmAJ9hjCUYY88D+HEVx5sAMAXgBwD+iTF2L/iEcdxm/+PgE5HMjQDeRUQRAJcA+I3F+y7QtEnxc0GFcYljbgZ3qzwqv8gY28EYe0yzao4A+J52boB/J7sZY7cyxnLgE53ZkjnKGPs+YywPfp16AfRUGFM1iHPfwhjLAviG6dzvB/AFxtgebWz/CeBFFayHCSJKAngUwLdRvL7ljpUFdwduBkDaPvJ3ejtj7EHGWBrAp8Cto34AVwPYzxj7iXZtbwKwF8Brpff+D2PsBcZYEsDNKFoyWXChcApjLK99R3Oa9fBqAH/PGIszxsYAfB1FhWLZooTDicXrNe3/5eAPVqe2fQ2At8gTHICLAfQyxuIA/gz8YT1ORLdrk1ojmNQmAkECQAv4hO0CF2oC+W87OhljbYyxLYyxb2rbJsAnSyt6tdd1GGMPaef/FIDbtEnDzGOMsYj081iFcd0K4FIAHwbwE/OLRLSJiG4jnjgwBz4xiu9qJaTPznjny0HTIUak1xPan/VIPrA6t/w9rAHwX9I9NAXudlpV5pid2tg+Cn5fuisdizF2H4Drwa3JMSK6gYjC0jHlMca0967Ufo6azn/UND5Z2In7D+Df050Afk5Ew0T0JSJya+N0gz8bYqzfA7c8ljVKOJyAMMYeADeFv6JtGgDwE9MEF2SMXaftfydj7ArwyXMvgO9r74sDCEiHXlHutAsY8ji42d4nbeuf57HuA9BPROfLGzXN8gIA91u856fgk9dCXUoA9An79wA+AAvhAOA74Nd5I2MsDO5eEW6h45Cug+Yu6is5QpVDsdhW7js9Dum6a+eWv4cBAH9juo/8jLFHyg6Ca+JfA3fjfbCaYzHGvskYOxfAaeDupY9Lh5TH2ALuKh3WfsxWzGoAQ+XGp50vyxj7N8bYaeBuvNeAuwQHAKTBFRExzjBjbGulY57sKOFw4vINAFcQT6v8KYDXEtEricipBd9eTkR9RNRDRNdosYc0uKunoB3jaQAvI6LVRNSK8tlPowD6SAqsVovmHrkVwGeJKKBZLu+q8Da7Y70AHoj9GfEgvJOItgL4FYBHANxj8bZvArgCwIPzOacN/wzgEs1tZCYEYA5ATPusH5Beux3AGUT0euKB/w+hvFAuh9V38jSAN2rX+RTw2I987q1E9Ebt3B8xnfu7AD6pXU8RqH1LDeO5DsAniMhX7lhEdB4RvVjT3OPgQqUgHefVRHSx9rk+B27ZDQC4A8AmIno7EbmI6M/AhcttlQZGRK8gojM0F+ccuJupoLmz7gLwVSIKE5GDiDaQMbFhWaKEwwkKY2wcXBP+V+3BEQHAcXBt6OPg368DwD+Ca11T4L7vD2jHuBvAL8AzeHag/EN2H3g2yggRTZTZz44PgwcER8C17ZvAhdV8+DB4HOKn4K6D58DdC69njBXMOzPGphhj92pulLrAGBvWXFZWfAw8MBoFt9J+Ib1vAsBbwAPNk+CT23bM71pYfSdfB8+cGgWPV/zM4tzXaefeCOBh6fVfA/giuOtlDvy66plSVXA7gGkAf13hWGHw6zIN/r1NAviydJz/BY+nTQE4FzymBsbYJLjG/1HtPZ8A8Brtc1ViBXgiwByAPQAeQNHqexd48Pp5bUy3wN51uWygOj4vCkXVENEXAaxgjC242peI/g3AGwC8jDE2s+DBLSJE5ACPObyDMfbHZo+n2RDRj8Cz0f6l2WNZ7ijLQbEoENFmIjpTS009H9zd8et6HJsx9hkAN4DHHJY8mvsvQkReFOMRlYLgCsWi4qq8i0JRF0LgrqSV4C6Pr4LXINQFxphly4slyoXgrhPhyni9TRaVQtE0lFtJoVAoFCUot5JCoVAoSmiaW0nLS78RvPKTAbiBMfZfWon8LwCsBXAEwLWMselyx+rs7GRr165t6HgVCoXiZGPHjh0TjDFzVwEATXQrEVEveAXvU0QUAk+lfD2AvwAwxRi7jngL4DbG2P9X7ljbtm1j27dvb/iYFQqF4mSCiHYwxrZZvdY0t5LW4+cp7e8oeO7xKvB8fdF358fgAkOhUCgUi8iSiDkQ0VrwboiPA+iRmnCNwKbhGBG9j4i2E9H28fHl2kpfoVAoGkPThYPWO+VX4F0R5+TXtIpWS78XY+wGxtg2xti2ri5Ll5lCoVAo5klThYPWW+VXAH7GGLtV2zyqxSNEXGKsWeNTKBSK5UrThIPWEfKHAPZoHR0Fv0NxIZh3o46FUgqFQqGojmZWSF8E4J0AdhGRWJnsn8Gbgt1MRH8F3pTr2iaNT6FQKJYtTRMOWkdLsnn5ssUci0KhUCiMND0g3UwOjMXwtbtfwEP7J6DaiCgUCkWRZd14b8/xOVx/334UGHD1mb34+rUvgse1rOWlQqFQAFjmwuG1Z63EFaf14IcPHcaX79yHVr8b//mGM5o9LIVCoWg6y1o4AIDP7cSHXnEK5lJZfO+BQ7j6jF5cdEpn5TcqFArFSYzyoWj8w+Wb0Nfmx5f+sFfFHxQKxbJHCQcNn9uJv3nZejwzOIudAyfUSpMKhUJRd5RwkHjjOX0I+Vz40cNHmj0UhUKhaCpKOEgEvS68+dw+/P6544imss0ejkKhUDQNJRxMvPqMXmTzDA+8oDq9KhSK5YsSDibOWd2GjqAHd+0ebfZQFAqFomko4WDC6SBctqUbf9w7hkyu0OzhKBQKRVNQwsGCSzf3IJrOYdeQylpSKBTLEyUcLNi2tg0A8OSR6SaPRKFQKJqDEg4WdLZ4sb4ziO1Hppo9FIVCoWgKSjjYsG1tG3YcnUahoKqlFQrF8kMJBxu2rWnHdCKLQxOxZg9FoVAoFh0lHGw4Z00EAPD0wGyTR6JQKBSLjxIONqztCMLjcmDfyFyzh6JQKBSLjhIONricDmzsbsHekWizh6JQKBSLjhIOZTh1RQj7lHBQKBTLECUcyrB5RQhj0TSm45lmD0WhUCgWFSUcynDqijAAKNeSQqFYdijhUIbNK0IAoILSCoVi2aGEQxm6Q16EvC4cnog3eygKhUKxqCjhUAYiQn97AMemEs0eikKhUCwqSjhUYLUSDgqFYhmihEMF+tv9GJxOqh5LCoViWaGEQwVWtweQzhUwHks3eygKhUKxaCxZ4UBEVxHRPiI6QET/1Kxx9LcHAAADyrWkUCiWEUtSOBCRE8C3ALwKwGkA3kZEpzVjLEI4qLiDQqFYTixJ4QDgfAAHGGOHGGMZAD8HcE0zBrIq4geREg4KhWJ5sVSFwyoAA9L/g9o2HSJ6HxFtJ6Lt4+PjDRuIz+3EirBPCQeFQrGsWKrCoSKMsRsYY9sYY9u6uroaeq5VET+Oz6Qaeg6FQqFYSixV4TAEoF/6v0/b1hR6Wn0YnVPCQaFQLB+WqnB4EsBGIlpHRB4AbwXwu2YNpiekhINCoVheLEnhwBjLAfgwgDsB7AFwM2Nsd7PGs6LVi3gmj2gq26whKBQKxaLiavYA7GCM3QHgjmaPAwB6wj4AwOhcCiGfu8mjUSgUisazJC2HpYYQDiOzqkpaoVAsD5RwqIKukBcAMBlXwkGhUCwPlHCogs4gFw4TMbVcqEKhWB4o4VAFYb8LLgdhUjXfUygUywQlHKqAiNDR4sGkshwUCsUyQQmHKukIelXMQaFQLBuUcKiSjhaPijkoFIplgxIOVdLZ4sWEijkoFIplghIOVRIJuDGbUBXSCoVieaCEQ5W0+t2IpnPI5QvNHopCoVA0HCUcqiTi520z5lK5Jo9EoVAoGo8SDlXSGuDCYSahgtIKheLkRwmHKon4PQCA2aSKOygUipMfJRyqJKy5lWaUcFAoFMsAJRyqJKK5lVTGkkKhWA4o4VAlrZrloNxKCoViOaCEQ5Uo4aBQKJYTSjhUidvpgMflQDytUlkVCsXJjxIONdDidSGmhINCoVgGKOFQA0GvU1kOCoViWaCEQw0EPS7E0vlmD0OhUCgajhIONdDidSGRUZaDQqE4+VHCoQaCXpdyKykUimWBEg41EPQ6VUBaoVAsC5RwqIGgx4W4ijkoFIplgBIONaDcSgqFYrmghEMNtHhdiGdyYIw1eygKhULRUJRwqIGg14UCA1JZtRqcQqE4uWmKcCCiLxPRXiJ6loh+TUQR6bVPEtEBItpHRK9sxvjsCHqdAIC4SmdVKBQnOc2yHO4GcDpj7EwALwD4JAAQ0WkA3gpgK4CrAHybiJxNGmMJHie/XJmcshwUCsXJTVOEA2PsLsaYUL8fA9Cn/X0NgJ8zxtKMscMADgA4vxljtMLjUsJBoVAsD5ZCzOEvAfxe+3sVgAHptUFtWwlE9D4i2k5E28fHxxs8RI4uHPJKOCgUipObhgkHIrqHiJ6z+LlG2udTAHIAflbr8RljNzDGtjHGtnV1ddVz6LYIt1JaBaQVipOWe54fxY2PHkEqu7xrmlyNOjBj7PJyrxPRXwB4DYDLWDE3dAhAv7Rbn7ZtSVC0HJb3TaNQnKzc9MQxfPLWXQCAB18Yx/fftQ1E1ORRNYdmZStdBeATAF7HGEtIL/0OwFuJyEtE6wBsBPBEM8ZohRAOaRVzUChOOpKZPL70h7148bp2fOzKTbhnzxgeOjDR7GE1jWbFHK4HEAJwNxE9TUTfBQDG2G4ANwN4HsAfAHyIMbZk1HSvCkgrFCct9+wZxXQii49cthHve9kGdAQ9+PmTA5XfeJLSMLdSORhjp5R57fMAPr+Iw6kaj5Nn1S4n4ZAvMDDG4HIuhdwFhaJx/OG5EXSHvLhgfQecDsLVZ/biF08OIJnJw+9ZMhn1i4Z64mtguWUrpbJ5vP37j+GCL9yLZwdnmj0chaJhMMbw6KFJXLyxE04HjzFcurkb6VwBO45ON3l0zUEJhxpYbnUOv316CI8fnsJELIOv3vVCs4dTNQ8fmMBf/ehJ7B6ebfZQFCcIB8ZimIpncMH6Dn3beWvb4XIQHjm4POMOSjjUwHKLOfxm5zDWdwbxkcs24oEXxjEZSzd7SBVJZvJ4/0934N69Y/jbm3aiUFBNEhWV2TXEFYmz+/VOPgh6Xdi6MoynB5an1ayEQw0sJ7dSRjOnLz+tBy/b2AkA2H4CmNcPvDCGaCqHa7f14dB4HI8emmz2kBQnAHuOz8HjcmBdZ9CwfeuqVjw3NFv3TsyMsSXf3VkJhxpYTm6lvSNzyOQLeFF/BGf0tcLjcmD7kamGnzeTK+Cvb9yOq77x4LzWznjghXGEfS58+jWnwe0kPPjC4lTPK05s9hyP4tSeUEnixekrWzGXymFgKlm3c82lsnjDtx/B6Z+5E/ftHa3bceuNEg41oFdILwPh8MwgN7PP7GuF1+XEpp4W7BuNNfy89+wZxd3Pj2LvSBQ3Pnq05vc/fzyKrStbEfK5cfbqNjy8TP3Fito4OB7Dxu6Wku2be0MAgBdGo3U713fuP4hnBmfgdBA+/stnl2wlthIONSB3ZU1l80veLFwIh8ZjCHicWBXxAwDWdbbg8ETjhcNtzw6jJ+zFGata8ce9YzW9t1Bg2D8axakr+AO9bU0b9h6PIp2r38M3NJPENd96GB/82Q7kloF7cTmQyuYxMpfC6o5AyWsbOrnAOFSnez+XL+AXTw7gytN68N13novJeAa3PXu8LseuN0o41IDDQXA7Cb96ahCbP/0H3LJjsNlDahjHJhNY3R7QWwes6wxiaDpZ14nWil1Ds9i2th3nrW3Hs0MzyNYwAQ9OJ5HI5LFZEw5besPIFRj219Hi+fztz+OZgRncsWsEv9i+fAukTiaGZpJgDFjdXiocWgNudAQ9ODQer8u5nh2axVQ8g9edtQoXru/AylYf7to9Updj1xslHGrE43RgcJr7H3cPzzV5NI3j6FQCayRNan1nEAUGDEwlyrxrYcwmsxiYSmLryjDOWRNBKlvAvpHqzfnBaT42oQFu6Q0D4MHGehBNZXHP82P4y4vW4dSeEG5fohqfojaOafe0lXAAgPVdwboJh0cP8gSJCzd0gIjw8s3deOjAxJKMYyrhUCMiKA0Ax2frF6RaShQKDMemEljTUczcWNXG3UvHZ1MNO+9ebRLf0hvGes2cP1aDMBqZ42NbEfYB4NaOx+nA/rH6WA4P7Z9AJl/AVaevwCs2d+OJw1OIzSNorlhaDFYQDqvbg7risVB2HpvGKd0taA96AAAv2dCBRCaPvSNLT9FUwqFGjMKBT0bxdO6kqqKcSmSQyRX0eAMAdLV4AQDj0WKtw23PDuOlX7oPX71rX13iL8IiW9sR1IVRLZbK6BwfW48mHJwOQn+7H0cn66P17RyYgcflwIv6Izh/XRtyBaYLtOXC0EwSv9w+cFLVj4zOpeF0EDq0e9zMqogPI3OpmlycduwdieoWLQCcvboNAJZkLYUSDjUiC4fhGS4c/u7nT+NN33mkbpNQs5nQit06pYelM2QUDtFUFp+8dRcGppL47/sO4I5dC/ebCkust9WHVr8bYZ9LFxhW/PbpIVz61fsxPMP3GZ1LIeR1Iegttgxb2xHE0cn6aH3PDMxgS28YHpcDm3p4XGNfHbNYljrpXB6v+++H8PFbnsUPHjrU7OHUjfFoGh1Bj942w8zKiB8Fxu+vhRBNZTE4ndRjYgCwstWHrpAXTx9TwuGExyPlQU/E0oilc7hnD89VvvWpJbP0xIKYjGUAAJ0tHn1b0OOE3+3UhcOjBycRTeXws/e+GFt6w/jiH/YuOHtneDaF9qAHPjdvctbfHsCAjTmfLzD83c+fxqHxOH76GE95HZ1LoTts1P7WdnLhsFDLhjGG3cNzOGMV1/pWRfwIepw1xUROdB4/NIXJOL83bt5+8iRjjMfS6ApZWw1A0aUqlMH5ItybQrEAACLClt7wklQylHCokVa/2/C/nP/83NDJ0ctHWA6ymU1E6Ap5Ma699sjBSfjcDmxb24a/v3wjjk0lcPuuhQVoj88k0dvq0//vbfXjuM0DeXC8GEf4035eyzAWTesuJcHq9gCS2bw+7vkyHuWKwMZu/mATEU7pCRnGcbJz394x+NwOfPSKTTgwFtMtthOd8Wh54bBSc68OzSzMAhUu0rWmlNlN3S04MBZDfom56pRwqBExYQqt+sgEdyX53U5bLfdEQ1gHXSYfbFfIq7+2e3gWZ66KwOty4ootPdjY3YJv//HggnzRx2dT6G0txjnag27MJDOW+z6rFem9ZEMHjkzGwRjDXDJbIryFsBmdXZhwOKx9z2ul9gqrIr6GBuiXGs8Pz+H0la245FS+LO/J0ql3PJouuddlRIKDiGnNF+EiFZaIYNOKENK5Qk3JF4uBEg41IiYf4Y8/ovmzz13ThsHp5AlZGHfbs8P4yaNH9Il9Mp6B20kI+43LfbQHPbrL6dhUQk8ZdTgIH3zFBuwbjeLeGgvXZCbjGXSFiq6sSMCD6UTW8pruPT4Hn9uBV5zajWgqh+lEFtFUDiGfccwrNOGw0MyyI1o8aZ2UwbUi7MfIbKou33kuX8CPHzmypBMb9o9FsbGnBeu7RGHYiR9jKxQYJiq4lYJeF/xuJyai1sIhly/gy3fuxX/ds7/svTA4nURH0IOAx3iPbtCu52IUmdaCEg414tf84SIVTVgO56xpQyKTx3Qi27SxzYedx6bx4f/diU//djdueYr7kSeiaXQEvSVr54a8LsTSOaSyeYzOpQ2pf689cyX62vy4/o8H5j1ZziWzCEuafyTg1qrRS2MZI3PcyljfxSfrI5NxxNI5tHiNlkNR61uYhn9kMgG3k7AyIru9fEhk8ojWIZ31+j8ewGd+txtv+s4jGFqC7prJWBrTiSxO6Q6hxetCd8iLw1Lufyqbx83bB3QL60QhlskhV2D682xHZ8iju1vN3Lx9EN/640F8/Z4XyrpWB6cT6DNZDQDQ3y4y85bW966EQ4343PySubXA9JHJODwuB7au5IFKkQ9dKLCGtVcoFBj+uG+sLrnXP3v8GEJeFzpbvPi1FlCfS5W6ZwCuQcUzOd08loWDy+nA+y/ZgGcGZvRCn1pIZfNI5woI+4rnbQvwB3Y6UepaGtP8xP3aGAamElw4mCyHjhYvXA7SayBkhmaSiKaqE+bDM0msaPUZGrMJq2Rkga6lrGY1bF4RgstBeoB9KSGshA2aMF7XGTQIgi/+YS8+ccuz+PD/PnVCWc9zSf79my1OM10tXkzErF2ct+wYwMbuFvSEvfi/Z4ZtjzE8k9TjF+Zj+9yOhhaYzgclHGpEWA5CqT46mUB3yKtrHjOJLEbnUrjwunvx7v95oiFj+Ma9+/Ge/3kSf/6Dx+fVuVSQyRVw1+4RXLG1B687ayV2DkyjUGCIp/MIekuXRWzxuRBL5fTYilkLevO5fegOefGt+w9Udf4DY1F84fd7kMsX9IfUYDlof08nMmCM4Z7nR5HI8M87Hk2jO+TV9xG+/7DpIXc6CN0hb0ls4N49o3jpF+/D277/WFUtQUZmU+gJGYPdvbrLih97NpHFJ255Bk8crq177WOHJjGdyOIfr9iEs1dH8FgVbcYZYzg0Hlu0egNheQmB2N8e0C2cbL6A3+zkisXu4Tk8eaT5rrHr79uPP//B4xUTBqIpfj+FfKXKkExni9dQ41N8fxY7B2Zw9Zm9uPK0FXjwhQnbwPJkPGNIDxcQEfra7DPzkpk87nl+FDMWSlIjUcKhRkTVsNCaZ5NZtHhduuYRTeVw754xjM6l8fCBybovkJPJFXDjo0cAcFfHbc/aayqVePjABOZSOVx9Ri/WdwWRyhZwfC6FWDpnqBUQtHhdyBUYRrXJ0Fw05HM78dcvXY+HD0xaBivNguyTt+7C9x44hJ8/OYA5TYNvNbiVuMCdTWTxy+2DeO+N2/H9Bw8DAMbmUugO+XRhIjJnWizG3dPqK3Erffv+gygw4LmhOdy7p3KcZCyaRk+rUTgIhWBaS+/8wu/34Obtg/jAT3fU1IPqycNTcBBw0Smd2La2Hc8NzSKZKf/+nzx2FJd+9QH8+23PV32ehSAmxm5NQHa08PgTF1JxTCey+PdrtoIITV857f59Y/jKXS/goQMT+PRvnjO8NhXP4M3feQT/8IunARSFQ7iScAh5Ld1Ku4ZmwRjwov4IzuxrRTKbt3StZfMFzCSy6Gixdl/1t/kt3UqFAsN7b3wS771xO9747UcWtSJfCYcaeeM5q/C9d56Lv7p4nb7N63Lomkc0lTWktz50oL4Pyt6ROcwksrj+7WdjfVcQv95ZubYiX2D4+C+fwVXfeBBPSmsy3L7rOEI+Fy7e2Kn77g+Px5HI5BD0lE6yQW2R9WFNOFi5nt56fj/cTirxvX7h93uw9TN34iEt7TSVzeOZAZ5xdPfzo5gVloOk+bcFheWQxa+0eMizgzOIpXOIZ/LoDnvhdTngdlJROFi4B3pbfQbXz8hsCjuOTuNjV25C2OfCfRWC6IwxjMym9PiFQHz+uRQPmv9p/wQcxDXEWoqadg7MYPOKMIJeF/JbofoAACAASURBVM7qiyCbZ9g/Zp/3zhjD9fdx6+wnjx3Vr91COKplfNkxFk3D7STdUusMepHJFxBN5/SxnrumDVtXhquyfBrJzx4/hq6QF3932UY8cnASY9Hid3/bs8PYfnQav945hGOTiardSp0tXkwlMiVWwS69tX2kbC8voUDYVWH3tQUs3cQPH5zAwwcm8YpTu3BoIo6bn1y8Zo9KONQIEeGVW1cYNGuPy6FPatFUDntH5nD6qjCIUHXDLsYYbnjwIL557/6y+4kUzrP6Injl1hXYfmS6omvplh0D+OWOQewdieIDP92B2US26FI6rQdel1PPmDg0EdPcShbCQdt2XJuIrR6okM+N89a24/69xUV2svkC/ufhIwCAX+7gN/fgdEJfUW9gKoG5JP8MBsvBr7nqkhndhbH96LSeNdLZwoPmYZ9bj4NYuQd6wkbhsP0oF5Av29SFi07prDiZzaVySGbzJcJBWC2zCV75OjSTxD9cvglEqHoFOsYYnhmYwVna8pRrO7lFWi6t8dBEHGPRNN5ybh/yBYb7980/QwzgLrZLvnw/vnLXPtt9xubS6GzxwqFVEQsNeDKWwYGxGIh41s1ZfRE8PzzXtLhDMpPH/fvG8LqzVuKyLd0AYIiB3bl7RF/u9969o4imqxMOEb8bjKEkRnVgLIYuza28sacFLgdZFkaKeEWnTeC7v92PuVSuRND/ascgIgE3vvvOc3H26ghuXsROwEo4zJOAp+iT97qcCHpcIOI3z+GJOLasCGNF2Gfb/uGh/RN6phMAPHlkGv95x1587e4XMFYms+a5oVm0Bdzoa/PjJRs6kCswPFFhhbZf7RjiXUQ/cjGm4hl88c69uHfPKOZSObz2zJUAeFDMQcVirxaLmIN4gIZnkwh4nHpQ3swF6zuwbzSqm8C7hmaRyRXgczt0y0FMfuevbcfgdFIPOssxBxH8T2byGJlNwekgzCazunkvxhP2u8u6lVaEfYhn8vqDvePoNPxuJ7b0hnFabxiD08my5vq4pnmaq6/dTgcCHifmUlndt33hhg6c2hPCM1X2ypmIZTCXymFTDxfO/W1cOJRr+SFW5PubSzYg6HFiZw1WynNDsyUB7+8+cBAA8P0/Hbb1l4/HeIxHIDTgyVgaB8fj6Gvzw+d2YlNPCHOpHMZs0j4bzfajU8jmGV66sRNbV7aixevCU1J68N7jUbzxnFVoC7hxYCxWdCtZWMEyQmkxT97HphJYo7mYvS4nesI+y2yzybim0NikzIrvXQ5KC2v00lO74XU58arTV2DvSHTRig8rCgciWkNEndrfFxDRx4joDY0f2tLG55KFgwMOB6HF68JcKoeZRBbtQQ/62vyWpuJELI0//+HjePlX7tfNTaHNAjDUCjw7OGMQIkcnE1jf1QIiwrY17XA6qOzyndPxDLYfncIrt/Zg68pWvOeidfjfx4/hwzftxKqIHy/bxAuaHA5C2O/GTCKLuE3MQWwbnkmV9dEK83qf1mlSmN5vPW81JuMZxNI5HNMmv4s3diKTL+jtA1oNwoFf44GpBHIFhjNWtfL/tWsqXF8hH7/u4m8zIogq4g57j0exuTcEt9OhLwy0v0z7gqk4nxCs0h3DPjdmk1k9KN0b8WNDd0vVNQBCqAjLLahljpXLXDk8kYDHydc73tgTqrqj52wyi9f890P4l988h0c0d2ehwNuCtHhdyOQKej2HGXMVcYd2LSZiGYxHiy43vedUk9qKPH5oCk4H4by1/NlY1xnEYe1em45nMBnPYH1nC1a1+TE4nZQC0uUth3LCQV4kaGXEZzl5i/qgDlvLgR9Dni9eGI1hMp7BBRs6AACvOJVbQkLBajRlhQMRfRrAfQAeI6L/APANAJ0APkJE31iE8S1ZHA7SM5dEM76wz42JWJqnZPrd6G8LWFoOv5f88TsHuFbz1NEZrOsMIuRz6Z0+ZxIZvO76h3HZ1x7QzfSRuZQ+2fk9TmzpDZXVHJ8ZnEGBARdu6AQA/MMVm3BKdwsKjOFfrt5iaDbW6ndjPJpGrsAqCIekZbxBsEVbWvH543yCGJxOwOty4Nw1vAPlwFQCx6aS8LudeJHmThGTiaz5iz5WYqI9s08TDlrgzq9Zb7KgEt+JjJi4xAR+cDymT8ZCOJRbBnJKE+AitVam1a8Jh5kkHAR0h7xY3xnEwFSiqh79wu0oYj4AdzHIbqW7do/gDumeGZhKYFWbH04HYfOKEPaNRKty48jus19pactHpxJIZPJ487l9AHgVNMCvx1/fuF1fjS+ayhqus8i6mYilMR3P6tfmFG2pzWa1Fdk1NIuN3S36vcpTbvlYxGpuG7qD6IvwbKu5ZBYelwNeV+l9I9MaKBUO+gpyUkp3b6vfsmpeWMZW9xBQtBzk+WLnMT43nLe2HQC/tq1+tz5nNJpKlsPbAGwBsA3ARwBcyhj7JwBXALi8wWNb8ojJSfgwQz6XblKG/W6sjPhxfDZZkm749MAsWrzcDbVrkD+MhydiOLUnhFURv36D/PZpnomULzA8dWwajDGeKy1lzZyzug3PDMzYugOe1wTNaVodRovXhT/83Uvx6D9dhled0WvYN+J3Y1irJA56LFJZtQeOCz97TWtVxI+Ax4mDWqOxoZkkVkX8+uJBx6YSGItyIRfRHjqhWcmuKoeD4HEW8783r+CfQfwv0m3lsbicpZ01e6T2B9FUFmPRtC4cVkX8cBAwVKb7q0ghbLOyHPwuzCVzOD6bQlfIC7em0RdYdWtRHNXqZFa2GtujC4H03NAs3veTHfjgz57S3WIDUjHVxp4QphNZvSFeOR47xPthvXhdO/aN8vtCWHevPasXTslf/uudQ7j7+VF87e4XAKDEmhTKQTSVw2Q8o8cgOls88LudlkqRKJQ70qBCOd4ccRanaxYmwNudDE0nkckVdEG8TrccEphL5UrSn62wshyOz6bAGA8mC3ojPL5lfuZjmoVilTAB8Pso4HEamvsJi064rYgIZ/VHanIjLoRKwiHFGMswxmYAHGSMJQCAMZYDsLhJt0sQoaUKrSPkc+mTTNjnQlvQgwIrpssJjk3FcdrKMNZ1BvHcMHe5jEfT6Al70ddWzB8/IC1Ss28khplEFulcASukieTs1RHEM3nb7Jbnh+fQ1+Y3aPoup0O3PmTCfrc+frtUVn3fMm4lIkKvlD46NJ3Eqja/wa86l8oh7Hfr55mKZ+B0UEnbZK/LgRntgdQrSc1uJakq2knlhEOqRFN3OR3oDvkwVKbjpqh6by9nOUh9oUS687GpypPg8GwKva0+PdALcPeVEA6PSzUTj2iB1WNTCd0NIYSEXYNCmd1DvDfSGatasX+UN3oTWu66zhZ0tnj070y08RAN4cxJCkIhSmRymE5kdJcbz9m3dqde93teKPeh/32qIfUZ47E0JmIZvSAVANa0B1BgXEERQeGesBerIn6euj2b1JW8clgJBxH7kmMxK1v9yOQLJcI6ls5pmXXWU654ZuQ2L7uHZ3Fab9hwb5zV14oXRqNIZRu7XC9QWThEiOiNRPQmAK3a3/r/Cz05EX2UiJgU0yAi+iYRHSCiZ4nonIWeo5EIzdWjWw5uPRAX9rv1tD9z87gjkzyItbo9gJHZFFLZPOZSOXSHfdqDxXs0HZ6I44xVrfC4HDg6GS/6taWJ/ex+7qp56qi1NnFwPG5oEVyOVr9bv6mtArvyjV3OrcTHWDSvh2aS6GvzIxJww+UgTMYzvFWGz6WfZyaRMbRDF3jdTsxok3OfLlyMbiX54XZY9OT3e5wI+1wYm0uV+PgB7icu13tpOpGB1+WwnETCmnCQ+/OIyWIiWll/GplNlmRB8Z5SvIbgqaPT6A554XE68NTRaaSyecwksrr1KCyOalpuiNX95EZv41G+0E3E70ZnC8/lZ4zh2cEZhLwuJLNc8cjkCwa/vHCrjs6lkC8wg7tE3MMyyUwev9LWXN89PIddDehgLNp5yN+tCABPxdOYjKXhczsQ8Lj0+3cylrGdsGWEMmQQDlHRvbj42YW7bcpCOFSKa6yM+PU0ccYY9o1EdRetYFNPCAVWfRbkQqh0VR4A8BoAV0t/i58HFnJiIuoHcCWAY9LmVwHYqP28D8B3FnKORiM0KaFFeV3GyVO4TGakfkuJTA7j0TTWdga1RnbpYhfUkBd9bX7E0jyl7fBEHOu7gljdHsDhibjedlrWVNZ0BNAe9Oj+STOD0wn0W/RzsUKe8AMWwkGed30VtK0VWm1BLl/ARCyDnrAPRISQz4VoKos5zYctrmE8k4fbwiUkX9P2oAdel0OfCIXlIFsbVpYDoKWzapaD00FGP3HE2k8smI5nbHvvBDxOpLJ53vRP+yxCSMj59XYcn02VtFRoD7qRzTPE0jkcHI/hzL5W9EZ8GJ5N6ZOTKBDsjVTXWDCVzWM0yv3jQqCMzaUwEeML3TgcxZbss8ksUtkCLtVSQUXmldnV6Pc49e9CniD72gIlAfWdx6YRTedw3RvPAMBTkmX2jUT1Qsj5clQ7p7z2uQgAT8YymIpn0BHk341ssVopJWZ8bgc8TodROGgCQO7oahe4tisslVnZ6pcWrkojnsnrMRyBUPTK1cHUi0pX5TkAu7WfXaa/nyvzvmr4OoBPAJDty2sA3Mg4j4FbLr2W714CCK1XWA6y1hr2ScJBulGET7GvzY/OFi8m4xl9EukOeXUNbCKWxvBsEms6gljbEcDRyYTut5Rz+YkIZ/dHsNMidXI2yTuVyj7RcojxArCcqKuZhAW9rT6MRVP6ZxcPTcjnRjSVQzSV435Wt1NvReKxCAp63cVbNOBx6tecqJjqKo/LynIAuLAanUvj4HgMa9oDhhX9Vrby9EO7oO50IqNPxmY8TicyuQIvHNTG5nNzS8Wq3YJMocAwKiUYCPSeUvEsbxMS9mFF2IfjM0ld0RDfVUfQA4/LUbF1OP98wOoOvy7opuIZTMSKLR06W7yYiGZ0d4mYiOxcjX530UcuWw69ER/mUjm91QkA/f686vQVWBXxG9JLdw/P4pXfeBCXffUBw3tq5egkF/yysG2TPqscGxH30awWkK4EEc/mE/U4QNFykBWHokJoshxSOUtrXKY34sNELK3FR0otXIAH2O1qKepNpavSov2cC+ADAHoBrATwfgDzdvkQ0TUAhhhjz5heWgVArvIY1LYtScwxB5csHPwutGpFXLIWIWctdAQ9SOcKODzBNZ7ukE83PblriT/8XSEuRERA0hzUOnt1BAfGYiXayqBNDyQ7ZMvBavKXu7TazME6PWGfwfwVAi2k9WfibiU3HA7SLQCPhUDySdfW7Sz6bHldCd/fILTshIOWf35gLGbIDAL4dc/kCrbdVWeTWd1FaMbtImTyBcTTeQSk2hB5YSSACwKzJTEZzyCbZyVuJTHZjEVTmEpk0NXi1ZIbipaD+K6ICCtbK68rITT5/raAvhbJRDxjSFHlykpad42KiWnQpujR73HqNTmywiJabIxJ6x88PTCD9Z1BRAIebOk1LpL0w4d4S5TxaBoP7CsWT9bK0ckEVkX8BjeRbjnEM5iMp/X/hUs4ls5V5VYS75GF10QsjbaA29CMcaGWA9OWI9XdnybLweNyoL89YJtyXE/KXhXG2L8xxv4NQB+AcxhjH2OMfRRcWKwu914iuoeInrP4uQbAPwP414UMnIjeR0TbiWj7+Pj8b6iFIG4qod3KE6psOcxKWoTQ/NoCHn0SEIHn9qBHf8iERhb2uxD2uTGXyuqFWuaHVCxSbi68sltcxA6PKVPIjLzJ3M7bjNAkhYASGSEtXhcm4hk93Rcojd3IiGsrBLHbxc8r+//l625n0WzobsF4NI39YzE9fVWga3txa7dGzKZiHAC8TgfSuQIy+QJapJYj8sJIAPCp3+zC+Z+/Fzc8eFDfNqW3VDBaJULb3T8WA2O8+E4E+Ke0YipRPQ6IAHZ5K0UEY7tC3qI2HeNWQqe0gFU2z6SsniCcDrK1HAIeJ+JaDyjZ/SfcnrJwPDAWw2bNf74q4jfESHYem8Flm7vRFnDjbm3J3fnAYypGK9nndiLgcWIqnsFULIN2za0ka/FWVrIVfrcTCann1WSstJFeuIxwCFVhOQA8VfzgeBxBj9PgQhas0TwJjabaCukeGLOTMto2WxhjlzPGTjf/ADgEYB2AZ4joCLjgeYqIVgAYAtAvHaZP22Z1/BsYY9sYY9u6urqq/Bj1RdxUYlKVJ1Svy6FrEXLMQVgOkYBbv7FE9o3f49QnfrEkYavfjbCfr2sgHnBz36Mz+1pBBDxlijuIycm8dKYd8vitFPBqNHSBsG70bqmSW0n4VYXAEJOOlQYnJh0R4yhaDtZBaIfNHX2KZJ6LIj2B7max6XoZt6kYN49ZjtPIXTyPTSZw0xPcIP7mvQf0icMu913cN0Jp6GrhwiFXYDioTdyyC7A96MG0jWATyOm4bie/N6fiaS3TyG0Yh37ekBdhn0tXMszCwec2FoIK9JiLZjlk8wUMTCWwTltFr68tgKjWKmI6nsHhiTi2rW3HOavbFrTU7tHJUuEgPtdUPIOpRNGtFDQIh+qmwYDHaWiIOJ3IlKQ3h7QU9TkL4WCXxioQ2W7HZ7nlsKG7xVIJW9MewLE6rIteiWqFw40AniCizxLRZwE8DuBH8zkhY2wXY6ybMbaWMbYW3HV0DmNsBMDvALxLy1q6AMAsY2xhCxM3EHFTCY1XuJUcxDVrt9OBFq/LsADQrOQzFpOSePj8bkk46Cmxbn0SHZ5JosXrKpmYQz43Tu0pLYYrV7xlhcPgNrKyHKp3K4nJVK/70Cwi2RcvrKSWssKBH0e0KxGCWF5Ny1lh3AAMgb3TTMIhUmbdCKA0x19GtnZkAdLqd+uW3p8OcMv2S28+E7F0Dn/az/+fsREOcmU4AHSHi91nxb3SKgkHkd1Ujql4Bi4H6dprR9CDiVgGqWwBfu1aCmtscDqhZzBFAh699sWs+cotZDwWloNwow1OJ5ErMKzr1GpLNEt2aDqJA5r7ZEtvCJtWhHBoPF5V8aCZ2UQWs8ks1rQHS17raOEL9aSyBV2xkhUsbxUxB4Dfc7JbKZYurZFwOAitfrchzgiUv4cEYiGp4dkkDo3HS+INgjUdQUTTuZKMqHpT1VVhjH0ewHsATGs/72GMfaEB47kD3LI4AOD7AD7YgHPUDZdpMhMarDx5m/2U0wn+kLZ4XbomMRFNw+UgeKTurmISCGuWA1AUDlacvTqCpwdmDPnjU/EMQj5XVQE3oEbhUMly8BpbaYtCNdklJv7WYw4W4/SZ3Uq6cJDcStLb7NxK/e0BvPqMFXjHi1djbYdxAjG33jbDe01ZX3eD5SBNOC0+l17f8vihKawI+/CGs1ch4HHi8UO8dkEoDaL7rMCnXQdhdbUHPPo1GtYqsWUXVnuwsnAQQXWhiXa0eHTBLa6t+D08k0LE79YnOqGgWrmVBPJ31xbwwOUgPXYhKpTXaU0FV0WK6bfiM66M+LGppwW5ApuXP/2oVlOy2sJyEG4loHg/yeuVVGs5+D1Gt5LdfSFqX2TkbDY7Ah4XIlrPp6GZJNZ3lgo6QG610dgeS5VLAzUYY08BeKreA9CsB/E3A/Chep+jUYgAalbrLuq0CJB6XU6kJU1oJplFJOAGEekay2wyqz+YIclKAITlwCePoZmkba702f1tuOmJARyeLGock/GMbS8XKwyTbIWYg52GLtDdSjPGgKUcuBRWgZh0LOsctH18unDg55WzmIxuJetxOR2Eb7/jXMvX2gLF1uBmcvkC0rlClZaDJPi8Lh6L0PoVbexpgdvJW4iIAjM7t5L4rKI+xu9x6sHu4ZkkwtrELYgE3EhlC0hm8rYFXVPxovsI4NdcxBb82rXUz5vI6H/L7iuzhm10KxndfF0hr+5WEpOYKIIUrp3peEb/jCtafUhry8EekmpzRmZT+NubnkImz3D9287WJ0YzVqsTyuPUrXPt+ricDnhdPF5UtXBwO5GUis+iKWtXkRAO2XwBB8dj2NjN60qqKbbb0NWid0Ywx8YEvdK66KKbbyNQXVkXgLAcdOGgPbAuyfHtdTkM1YwziYzuUxYTSyyd028ct9MBn9uhF8OE/S5d6z4+m7L1W569mt8kchO+qXi64tq4MrJ/02rud1QR+BWIiXJ4NgmiokvCWEgl9i0TkHZZWw7yZFRpLJUI+9xwkLXlEE/z785WOEgTi7yP+PzxdA4DUwk9nXhjdwiHJ/jaCTOJLHxuh2GSBYqfWcSqfG6HbjlMxjMImPZvr+AW469lDULI63Lobi1zMeFMMqtr2IYMNpPgtbMcAO5aEm6l47MpuBykx9jkjJ7jsykEPU6EvC49pVfO6vra3fvw5JFpPDMwg4/+0pzcWERUdlvF1/hn1a6ldN+Uc2daETBbDqnSNcsBTYhk8vjBnw7jqm/8SV8ZsJrzbF0Z1lvhvMhm4i9aXgtbnrYSSjgsAJduOfAv0ynFHAQ+t9FymE0W12eWJzhZqxA3nNvJq1DlVhV2yxme0t2Cla0+3COtajYpZWdUgyHrx8pyqBCwlhEPXjSVQ4vHpb83YJFlVAxIW6Syuo0Tl5iEZC22UnC8Eg4HIRLwWAakY5pL0DYg7SqeW/5sLb7i8qXTiayu0a7tDCCZzWMsmsZ0PGMZD3I5HXA5SHdL+dxO3Q0yk8iUTMQiZlLOB20+l9fl1DvZimssBEIik9fvTbmRoTk4Kr9mtvq6Qj49tnR8JomecLFFSNDjgoP4Ikkjs7zOg4jQEfTA6SB97Y1kJo/fPTOMt53fj8++9jQ8cXgKO45adyAWixG1BUqfD5/bqcd/ZItTt1irdLv6pYB0OpcvqRrXr4XLgUy+oHfLFWswVJMVJeJhbieh2yaRJBJww+d26OuqNAolHBaA8AmKPHXdcnAaLQd5ychkJq/7puUJTn7QRJAr7HPrxTcCu0mKiHD5aT340/5x3VKZqtGtJGf62LmNxOZKqaxOqWutzxAfKJ5ECFdzMaGMveVQP+EAcIvGatEksc3ecijVROW/ReND0RdKxDsOT8QxIykKZsSELeo7xD1TYKUaaJtFx1Azwp2pj9vi3pPvQSEoyikEfinuYZ74usPFbC1eBV6c6ER7+NkkX29daPsObb3vUc0d9dzwLFLZAi7b3INrz+tH0OPELVoLDjNjc2l0aYs/mZGtBdlKK7ozq7t/Ah7uVmKMFRvpWdwXXpcT6WxBd6uJleFcdql0Elec1oM3n9uH/36bfRkZEWmtNpRwWLJcu60fP/7L8/HGc3idnphQ5YnV53YilS1aDulcwbLdhmw5FDU5o08esPbLC166sQupbAFPa/UOc6msIaulErVkI1UzIQsXmFwc6DJMNkbhYJmtpE1SYvLRYw6yW6kOwiHgcekuJBmhvdsJB3lSlIvghEYpKl2FAiHSOY9O8uVY7QLdegqvxT1gvk5ByYVlh6yUyMcHJLeSRQyhXJypnFXRrRVuZvMFHJ9NGZpFAkW/fDSVMwjInrBPdyuJup2z+iMIeFy4dEsP7tw9atmBeCyaQpeNpi1bC/KYhaJVvVvJhXyBIZMv6JaItXDglsN+LSVY9CurxnLoaPHiK285C1edvqLsfr1VFD4uFCUcFgAR4ZJNXfqD4XIYfwOllkM6V9BvViLSJ3v5ptXdU9q34zTEAuxvsPPXtcNBvDVzvsAMqXvVUClbybhv5eOJOINdewuhSZUz7y/Z1I1IwI0z+rj/1Zw+XM1YqyHocVq2boiXmQTM47CyHMx1HqIGYCKWQTKTL4k3CMyuHtll5TZdJ/Ga7A83k8zm9WMBRuEq3u+VhYOwHMq4Gu2sWKBYJT0eTWNkNmVoMw9w4TCXLF1Yqifs1d1Ku4fn0Nvq06/Z5Vu6MRXPYPdwaS3EeDRtWTAGGK0F+W8hLM3X0w7xjCYzeV1psIoBel0OJDN5vQ3JpPbbnN24ELolt12jUMKhjlilsnrdDpPlkDc8mEKDkx9+8XbxYMpzX7l5sNXvxrrOIPYcn9MnumCZB9iM00Krt6NSKis/dwXLQQ9I22crnb+uHU//65X4q4vXGfapt1sp4HXp1b4y+nW0EbJiPEQmrdSUdSYsCVGxOx3nNQZ2wsFryiByOx26IDK7QYrNC43C7ZO37sJnfvsc0rk88gVmtAwkQeGzcivploN9kkK5vH0xoe8b4R1dzf2jxAp65nTQDmkti8HphCH76EJtRbRHDpauzz1WRjjI94osIMvdd1bIQljvVmBxDTwuhyE5QBg6rjrcpwJRgd/IQjglHOqI02Iy97mcRsshWzDcrOZJAJCEjIWbqtKkvb6rBYfG47oWGajJcpA+i82NTPq+lW908TntLAexvZbAoLllCbDwbCVAsxws3DJCsNulIYoxy72egOKkISwHOZGgTQt+p0zavIzPlMIrxgiUukHEpCVX7yYzedz0xDH8+NGjeFhbElT+DFbxLrezuJ6GleVg/s7LCQcxUQsXZ6+NWymeyRsUmJBUHzI8Y+xY2x3yYX1XEE8eNgalM7kCpuIZ3VoxY2c5lGvbYoVfFg4VLAfx/MkCq1r3VTV0tXiRzhX0pIJGoIRDHbFahazUcjAJB1MFMFBqMRj9vuXHsL4riKOTCb1JXy2WQzktUcD0fSsfT1wPORBnZUUEa/D9ikOZ8+oXCq9+LbUcRLWunb9Yb+dhus6ilcbIbAoOMrb7aAvytbpT2bzlsqaArDSUFtmVCgcRcyiOf4+0rvT+0Zh2TOu6BDHpEUlJBFXEHMp1Ge0O80nx2UEhHEyWg5+vfZI3LUkb9rmRyfOajZE5YyAbAF7UF8Ezg7MGjVlfdCdc2XLwWwSka+mtBHDBK+odAhZKgyxseiXhZjU/zBfxWRvpWlLCoY5YadM8cyGPqXgGc6ksMrmC4SH1mLJxgNJiOkP9AcrfYBs6W5DJF7BvhE8ItVkO5VNZ7fa1QwgFO3eVOSBdjQYn5gSP5CFgIAAAIABJREFUwa1U8W0VCXqdJW4ZAMhoNSx2rgfZcpAREw5Pd3QbvkPR6yeVs3cr+SxSSe2uk9NB8LkdhpjJbqlHkejwaQw4W0+YQhjpzSTLZCtZTYyCzhYviIBnB/k4ek2TvN/tLAb7pWsn3G8Hx/kKdGaL48y+VkzE0oZgrKjEtnUr2bjTaq1zEPvlCgVJabAv3ARgiLVUk61ULWINiUYKh+pnDkVFxH0iz5tetwNzqRzO+dzd8LkdXDhID6aYdOR0z6LFINxKxeNVur96tJtRtCCwWgvafvy1BKSrEA6mDCPAaDmY3UrVPKQFTToYYw4Lf+gCHhcSFtlKosDRTnAVLQfjoyS7usy58G0BD45NJbSAtI1bycLdqNd6WFyngMdlEG5DMym4nYSwz6036zMEpC1iDvLf4vqSZMWakyHKWQ5upwPtAQ8m4xm4nYROU72NfE9YFQ+KxWzMloNYH3rvyJzuchJtw23dSi7rz1prnYO4X/MFpt8XVveswXKQhFu1Fko1dFl0vq03ynKoI3aWgyCVLaDAjBObmOzkFszmlFhj5XL5G0zkvItAqNWKbnZUG/gGqgsCW1kOVn+LCaGaBmgiuFfPCmmAC9FMvqA/9IJyGiIfR2lCAWD8nObCxbaAW7McyriVXE7Db8AYGzAT8DgNwk0Uva1q8+vptFapqvJnAErTqM3JETKVGsmJCWxDV0uJ6092sbQYYg5abzFtKdhWv7FOR7SGkZfJ1C0HG7eSzyLQLo+/WstBKDY5STiUq80BjO60emYr6c0iG9h8TwmHOmKVjWClGcoPpvBzy5Wd5lRWQH5Iy49BCBnRVK2c6W+mlpXeqoo5WLQTsRIOQrOuRjgIt5I8udTHrcTHYI47lNMQ5e1mLZqISj6foDXgQTSVA2NGl4eM3nDQU2o5WI0laIqZTGpLm3aHfHrPKDu3kqxwiO9MvG5lvernrNhllGvNGy3WMJfvCfk44lod1xcRMlldQb4OirxY0Fg0DSLYFnzKn9VgsZSxxKwQ32ehwPSuB5Ush85QcUzuOmYrRfR+YEo4nBBYadOyIBDIN4/wE8vLUJrdSvLfldw5kaDJcqhBONSSFVXJggGKE3glyyES8OBLbzoTrztrZcVjikBkLWOtBhFQNtc6ZLTWKPYBab7dykITn8/c1tln49Ix7iMCwxZZRRZCNGCKmYi+WoYMJRvhICNateiWg8P+vqvksrxkE19nxWrylZ8BS+Fgs/ocwDsTHJQsh/EoX+HNTjOXr7F839ZsOThly4HfF+WaRQLG57qeloPb6UDI5zKsFVNvlHCoI+JBkoPG1pZDcVu8nOVgkT1UaRoMaes96Kt3zbcIroKWU51bSbMcnDbCQTrftef12/aSkRE5KvLZ61UhDaCkSjqTK8DjdNgKQzHJWRWEic9vTgqQJxQ7t5KY0ORiYLHNOuZgbAo3nciiPeixDTwLQWH+WF2aa0ZfF13cdxYfv9Jk95Ztfbj6zF68/5L1pe+VvjNjN1vjSohWcY0NXS26qwyAYTU7K+wEYS2JEEAxtpWvwa3UbhAO9bMcAB67UpbDCYKVW8nKcpCDgcKnLXdPtTLlySL+YAURX6RFCJ1ATams1n9X2tcOMXnIk7dVQLoWRIzG4HKri3Cwthyy+ULZQGJxfQl7y8GsmXoMPn7rR/DVZ/QCMNXMmFqJGMdv7A01GePatF0BmNhuLuLq0YK6omZC3IvzqbUKeFz41tvPsXYrGdbBKG07IvoGWSk3G7qDmIhl9IWz5HWwrRDX27xPf1sALgeVBL3tkGMOmVwBDrK+h81rWwjcdcxW4sd2W7aZrxcqW6mOWAeky5udAtn8FMexSiOsxoXSGnBjMp6B00FV+1PN56tPKisZfgPWRXC1ICapWtqHV4OYrHKmvj2ZXKGsZulxOmzX+rX6/IBRWNhZDueva8fNf3Mh1ncFS/a1Go+81kA2z4uj2oIezCWLAsOqCC5savwngroiyFvpO3I7CZdu7i67j937BFYupmiKV05bCf712opyBydiOGd1GyZiab1nlRXimG8/37js/eqOAHZ99pVVrbMAyNlKBU1pKJ+kABhX7Ku35VDNCoALQQmHOlKsSyhus6ugNCN3zCya8lYxh8rj4NpKHF6XvTvECqvz2VFLKmsjLAerIOpC0LXCvFE4lJsEAC7sbvvIS/XGejLCDWGeFOTj2cUcAC4gZITFaZUv73KS3pBOrF8c8bsN7eKt+neZM6ku2dSF636/Fxeu560qil14rce4//Ovth1/OQxrnkidbWWhYbew1QZtydeDYzGc3R+paDls6gnhzr9/GTb1lC67Wa1g4GOWLIe8vdJg1fEWqG8qK8Ath0MTsco7zhMlHOqI1WTXbtGvX7Yc1nYEcGQyYZgwxHGs1kauZq4XZnqtGnVtvZUqH09MAPJEUEuhnRXCcpDfWQ+3klN/8E2prGUmAYGd1iomk3JuJa+NW8n6eHxfKw+Pk4rCIaUJBJ/baZmmChTbgrSblijd0hvGvv+4SurKOn+3UjnsLAeR5ZUvMNs6ir42P5wOwtHJBGLpHNK5gl4UZofdqmq1INc5iFiUFfLzbazxqa9bKRLwNDQgrYRDHbEUDhbpdfKEcOsHLzKsfAVIVoJ0L5HptXKISclZo6ZiFEbl961pHLLlIAen5+EO+shlG7FvNIqXbewqHqcOwkE8xOZ20OUmgUo4LT4/YGycZ+dWssIluTVKXpMsh7TmXuLCwTpD6ZzVEbzzgjX44Cs2lBzL0JqkvsqujiwwzRq1LhxsLAe304GVER+OTSX0CmE5ZbRRiMk9l+cB6UqWQ8DjNFq4dbYcWrw8zsQYq8lDUC1KONQRvfGetM1SOMjZDFretoxV+mDRvK98E+jujBqfbPnQ9XErlY6j0mpzlTh1RQj3/OMlNY+lEuKamWMOldxK5dB7S5kmBY+NNl8Jh+TWMCMmVKBoFXhdDvt6BqcDn3v96ZXP2YBJh5/fOBbDaw5CBvarHgLAmvYgjk4lMBHjPveuluqCygvBKSkQmTJrT4skk3PXtBm219tyCHpdKDDer62W+6haVLZSHbFyb1jVGVgFpA3HsQg+FwVG5XGIe7bWB9uue2qlfe2olMpaL22nHpaDfcyBVZ3qaDcuc5ZKtTEHuzHm8xbCgUgXGqILsM/tlNYOqWHgErW4M2uh3EQprpt5rWyZ/vYABhbdcigK52ye2cYQzlkTwbsuXIOvXnuW8f11thxEbU6szCJPC0EJhzpipalbTYDlMisAuVV3cVstD6lrnpZDLcKkulTWUguoHhO5mXpkKzlNLptMroBP3roLB8dj8w4kWmWdAdXVOZQdo0UAwOlwlFoOboeuiMw3jVIMvZExBzN6rKaMUF7TEcBUPKP3EKsUc6gH8j3CY1H2rU/+/ZrTS3o91TuVNajX5jRGOCi3Uh3Ri+BsJqu3nNuHF6/vqKiJksWkUksqa7H9Rq2WQ/X7VlUhbXH+RgiHejxzbqn6FQAePjiBm544BgCWmUjzObb+fxV1DlaI61mwcCsZYg6a5eB1FQPS89VaG/F9AeUL6Kpxi67RFgHacXQaTgcZ6gkahbnOodq1p/X3N8hysFreth4o4VBH7DRYt5OQzTN8+S1nWb5uxiqVVUQyapmUa485VL9/Ndq61QTQEMuhLtlKxWAjYGxoNl+3kmj1Yb4Onnm6lZw2tRiAdczB5y7GHOZ7jRoR6ASqsxzK3b/9knDoCHrqkrFWCXNX1lpjUfUXDtYrANYLJRzqiN3N/NSnr4DF82yLVSprsd9S5fdbLVda1XlrcStVlcrKjye7JBohHOpa56B9UaI3FVB9Y7ZKx9aPZ1jsqfpjr9fckZssKo55zIELBYPlIC0zOh8aFZAuNx5xj5SzLlZ3cOEwm8zi9FXh+g7OBuGuTecKZbOV7Ki7W8mr3EonDHbaS7msCyuEtmZ1L1Va7AewTiGthtpiDtWPg0mZ+fXO2Kh2LJUQ1+rBF8bxxOFJg0Cb78QqDlEiHKTj1aKZX3RKJ3734YtwhramgYzTQSgw4LX//ZCeGu1zO/TGffMVynXsFWegnEAvriBov0/Y50Z7kC+atLW39Ho0AnENv3znPgDFxoLVUm/rJmjTD6xeKOFQR/QK6QUfh/+2mvSqy1YSwqG2J7ua3a3aV9hh6VZqgCZal2wlbUL63TPDAIzVyfN3K4ljm7KV5nk8ADizL2K5XUyku6QV4AyWw5JzK1VjOZQ/twhKn7ZysSwHU+yoUZKzSvSYQ4PcSipbqY7Uy2VSrj13NdrHfGMOtWjgtaSyGtxKdfa7AvWxHMwWzYS0/OJCJ4FylkO9sLov5JjDfNtF6xXS8x+aJeUmfrvKcjMfu/JUALVr8PPFfI1rcQk2gkZnKzXt0xHR3xLRXiLaTURfkrZ/kogOENE+Inpls8Y3H+qlFZfro1TNKfSaiJqzlSrvX6nXjmEcFjstVcvBfAx5+UWPa37HryYgXS+sF5pyWtaa1MJiVEibERZvpe/1olM6ceS6q7G2Qmp4o6h3r6RaOSljDkT0CgDXADiLMZYmom5t+2kA3gpgK4CVAO4hok2MscY41eqMfjMv8J4pts+wcis1Mlup+n2r0ta1XWStc6lmK5mvVTRVfODmO5mLz22eRObrpiqH+Ro4iH8msSjNfIOh9XKVmik3HnG567lyWiOYSTaur1E1eFwOeJwOvT1/vWlWzOEDAK5jjKUBgDE2pm2/BsDPte2HiegAgPMBPNqcYdaGXqi2wOOUizlUc+xqNa+S99XZrVTP95WjLm4lCy1wVcSPF69vx5vO7VvQsc2fuREap1m4+dy8r8+6ziB6wl586uot8zpuo2IO5SyZYvHg0vZ6H5tKVLXff77hDDx+eLIhY/juO8/Bmo7GWE7NEg6bALyUiD4PIAXgY4yxJwGsAvCYtN+gtq0EInofgPcBwOrVq612WXTqlcesPxxyKqvptbLjsEiFreW85SgGpGs6tHSO+b2vHPVJZS2diLatbcPXrn3RvI+pB6RNx67ncpECswAS/nC/x4nH//nyeR9Xr5Ce9xGsKfesWK0TvtT4s239eOeFa6ra9+0vXo23v7gxc9Slm3saclyggcKBiO4BsMLipU9p520HcAGA8wDcTETrazk+Y+wGADcAwLZt2+p9786Lek18xZhBcZu+PGZN2Uo1Coca9q9FW5cD0o3QROuRImh1iIUGokUK72L4ps1adr0asTUiRgSUdyst5nWbL+96yRpsXbk4KbTNomHCgTFmq64Q0QcA3Mp4xO4JIioA6AQwBKBf2rVP23ZCUK/+M+VaZdTSPqPW57qaOZaIf85qxrFYj3Y9XFVWQqtesYFGtaCQKVdotxCoTq5SM9VYBUvZrdTsTKXFoFmf8DcAXgEARLQJgAfABIDfAXgrEXmJaB2AjQCeaNIY581CteNi4z2LmEMNlkPN563ifbXUOejvqbtTwkijtNuFZhWJa7UY+fBm66kerjagcW6lctekeN2WruVQqbPyyUCzYg7/D8D/I6LnAGQAvFuzInYT0c0AngeQA/ChEyVTqZ7oFdLSszGfmEOt1FQhXcV8pwvJBjv9GqVgLlT7LsYcSq/rJZu6cPEpnQs6voz5HJ116lLaKKunGuHQiGr6etGIjLOlRlOEA2MsA+DPbV77PIDPL+6I6kO95sByk3QtFdK1urnq3T5j0dxKTWgOVwtWLpQf/+X5dTm2wDyJ10s4NKq3Ui1FlEsR5VZSzIt6pbLKFAPS1cccaqWWt9VyjkZnC9RbuxWX2OOsj+tgMTTgUsuhPi2s9aLHuhytlL+7bGPJNr0n1RJ2KynLQVETp3S14N0XrsG7XrJ2QccpJwCqW+yncTGHYkC68vEapHRanKe+Jwp6XIilc3VwK4kK6cZfCHPM4TypN9SCjtug9hkAcOS6qy2321WWLyUaUeW+1FDCoY44HIR/u6byuryVsJqka4k5zDfLo5pJVriqqtn3Vaf34p49o/jEVafOazy1snlFaSvr+eBzOxFL5+rnVlpky+H2j1xctzTLxci0smMpu5WWsuCqF0o4LEHKPRPVPC+L8VBV4+f3e5z49jvObfhYAOC2v70Y/W2Buhwr6HViIrZwv/JiukfkSbye+feLZf1ZsZSFw3JACYclSDnroBqNfTFWxWpUoHK+nG6xxsF8CWjdLhdcBCdSMhfBcmiUht/M77nZLbGXO+rqL0GsHkg9IF3F+xdD41rCWYYLJuDhgegFxxy0b60RbcrNzLfwsdrjLiZCqDbTpaVQwmFJUu4Br6VCupEsNcuhnvjc/LGol+XQqFRbGRHXqPf30oz5WQjVpZyttBxQbqUTBD0gXcvazQ1MIl3IJPQvV29BV6g+efiNQAT0F245cBZDjjaqtXajurJWg3IrNRclHE4wlozlsIDn9r0vranH4qIjhOuJZB05GzTm/7+9uw+2o67vOP7+3OSGYEIIENQUCEFAESiGJCIPDkalTshQUjU62PIUH1JbIWqHUVs7FrTVGUY6FTtDyiDGUAFB1AkRBh8gBYGgEUkQkZoiHVFGHtqGplY6Id/+sb+TrHfPPffc3Hv24ZzPa+bM3ad79vs7e85+d3+/3d9W8Rm4WqkenBwaooyb4MajSTvO8Wp9fi/umtiZ15pzF3L13Y9P2t3KnUztVZtDFckh/S2jIX+81py78HceBNXPnBxqqNPPsZufahnJoYqdRlmmTlJyWHT4gfzTeZNzM9pYenXmUOmlrDVsc1h6/NyqQyhN/VKztW0pGN9NcD5zmIjW57dz166KI+ler65WqnI7u1qpWk4ODdNVtxUldHmnPv7mLDhsNpA9JrQpenXmUM2lrNnhkVNDtVyt1DBVXj2S14/VSn955jE8u+MF3vP6IzjlyIMa9aSvXrU5VHnw3odfsUZxcmiYuvxg+rFa6U/fcOTu4SYlBuhlm0N6vxIfxFuLZ/6aq5Wapi475RpeSDLQ9iSH3rxvqXZnh3p81weVf+INM57f6mQ907p9HP7h1kmnR8tOxO7vW4mb+yNLX8U+U4ca1ebTj1ytVEOdfod12Sn3Y5tDo7UeytMHVystPX4uj/3t4FwyWlc+c2iaEn6rnfYHl519HNOmDNWm7cMy43nOxnjsfjs3BAwcnzk0TK+P5L730Tey7/Doj8e84NT5XDDBJ93Z5Nt/32EAVrd57OZE+F6DweXk0DDd/FYPmJHtKI566cxxv/+hk/TAHCvX9OEpoz52cyJ2H4w4RwwcJ4eG6ebM4bjf25/r3/s6Fs0/oISIrJ+5WmlwOTk0TLcHcKceNaencdhg8IUHg8sN0g1TlzukbTDU5eo4K5+TQw11OoN3+6CVyclhcDk5NMyQs4OVqJ87WLTOvOlrqPNNcKWFYeY2hwHm5NA4/rFaeVytNLgqSQ6SFkjaJOkhSZslnZSmS9KVkrZJ2ippYRXxVe30Vx4MwPITDynM85mDlcm5YXBVdSnr5cBlEXG7pGVpfAlwJnB0er0OuCr9HSivOHjmqDc0+UjOyuSv2+CqqlopgFlpeH/gV2l4ObAuMpuA2ZLcA1eOk4OVaXhoiCHBX5/16qpDsZJVdebwIeAOSZ8lS1CnpumHAL/ILfdkmvbUyDeQtApYBTBv3ryeBlsnzg1WpqEh8fhnJr9bDqu/niUHSd8BXt5m1seBNwMfjohbJL0T+AJwxnjePyKuBq4GWLx4cd/f3L+7ixsnBzMrQc+SQ0SMurOXtA74YBq9GbgmDf8SOCy36KFp2sBrdcnsaiUzK0NVbQ6/At6Qht8E/CwNrwfOT1ctnQxsj4hCldIgc3IwszJU1ebwPuBzkqYCvyW1HQC3AcuAbcBvgJXVhFdfzg1mVoZKkkNEfA9Y1GZ6AB8oP6L6ayUF3+dgZmXwHdIN415ZzawMTg4N4QZpMyuTk0PDODWYWRmcHBpiT5uD04OZ9Z6TQ8M4N5hZGZwcGsYP+zGzMjg5NMSeBulq4zCzweDk0DByk7SZlcDJoSHc1mBmZXJyMDOzAieHhoi+75TczOrEycHMzAqcHBrCbQ5mViYnBzMzK3ByaIiXTMt6V/cZhJmVoaqH/dg4rV35WjZsfYqX7rdP1aGY2QBwcmiIww+awQfeeFTVYZjZgHC1kpmZFTg5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWYGTg5mZFTg5mJlZgaIP+oKW9Azw73v573OAZycxnCo0vQxNjx9chjpoevxQfhkOj4iD283oi+QwEZI2R8TiquOYiKaXoenxg8tQB02PH+pVBlcrmZlZgZODmZkVODnA1VUHMAmaXoamxw8uQx00PX6oURkGvs3BzMyKfOZgZmYFTg5mZlYwMMlB0lJJj0naJuljbebvI+kraf4DkuaXH2VnXZThQknPSHoovd5bRZyjkXStpKcl/XiU+ZJ0ZSrfVkkLy46xky7iXyJpe+7z/0TZMXYi6TBJd0n6iaRHJH2wzTJ13wbdlKG220HSdEnfl7QlxX9Zm2XqsS+KiL5/AVOAfwNeAUwDtgDHjljmz4E1afgc4CtVx70XZbgQ+MeqY+1QhtOBhcCPR5m/DLgdEHAy8EDVMY8z/iXAhqrj7BD/XGBhGt4P+Nc236G6b4NuylDb7ZA+15lpeBh4ADh5xDK12BcNypnDScC2iHg8Iv4PuBFYPmKZ5cCX0vBXgTdLUokxjqWbMtRaRNwN/EeHRZYD6yKzCZgtaW450Y2ti/hrLSKeiogH0/B/A48Ch4xYrO7boJsy1Fb6XHek0eH0GnlVUC32RYOSHA4BfpEbf5LiF2r3MhGxE9gOHFRKdN3ppgwAb0/VAV+VdFg5oU2abstYZ6ekKoPbJR1XdTCjSVUVJ5IdueY1Zht0KAPUeDtImiLpIeBp4NsRMeo2qHJfNCjJYVDcCsyPiBOAb7Pn6MPK8SBZXzWvAT4PfKPieNqSNBO4BfhQRDxfdTx7Y4wy1Ho7RMSLEbEAOBQ4SdLxVcfUzqAkh18C+aPoQ9O0tstImgrsDzxXSnTdGbMMEfFcRLyQRq8BFpUU22TpZjvVVkQ836oyiIjbgGFJcyoO63dIGibbqX45Ir7WZpHab4OxytCE7QAQEf8F3AUsHTGrFvuiQUkOPwCOlnSEpGlkjTzrRyyzHrggDa8A7ozUIlQTY5ZhRN3w2WT1sU2yHjg/XTFzMrA9Ip6qOqhuSXp5q25Y0klkv6/aHGCk2L4APBoRfz/KYrXeBt2Uoc7bQdLBkman4X2BPwB+OmKxWuyLppa9wipExE5JFwF3kF31c21EPCLpk8DmiFhP9oW7TtI2skbHc6qLuKjLMqyWdDawk6wMF1YWcBuSbiC7kmSOpCeBvyFrkCMi1gC3kV0tsw34DbCymkjb6yL+FcCfSdoJ/C9wTs0OME4DzgMeTnXeAH8FzINmbAO6K0Odt8Nc4EuSppAlrZsiYkMd90XuPsPMzAoGpVrJzMzGwcnBzMwKnBzMzKzAycHMzAqcHMzMrMDJwWpBUki6Ijd+iaRLS45ho6TFafi21vXoE3i/JZI2jDI932vodyayHrNecHKwungBeNve3sma7iSdNBGxLN3B2iv3RMSC9DojP2Oyy2K2N5wcrC52kj0/98MjZ0iaL+nO1KHgdyXNS9PXSloj6QHg8jR+laRNkh5PR+jXSnpU0trc+10lafNo/emnZZ6QNEfS+3NH+D+XdFea/xZJ90t6UNLNqa+f1jM3firpQeBt3RZe2bM41ku6E/iupBkp9u9L+pGk5Wm5fSXdmMr0dWX9/bfOdnbk3m9Fq8zprtxbJP0gvU5L0y9N69iYPq/Vuf8/P33eWyRdJ2m/VP7hNH9Wftz6UBX9hPvl18gXsAOYBTxB1pfMJcClad6twAVp+N3AN9LwWmADMCU3fiNZn/nLgeeB3yc7CPohsCAtd2D6OwXYCJyQxjcCi9PwE8CcXHzDwD3AHwJzgLuBGWneR4FPANPJetM8OsVwE22eK0B2l/V24KH0+jjZ3exP5mL7NHBuGp5N9tyCGcBfkN0dD3ACWVJtxbwjt44VwNo0fD3w+jQ8j6zrCYBLgfuAfVKZnkvlPC6tb86Iz+uLwB+l4VXAFVV/b/zq3cunr1YbEfG8pHXAarJuD1pOYc9R+HXA5bl5N0fEi7nxWyMiJD0M/DoiHgaQ9Agwn2xn/E5Jq8i6j5kLHAtsHSO8z5H1cXOrpLPS/9ybuvCZBtwPHAP8PCJ+ltb5z2Q70XbuiYizWiOSLiTrvrn1vIi3AGdLuiSNTyfbsZ8OXAkQEVsljRU3wBnAsdrzSIBZrTMd4JuRddb4gqSngZcBbyL7XJ9N62nFdA3wEbJeTlcC7+ti3dZQTg5WN/9A1uXyF7tc/n9GjLd6pd2VG26NT5V0BNlZyWsj4j9T1cv0TitIO+7DgYtak8h25O8asdyCLmMeTb4sAt4eEY+NWEen/8/3hZMv0xDZ08Z+2+a98p/Ri3TYJ0TEvamKbwnZ2Vrbx6Vaf3Cbg9VKOkq9CXhPbvJ97Ol87E/Iqnf21iyynfB2SS8Dzuy0sKRFZMnk3IjYlSZvAk6TdFRaZoakV5L1rjlf0pFpuXcV3rB7dwAXS7t7Fz0xTb8b+OM07XiyqqWWX0t6taQh4K256d8CLs6VaawkdifwDkkHpeUPzM1bR1ZN1W3ytoZycrA6uoKsDrzlYmBlqkI5Dyg8VL5bEbEF+BHZjvx64N4x/uUi4EDgrtQofU1EPEPWRnBDiul+4Jh0ZL4K+GZqkH56b+MEPkVW/781VYl9Kk2/Cpgp6VHgk2RtKS0fI2uDuQ/Id7O9GlicGph/Ary/04oj4hHg74B/kbQFyHeN/WXgAOCGvS2YNYN7ZTVrMEkbgUsiYnNJ61sBLI+I88pYn1XHbQ5m1hVJnyerhltWdSzWez5zMDOzArc5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWcH/A09HDwZiAAAAA0lEQVQgq1zuqXC/AAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import scipy.optimize as opt\n",
|
|
"import scipy.signal as sig\n",
|
|
"\n",
|
|
"ntaps = 64\n",
|
|
"N = 4\n",
|
|
"\n",
|
|
"#optimize for 16 filter coefficients:\n",
|
|
"xmin = opt.minimize(optimfuncQMF, ntaps*np.ones(ntaps), method='SLSQP', tol=1e-8)\n",
|
|
"xmin = xmin[\"x\"]\n",
|
|
"\n",
|
|
"err = optimfuncQMF(xmin)\n",
|
|
"print(err)\n",
|
|
"\n",
|
|
"#Restore symmetric upper half of window:\n",
|
|
"h = np.concatenate((xmin, np.flipud(xmin)))\n",
|
|
"plt.plot(h)\n",
|
|
"plt.title('Resulting PQMF Window Function')\n",
|
|
"plt.xlabel('Sample')\n",
|
|
"plt.ylabel('Value')\n",
|
|
"plt.show()\n",
|
|
"\n",
|
|
"f, H = sig.freqz(h)\n",
|
|
"plt.plot(f, 20*np.log10(np.abs(H)))\n",
|
|
"plt.title('Resulting PQMF Magnitude Response')\n",
|
|
"plt.xlabel('Normalized Frequency')\n",
|
|
"plt.ylabel('dB')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 56,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAEWCAYAAADy9UlpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy9h23ruAAAgAElEQVR4nO3deZwcZZnA8d/Tc2Yyk5kkM5lJJjfJ5CCBQEIAQcADBeTwQA5RjOKyuqJ47Srigcequ+t6gAoiIiAIciorUTmU+0xCIPdMCAk5JpPJNWfmfvaP9+2k05nuubqnumee7+czn+muqq56qrq6nqr3festUVWMMcaY4SAUdADGGGPMYLGkZ4wxZtiwpGeMMWbYsKRnjDFm2LCkZ4wxZtiwpGeMMWbYSHrSE5GbROSbyV5OMoiIisgM/zrueojI10XklsGLLrWIyAgR+T8RqROR+4KOJ5FEZLOIvDvoOGJJ9G9MRG4Tke8nan4R8y0VkadFpEFE/jfR8+9HPGtE5IxeThtzHxCRM0RkWwLjukxEHk3U/BJFRJ4UkU/FGDfVHy8zByGOAS2rx6QXeeCPGHadiNzZmwWo6qdV9Xv+cwPeOUSkQkTuE5Hd/gD7uoh8SUQyBjLfnvS0Hqr6A1XtdodIJBGZKCIPRKz/ahFZkuzl9sKFQCkwVlU/HD1SRIpE5FYR2ekPepUi8rXBDzOxfIJQEbkgavhP/fAlyY4h0b+xJLoS2A2MUtUvR48UkX/3+3ODiLwpIv8ea0YRB76lUcPvFJHrehOMqh6tqk/2bRWST1XvUtX3JGPeInKqiDzvjx17ReQ5ETkhGctKVWlVvCkiRwEvAVuB+apaCHwYWAQUBBnbIPo9bv2nAGOBjwE1gUbkTAEqVbUjxvifAvnAHKAQOB/YOEixHZSkM9FK4PKoZVwEvJGEZaWzKcBajd0jhuC242jgLOAqEbmkh3meKCJvS2CMgUrmlZKIjAL+AtwAjAHKge8ArclaZkpS1bh/gAIzooZdB9zpX58BbAO+DOwCqoFPREx7G/B9YCRwAOgCGv3fBKAZd3UQnv54oBbI6iaWO4FHeoj3fGANsB94EpgTMW4z8BXgdaAO+COQGzH+3338O4BPRq57L9bj4DYZaBw9rF8jsCDGuDOAbVHDNgPvjvje7vPbsQFYBVQA1/jvbivwnjjLnuPXZb9ft/P98O8AbUC7j++Kbj67Gnh/nHmfCaz32+MXwFPAp6L3N/9+qv9uMv37TwDr/DptAv41epsAXwV24k4aQsDXcElpD3AvMCbiMx8Dtvhx10Zuw27ivg34Me7EY7Qfdi7wV+BZYIkfdhTwDz/P3cBdQFHUfv+qX4f7/D7x/QT9xm4Lz6u7/QQ4Dljhl/1H4J6o6c8FVvrv/XngmDjf49uAV/z3+ArwtogY2/1+0hhre0bN63rghhjjwvvAV4F/Rh0jrutN7Bz+2xgB3A7s8/vSf0Rto83E+M1GfD9f99/tZuCyiM8WAnfgjmtbgG8AIT9uCfAc7qRwj/8elwDPRh2DPw1U+fX4JSB+XAbwv365bwJXEfHbiNpmi4D9cbb3dcT/nT0J/BB4GagH/oz/3URMeyXu+FkNfCViXouBF3z81bjfeHYf1vHHfh03AZ+NimuJH97gt8FlsdZRVRN2pVeG+2LLgSuAX4rI6MgJVLUJOBvYoar5/m8HbkNeFDHpx4B7VLW9m+W8G7g/VhAiUgHcDXwBKAGWAv8nItkRk12EO4ucBhyD22CIyFm4nfpMYKZf1hHirEdC4uiFF3Hb9xIRmdzLz0Q6D3fgH407yP4dlwTKge8Cv+7uQyKSBfwf8CgwDvgccJeIzFLVbwM/AP7ot8dvY8T9nyLyCRGZGTXvYuBB3MGgGJeMTunDOu3CHdxG4RLgT0Xk+IjxZbgz2ym4H+XngPcDp+OSwj7cjwwRmQvciNsPJ+Cupif2sPwW3AEgfFVyOe4gd9hq4g4YE3AnD5NwBxn8fvEQLjGMwe07H4j6/EB+YzH5Zf8Jt0+MwSXcD0WMPw64FfhX3Lb4NfCwiOR0M68xwCO4ZDUW+AnwiIiMVdUluET/3z6ux3uIS4C3406u4vkVUNFdfVtfYge+jTtwT8cdAz7azTTxfrNluH23HPg4cLOIzPLjbsB9d9Nx+9zluP007ETcQbsU+M8Y63kucIJf7kXAe/3wf8F95wtwJ07vj/F5cCUSnSJyu4icHb3/9NLluAuC8UAH7ruO9A7c8fM9wFcjvpdO4Iu4bXQy8C7g36I+G28dz8WdnC3CVaUAICIjfQxnq2oB7qRrZbwVSFTSawe+q6rtqroUdyY3q4fPhN2O38F8vdyluB9gd8bizhJiuRh3JfiYT5o/xp3B/UlEduEOONer6g5V3Ys7iC/wn70I+J2qrvYHj+viLOcJYJyIrBSRh/sQR2QxTKw4evJh4Bngm8CbPoa+lMk/o6p/V1cMeR8uKf/Ix3kPMFVEirr53Em44skfqWqbqv4DV1RyaS+X+zncQe8qYK2IbBSRs/24c4A1qnq/j+NnuKuyXlHVR1T1DXWewiXmt0dM0gV8W1VbVfUA7ozyWlXdpqqtuO/6Ql+0dCHwF1V92o/7pv98T+4ALvfb7nRcIomMcaPfH1pVtRaXEE73o08CMnH7RLuqPog7m440kN9YPCcBWcDP/Lzvx12hhV0J/FpVX1LVTlW9HVccdlI383ofUKWqv1fVDlW9G3f1fl4/4roOd3z6XQ/THcAliu4a3vQl9ouAH6jqPlXdxpEHc+j5N/tN//0+hUv+F/lj2iXANaraoKqbcVdmH4v43A5VvcFvswMx1vNHqrpfVd8C/snhx62f+315H/CjGJ9HVeuBU3FXSb8BakXkYREpjfWZbvw+4hj5zYh1DPuOqjap6ircd3epX/ZyVX3Rr+Nm3AnI6VHzjreOP1PVrX7b/zDqc13APBEZoarVqhr3RKk3Sa8T96OIlIX7EYbt0cPrcppxB8je+DMwV0Sm4c6w6lQ1+gd/cDm4M4xYJuCKDwBQ1S5ckd0y3BkaHH4wjYxzgp82bAuxtQG7VHWBqp7fhzjKI6aJFUdc/kf5NVU9GndmuBKX1KU3n+fw+r8DwG5V7Yx4T4xYJgBb/bqEbeHwdYoX9wF1jX0W4k5e7gXu81cHh217dWUWW7uf05H8WeuLvmJ+Py6JFkdMUquqLRHvpwAPich+P/063H5e2k0sTbj9rqf1exZ3AnEtLmkedvAS13LxHhHZLiL1uGK4cIwTgO1+vcOi138gv7F4ult25L4/BfhyeFv57TXJf667eUX/bnq9j4SJyFW4K4r3+ROPntwClIpIdHLta+yR27y7/S/eb3af31fCtvh5FuOOl1uixkVuk97s6709bsWdl6quU9UlqjoRmOc//7NeLL+7+W/BrVtxnPET4GADxL/4hmz1uJKhyM9BP47NfptfjDuRrRaRR0RkdrwV6E3Sewt32R9pGvGTQixHVGD7g9G9uKu9jxH7Kg/gcSKKXrqxA7ejAweLSCbh6lL2Rk7oG8V8FDhbRJ7BbeRJEZPEKzrs6dEUseLY3sPn+kRVd+OuIifgiqaagLyI5WbgDsSJsAOYJCKR+8xk+rFO/ozzB7g6qGm4q/eD2z5ie4Udtl64oqTwtDnAA7jtUKqqRbji5MiTgOjvayuuOKQo4i9XVbd3E0seLkn3xp24erfook1w66u4BlijcPteOMZqoDzqxGUS/dPdvhlz+8VYduS+vxX4z6htleev4qIdtt9HzKvX+4iIfBJX3/ouf8XVI1Vtw9Urf4/Dv/e+xF7N4cXYfd3+o31RW9hk3PbYjbtAmBI1LnKbDORRN/2OW1XX44rU5/lB8faT7uY/Gbduu+OMDxev34i76p/p9/+vc/h3Fc9hv0mijs2+5OpM3AXRetxVbEy9SXp/BL4hrql8yJfRnkecurU4aoCxIlIYNfwOXPn4+cRPet8G3iYi/yMiZQAiMsM3Uy7CJc/3ici7fB3Ul3HFGc93M6+bcQfHv+Lq8qYDS0Rkrj/QfTtOHNnABBF5RUS6K0PvSxxHENcU+4wY4/5LROaJSKaIFACfATaq6h5cmX2uiLzPL/cbQHf1F/3xEu7E4D9EJMvHdx6uSLRHIvJNETlBRLJFJBe4GldhvQFXFHS0iHzQFzF+nsN/cCuB00Rkst93rokYl41bx1qgwxeZ9tTc+yZc/eIUH1uJHLrl4H7gXHFNu7Nx9Zy9rQa4Hlda8XQ34wpwRZJ1IlKOazQV9gLuSvMq/71egKv474/ufmMrgXNEZIz/3XwhatkdwOf99/rBqGX/Bvi0iJwozki/f3XXWnoprn7tI349Lgbm4orBeyQil+FODs5U1U29XWHv90Auh0p0+hr7vcA1IjLafz9X9XH5AN/x+/fbcXVQ9/lSlHtx+1uB3+e+hDtBSoR7gatFpNwfA78aa0IRmS0iXxaRif79JFzx44t+kni/s7CPRhwjvwvcH1FSBPBNEckTkaNx9ZZ/9MMLcI1fGv2V2Gf6uI6f9zloNO6kKLxOpSJygT/haMX9xuJWR/Tmx/xd3MH6WVyF/3/jWses7kPQwMEzi7uBTb64YYIf/pwPdIWqxryCVNU3cJWgU4E1IlKHO8tfBjSo6gbcGfQNuLOP84Dz/JngQSKSj6tfuwhXFPZr3IHzZ7iWVHW4FlkAS0VkNe5gFjYFd4Y0A3hQRE6OirNXcXTH74jhlpXdycM1etiPq/yegjtZQFXrcJXDt+DOJJtwrcoGzMd+Hq7SfDeuAcHl/jvt1SxwZfy7cWd/Z+KKrxr9FeuHcfURe3AV4c9FLPsx3I/ndWA5EQdRVW3AJcl7cfvnR4Du6lkj/dxP86iINOB+9Cf6+a3BtQ77A+4Mcx+93IaquldVn4gqKgz7Dq6hQR0uyT8Y8bk24IO4Bir7cfvOX+hHU/IYv7HfA6/hWhU+yqEDUeSyl+BKQy6Oim0ZriHBL3DbYiMxGl35E69zcSd5e3AtIM/1329vfB93Vf2KiDT6v5t6ud6dwLdwJR59jh13nNuGa/33OO7kpy/bf6dfxg5c3fWnI34bn8P9FjfhjqN/wDWwSYTf4L7T13EN05biTmI6u5m2AbefvyQiTbj9fjXu+4r7O4vwe9yxbyfuJOPzUeOfwm3nJ4Afq2r4Jvuv4H6bDT7mP9J7v8E1uHsN18r4wYhxIdxJxA7c/ns6PSRU6f73OfhE5B/AH1Q1Kb2aiMhUXF3LPHH3q2xQ1Xj1g72d721+vv258u1ufh8FjlbV7s6yhg0ReRLXfHpY9nIjIi8BN6lqTw05TBKIyGeAS1Q1urFFSvMlHTepanQxs/FS4uZ0ca0Pj6dv2b/ffJ3SmyLyYb98EZFje/NZX/yR418X45rWr01gbHcO94Q3HInI6SJS5osFP45rtv23oOMaLkRkvIicIq4KZxbu6uehoOPqibju/87x+005rlom5eMOUuBJT0RuxxUnfMEXVSVjGXfj6i5micg2EbkCuAy4QkRew90LdEG8eUSYAyzzn/snrpltwpKeGbZm4Ypv9uMOuBeqarzbc0xiZeOqORpwDd/+jCvCT3WCKzrfhyveXIcr5jUxpEzxpjHGGJNsgV/pGWOMMYMl6Y+BCFpxcbFOnTo16DCMMSZtLF++fLeqJuoe35Qy5JPe1KlTWbZsWdBhGGNM2hCR/nQ+khaseNMYY8ywYUnPGGPMsJESSU9EJonIP0VkrYisEZGru5nmDHFP+13p/6xZrjHGmD5JlTq9DuDLqrrC94u3XEQe6+b+t2dU9dwA4jPGGDMEpMSVnn8G0gr/ugF3g2WfHkdijDHG9CQlkl4k30fmcbhe/aOdLCKvichffS/eseZxpYgsE5FltbW1SYrUGGNMukmppOeffvAArkuy+qjRK4Apqnos7ukFf4r+fJiq3qyqi1R1UUnJkLzVxBhjTD+kTNIT9/y3B4C7VPXB6PGqWq+qjf71UiDLd/icFD99rJIVb+1L1uyNMSYpVJWnK2u55Zm+PpJweEiJpCciAvwWWKeqP4kxTZmfDhFZjIt9TzLi2dfUxl0vvcUHf/U8V96xjI27GpOxGGOMSajXt+3nI795ictvfZm7XnqL1o7uHqs3vKVEh9MicirwDO7BqeGn3n4d/1h4Vb1JRK7CPRywAzgAfElVe3wS+aJFi7Q/PbI0tXbwu+fe5NdPbQKBx790OqWjcvs8H2OMGQyVNQ287/pnGJWbxefeOYNLT5xMTmZGv+YlIstVdVGCQ0wJKZH0kqm/SS9sU20jZ/38Gc6cW8ovP3J8AiMzxpjE6OpSLr75Bap2NfL4l06nOD9nQPMbykkvJYo3U9n0knw+944ZPPJ6Nf9cvyvocIwx5gj3Ld/KK5v38fWz5ww44Q11lvR64crTpzNjXD7f+NNqmts6gg7HGGMO2t3Yyg+WrmfxtDF8eNHEoMNJeZb0eiEnM4PvXTCP7fsPcP/ybUGHY4wxB9367Js0tLTzgw/Mw7f1M3FY0uulk48ay9zxo7h32dagQzHGGAA6u5QHVmzjjFnjmDGuIOhw0oIlvT64aNFEVm+vZ+2O6PvmjTFm8D1dVUtNfSsXWbFmr1nS64MLFpSTnRHivuV2tWeMCd59y7YyZmQ275xdGnQoacOSXh+MHpnNmUeX8qdXt9tNn8aYQO1tauOxtTW8f0E52Zl2KO8t21J9dNGiSexrbueJdXb7gjEmOH9euZ32TuWiE6xosy8s6fXRqTOKGV+Yy4MrrBWnMSY4D67YzvzyQmaXjQo6lLRiSa+PMkLCmXNLeW7jHiviNMYEYldDC6u213HWvLKgQ0k7lvT64fSKEg60d7Jssz2FwRgz+J6p3A24Y5HpG0t6/XDyUWPJzgjx5Aar1zPGDL6nKmspzs9h7ngr2uwrS3r9kJedyeJpY3iq0p7KbowZXJ1dyjNVtZxWUUwoZD2w9JUlvX46vaKEyppGduw/EHQoxphh5PVt+9nX3G5Fm/1kSa+fzpjldji72jPGDKanKmsRgdNmWtLrD0t6/TRjXD4TCnN5aoMlPWPM4HmqspZjJxYxemR20KGkJUt6/SQinD6rhOc27qa9s6vnDxhjzADta2rjta37rWhzACzpDcCpM0poaO1gjXVAbYwZBC9v3kuXwqkzi4MOJW1Z0huARVNHA7Bs896AIzHGDAfLt+wjOyPE/PLCoENJW5b0BqB0VC4TR49g+Ra7Sd0Yk3zLNu9l/sRCcrMygg4lbVnSG6BFU0azbMs+VDXoUIwxQ1hLeyert9ezaMrooENJa5b0Bmjh1DHUNrSyda/dr2eMSZ5V2+to6+xioSW9AbGkN0Dhs65lW6xezxiTPOG+fi3pDYwlvQGqKC2gICeTZVavZ4xJouVb9jK9eCRj83OCDiWtWdIboIyQcNyU0Sy3Jy4YY5JEVVm+ZZ9d5SWAJb0EWDRlNJW7Gqg70B50KMaYIeiN2ib2NbcfvE3K9J8lvQRYNGU0qvDqW3a1Z4xJvOW+zcDCKWMCjiT9WdJLgAWTi8gICSusXs8YkwQrtuynKC+Lo0pGBh1K2rOklwB52ZnMKMln1fa6oEMxxgxBr2+vY355ISL2/LyBsqSXIPMnFrJqe53dpG6MSaiW9k4qaxo4ZqJ1PZYIlvQSZH55Ibsb29hZ3xJ0KMaYIWRddT2dXWr9bSZISiQ9EZkkIv8UkbUiskZEru5mGhGR60Vko4i8LiLHBxFrLPP8DrlqmxVxGmMSZ7WvNplnSS8hUiLpAR3Al1V1LnAS8FkRmRs1zdnATP93JXDj4IYY39zxowjJoR3UGGMSYdX2OkbnZVFeNCLoUIaElEh6qlqtqiv86wZgHVAeNdkFwB3qvAgUicj4QQ41phHZGcwcV2CNWYwxCbVqez3zrBFLwqRE0oskIlOB44CXokaVA1sj3m/jyMQYnseVIrJMRJbV1tYmI8xuzSsvZNX2emvMYoxJiJb2TqqsEUtCpVTSE5F84AHgC6ra78eRq+rNqrpIVReVlJQkLsAezC8fxe7GVmrqWwdtmcaYoWv9zgY6rBFLQqVM0hORLFzCu0tVH+xmku3ApIj3E/2wlDHfn429vm1/wJEYY4aCVf5YYo1YEiclkp64wurfAutU9ScxJnsYuNy34jwJqFPV6kELshfmji+0xizGmISxRiyJlxl0AN4pwMeAVSKy0g/7OjAZQFVvApYC5wAbgWbgEwHEGZc1ZjHGJJI1Ykm8lEh6qvosEPdbVdc65LODE1H/zSsv5OmqwWs8Y4wZmlo7XCOWd8yaHnQoQ0pKFG8OJXPGF1Db0MruRmvMYozpv6qaRjq6lLkTRgUdypBiSS/B5o53O+j66oaAIzHGpLP1O90xZM54S3qJZEkvwWb7HXRddb/vuDDGGNZV15ObFWLqWHucUCJZ0kuwMSOzKR2Vw7qdlvSMMf23fmc9s0oLyAhZI5ZEsqSXBLPLRrHOijeNMf2kqqyrbmB2mRVtJpolvSSYM34UG3c10NbRFXQoxpg0VNvQyt6mNuaMLwg6lCHHkl4SzBlfQHunsml3Y9ChGGPS0FrfJmC2NWJJOEt6STDHGrMYYwYgXD0yx4o3E86SXhJMLx5JdkbIblswxvTL+p31lBeNoDAvK+hQhhxLekmQmRFiZmn+wSIKY4zpi3XV9cwus/q8ZLCklyRzxo86eHOpMcb0VmtHJ2/UNtlN6UliSS9JZpdZd2TGmL6rqmmks0uZbS03k8KSXpLMtcYsxph+CJcQ2T16yWFJL0kqfHl8ZY3dtmCM6b3KmgayM0NMK7bux5LBkl6SFOfnMHZkNlU1Vq9njOm9ypoGZpTkW/djSWJJL4lmluazwZKeMaYPKnc2UFGaH3QYQ5YlvSSqKC2gqqYR9/xbY4yJr6GlnR11LcwstUYsyWJJL4kqSgtobO1gR11L0KEYY9JA1S7XBmCWJb2ksaSXRBWl4cYsVsRpjOlZpW+5WWFJL2ks6SVRuFzeGrMYY3qjsqaREVkZTBw9IuhQhixLeklUlJfNuIIcNuy02xaMMT2rrGlgZmk+IWu5mTSW9JKsorSAql12pWeM6VllTQMzx1nRZjJZ0kuycAvOri5rwWmMiW1/cxu7GlqZVWa3KySTJb0kqyjN50B7J9v2HQg6FGNMCgv33mS3KySXJb0km2ktOI0xvRA+RljLzeSypJdk4Rac1jOLMSaeqpoG8nMymVCYG3QoQ5olvSQryM1iQmGu3bZgjIlrg2+5KWItN5PJkt4gmFlawAZ72oIxJo6qmkYqrOVm0lnSGwSzygp4o9Y9GNIYY6LtbmxlT1PbwUeSmeSxpDcIZo7Lp62jiy17moIOxRiTgg41YrHbFZLNkt4gmFVmLTiNMbFV1VhH04MlZZKeiNwqIrtEZHWM8WeISJ2IrPR/3xrsGPtrxjh39mZPUTfGdGdDTQOFI7IoKcgJOpQhLylJT5yPhhOTiEwWkcU9fOw24KwepnlGVRf4v+8mItbBkJedyaQxI+y2BWNMt6pq3INjreVm8iXrSu9XwMnApf59A/DLeB9Q1aeBvUmKJ3CzSgvstgVjzBFUlcqaRrspfZAkK+mdqKqfBVoAVHUfkJ2A+Z4sIq+JyF9F5OhYE4nIlSKyTESW1dbWJmCxAzeztIBNtU20dXQFHYoxJoXsamil7kC7Jb1Bkqyk1y4iGYACiEgJMNCj/QpgiqoeC9wA/CnWhKp6s6ouUtVFJSUlA1xsYswqLaCjS9lsLTiNMRGs+7HBlaykdz3wEDBORP4TeBb4wUBmqKr1qtroXy8FskSkeMCRDpKZpeHGLFbEaYw5JNzAzW5XGByZyZipqt4lIsuBdwECvF9V1w1kniJSBtSoqvpGMSFgz8CjHRxHleQTEqjc2QDHBB2NMSZVVO5sYOzIbMbmW8vNwZDQpCciYyLe7gLujhynqjEbqojI3cAZQLGIbAO+DWQBqOpNwIXAZ0SkAzgAXKKqadPFSW5WBlPHjrTbFowxh6nc1WBFm4Mo0Vd6y3H1eAJMBvb510XAW8C0WB9U1UtjjfPjfwH8ImGRBmBmaT6V9hR1Y4ynqlTVNPKh48uDDmXYSGidnqpOU9XpwOPAeaparKpjgXOBRxO5rHRUUVrA5t1NtLR3Bh2KMSYF7KhrobG1wx4cO4iS1ZDlJN/YBABV/SvwtiQtK21UlBbQpbCp1lpwGmOs5WYQkpX0dojIN0Rkqv+7FtiRpGWljQp7iroxJkLlTncssD43B0+ykt6lQAnutoWHgHEc6p1l2JpWPJLMkFjSM8YA7naF0lE5FOZlBR3KsJGsWxb2AlcnY97pLDszxLTikZb0jDGAK/Wxos3BlZSkJyL/xPfGEklV35mM5aWTirICVm2rCzoMY0zAurqUql0NXHbilKBDGVaSkvSAr0S8zgU+BHQkaVlppWJcAUtXVdPc1kFedrI2vzEm1W3d10xLe5f1xDLIklW8uTxq0HMi8nIylpVuZpXlowobdzVyzMSioMMxxgTkUPdjVrw5mJL1PL0xEX/FIvJeoDAZy0o3Mw+24LSeWYwZzsJ1+3aP3uBKVvlaZM8sHcCbwBVJWlZamTImj+yMkDVmMWaYq6xpoLxoBPk5Vs0xmJK1teeoakvkABGx3lSBzIwQR43Lt6RnzDDnHhxr9XmDLVn36T3fzbAXkrSstFNRmn/wplRjzPDT0dnFG7vsaelBSPRTFsqAcmCEiByHK94EGAXkJXJZ6ayitIA/r9xBQ0s7Bbl2U6oxw82Wvc20dXZZ0gtAoos33wssASYCP4kY3gB8PcHLSlvhHb1qVyPHTx4dcDTGmMEWLumxpDf4Epr0VPV24HYR+ZCqPpDIeQ8l4X72Knc2WNIzZhiqrGlEBGaMszq9wZbo4s2PquqdwFQR+VL0eFX9STcfG3Ymjh7BiKwMu23BmGGqsqaByWPyGJGdEXQow06iizdH+v92+hJHKCTugbLWgtOYYcn63AxOoos3f+3/fyeR8x2KZo4r4Jmq2qDDMMYMsraOLt7c3cR7ji4NOpRhKVkdTpcA/wJMjVyGqn4yGctLR7PK8nlgxTb2N7dRlJcddDjGmEHy5u4mOrrUrvQCkqyb0/8MPAM8DnQmaRlpLbI7ssXTxjW/iS4AABzjSURBVAQcjTFmsGywp6UHKllJL09Vv5qkeQ8JkU9Rt6RnzPBRVdNARkiYXjKy54lNwiWrR5a/iMg5SZr3kDChMJf8nExrzGLMMLNhZwNTx+aRk2ktN4OQrKR3NS7xHRCRehFpEJH6JC0rLYlYC05jhqMq634sUElJeqpaoKohVR2hqqP8+1HJWFY6m1VaYPfqGTOMtLR3smVPkyW9ACWr9ebx3QyuA7aoqj1B3ZtZWsA9r2xld2Mrxfn2EApjhrqNuxrpUmvEEqRkNWT5FXA8sMq/nw+sBgpF5DOq+miSlptWIrsjK55hSc+Yoa5ql6vOmFVm/XcEJVl1ejuA41R1oaouBBYAm4Azgf9O0jLTTvhZWlavZ8zwsGFnI1kZwpSx1nIzKMlKehWquib8RlXXArNVdVOSlpeWSgpyKMrLonKX1esZMxxU1TRwVEk+WRnJOvSaniSreHONiNwI3OPfXwys9U9Pb0/SMtOOiFAxrsAeKGvMMLGhpoHj7MkqgUrW6cYSYCPwBf+3yQ9rB96RpGWmpYqyfDbUNKCqQYdijEmixtYOtu07wKxSq88LUlKu9FT1APC//i+aleVFmF02ijtb3mL7/gNMHG0PlzdmqNqw092qPLvM7t4KUlKu9ERkpojcLyJrRWRT+K+Hz9wqIrtEZHWM8SIi14vIRhF5PcZtEWlnznj3A1hfbUWcxgxl6/xvfM4ES3pBSlbx5u+AG4EOXHHmHcCdPXzmNuCsOOPPBmb6vyv9/NPerDJ328K6auuwxpihbP3OegpyM5lQmBt0KMNaspLeCFV9AhBV3aKq1wHvi/cBVX0a2BtnkguAO9R5ESgSkfEJizgg+TmZTB6Tx3przGLMkLauuoE5ZaMQkaBDGdaSlfRaRSQEVInIVSLyAQb+NPVyYGvE+21+WNqbM77ArvSMGcK6upQNOxuYM956YglaMjuczgM+DywEPgZ8PEnLOoKIXCkiy0RkWW1t6j+dfHbZKN7c08SBNnv0oDFD0fb9B2hs7WD2eKvPC1qyWm++4l82Ap9I0Gy3A5Mi3k/0w7pb/s3AzQCLFi1K+XsB5owfharrmeXYSUVBh2OMSbC1viRnjiW9wCU06YnIw/HGq+r5A5j9w8BVInIPcCJQp6rVA5hfyggXeayrrrekZ8wQtL66AZFDXQ+a4CT6Su9kXL3b3cBLQK9rbEXkbuAMoFhEtgHfBrIAVPUmYClwDu6m92YSdwUZuEmj8xiZnWGNWYwZotZV1zN17EjyspPVCZbprUR/A2W4TqUvBT4CPALcHdkPZyyqemkP4xX4bCKCTDWhkDCrrOBgEYgxZmhZv7OeuXZ/XkpIaEMWVe1U1b+p6seBk3BXZU+KyFWJXM5QNHv8KNZX11t3ZMYMMU2tHWzZ22w9saSIhLfeFJEcEfkg7mb0zwLXAw8lejlDzZyyAupbOthR1xJ0KMaYBHJ968LsMrtdIRUkuiHLHcA8XP3bd1S12y7FzJHCrbrW7ainvGhEwNEYYxJlnbXcTCmJvtL7KK6bsKuB50Wk3v81iIhVWMUxZ/woRGDNDttMxgwla3bUUzgii4mj7WQ2FST0Sk9V7cmI/TQyJ5NpxSNZvaMu6FCMMQm0ZnsdR0+w7sdShSWpFDJvQiFrtlvSM2aoaO/sYt3OBuaVFwYdivEs6aWQeeWj2FHXwp7G1qBDMcYkwMZdjbR1dHG03a6QMizppZB5E9zZoNXrGTM0rPYlN3allzos6aWQo33Ss3o9Y4aGNTvqGZmdwbSxI4MOxXiW9FJIYV4Wk8aMYM12u9IzZihYvb2OuRNGEQpZI5ZUYUkvxcybUGhXesYMAZ1dytrq+oMlOCY1WNJLMfPKC9myp5m6A+1Bh2KMGYA3dzfR3NZp9XkpxpJeigm38lprjVmMSWtrdoQbsVjLzVRiSS/FHH2wBacVcRqTzlZvryMnM8SMEnuGXiqxpJdiSgpyKBuVyyq7Sd2YtLZ6ez2zywrIzLDDbCqxbyMFzZ9YyGtb9wcdhjGmnzq7lNe37eeYiUVBh2KiWNJLQQsmFbF5TzP7mtqCDsUY0w8bdzXS1NbJgkmW9FKNJb0UdJz/oby2za72jElHK7fuA2DBZEt6qcaSXgqaP7EQEVhpRZzGpKWVW/czKjfTemJJQZb0UlBBbhYzx+Vb0jMmTb361n6OnVRkPbGkIEt6Keq4SaN5bet+VDXoUIwxfdDU2kFlTcPBagqTWizppagFk4vY19zOlj3NQYdijOmDVdvr6FKrz0tVlvRSVLjVlxVxGpNewr/ZY+12hZRkSS9FVZQWkJedYUnPmDSz8q39TB6Tx9j8nKBDMd2wpJeiMkLC/PJCXrWkZ0xaWbl1v92fl8Is6aWwBZOLWLejnpb2zqBDMcb0ws66FnbWt1jSS2GW9FLYwsmjaevssn44jUkTr2zeC8DxU0YHHImJxZJeCjth6hgAXn5zb8CRGGN64+U395KXncG8CfY4oVRlSS+FjR6ZzazSAl6ypGdMWnj5zb0snDLanqyQwuybSXGLp41h+ea9dHR2BR2KMSaOfU1tbKhp4MRpY4IOxcRhSS/FLZ42hqa2TtZW25PUjUll4fq8xdPGBhyJiceSXopbPM3q9YxJBy+/uZfszBDHTCwMOhQTR8okPRE5S0Q2iMhGEflaN+OXiEitiKz0f58KIs7BVjoql6lj86xez5gU9/LmvSyYVERuVkbQoZg4UiLpiUgG8EvgbGAucKmIzO1m0j+q6gL/d8ugBhmgxdPG8MrmvXR1WefTxqSixtYOVm+vs/q8NJASSQ9YDGxU1U2q2gbcA1wQcEwpY/G0sexvbqdqV2PQoRhjurF8yz669FB1hEldqZL0yoGtEe+3+WHRPiQir4vI/SIyKdbMRORKEVkmIstqa2sTHeugC589vvTmnoAjMcZ056VNe8gICcdPtpvSU12qJL3e+D9gqqoeAzwG3B5rQlW9WVUXqeqikpKSQQswWSaOHsGkMSN4pmp30KEYY7rx7MbdHDepiJE5mUGHYnqQKklvOxB55TbRDztIVfeoaqt/ewuwcJBiC5yIcNrMEp7fuJu2Drtfz5hUsqexlVXb6zi9Iv1PsIeDVEl6rwAzRWSaiGQDlwAPR04gIuMj3p4PrBvE+AJ3ekUJTW2dLN+yL+hQjDERnt24G1U4zZJeWkiJpKeqHcBVwN9xyexeVV0jIt8VkfP9ZJ8XkTUi8hrweWBJMNEG4+SjxpIZEp6uSv86SmOGkqc21DJmZDbzy+3+vHSQMgXQqroUWBo17FsRr68BrhnsuFJFQW4WC6eM5qkNtXz1rNlBh2OMAbq6lKerdnPqjGJCIQk6HNMLKXGlZ3rntIoS1lbXs6uhJehQjDHA2up6dje2Wn1eGrGkl0bCP6xnKq0VpzGpIFzd8PaK4oAjMb1lSS+NzB0/iuL8bKvXMyZFPLWhlrnjRzGuIDfoUEwvWdJLI6GQcFpFCU9uqKXdHjVkTKD2N7exfMs+Tp9lRZvpxJJemjnr6DLqDrTzwhvWO4sxQXpsbQ0dXcrZ88qCDsX0gSW9NHNaRQkjszP46+rqoEMxZlhbuqqaiaNH2K0KacaSXprJzcrgXXNK+fuaGnuaujEBqTvQzrMbd3PO/PGI2K0K6cSSXho6Z34Ze5va7Bl7xgTk8bU1tHda0WY6sqSXhs6YNY687AweWWVFnMYEYemqaiYU5rJgUlHQoZg+sqSXhnKzMnjH7HH8ffVOOu3BssYMqvqWdp6p2s3ZVrSZlizppan3zR/PnqY2nn/DblQ3ZjA9uqaGts4uzplvRZvpyJJemnrn7HEUjsjinle29jyxMSZh7nn5LaYVj7QHxqYpS3ppKjcrgw8dP5FH1+xkd2Nrzx8wxgxYZU0Dy7bs49LFk6xoM01Z0ktjHzlxEu2dygPLtwUdijHDwt0vv0V2RogPHT8x6FBMP1nSS2MzxhWweOoY7n75LbqsQYsxSdXS3skDy7fx3nlljM3PCToc00+W9NLcR06czOY9zby4ybolMyaZlq6qpr6lg0sXTwo6FDMAlvTS3FnzyijKy+L2FzYHHYoxQ5aqcvsLW5hWPJKTp48NOhwzAJb00lxuVgaXnzyVv6+pYV11fdDhGDMkPV21m9e27udTb59mDVjSnCW9IeCKU6ZRkJPJDf+oCjoUY4YcVeXnj1cyoTCXDy+0os10Z0lvCCjMy2LJKVNZumon63fa1Z4xifRM1W5WvLWfz7xjBtmZdshMd/YNDhFXnDqN/JxMbnhiY9ChGDNkqCo/f6KK8YW5XLTIblMYCizpDRFFedl84pSpPLKqmuVb7OkLxiTC31bvZPmWffzbGUeRk5kRdDgmASzpDSGfPv0oyotG8LUHVtHWYc/aM2Yg6g608+2H1zB3/CguXTw56HBMgljSG0JG5mTy/ffPo2pXIzc99UbQ4RiT1v7rb+vZ3djKf33oGDIz7FA5VNg3OcS8Y/Y4zjt2Ar/4x0Y27moIOhxj0tJLm/bwh5fe4pOnTGP+xMKgwzEJZElvCPrWuXPJz83kyjuWU9fcHnQ4xqSVHfsP8Nk/vMrkMXl86T0VQYdjEsyS3hBUUpDDTR9dyNZ9zfzbH5bT3mn1e8b0RlNrB1fcvozW9k5u+fgi8rIzgw7JJJglvSFq8bQx/PCDx/Dcxj1c+9Aqe8K6MT1oae/k83e/yoad9dzwkeOoKC0IOiSTBHYaM4RduHAib+1t5vonqtjX3M71lxzHiGxrdm1MtP3NbfzLHct4ZfM+vvf+eZwxa1zQIZkksSu9Ie5LZ1Zw3XlzeXxdDZf85kW27GkKOiRjUsq66no+eOPzvLa1jusvPY6PnTQl6JBMElnSGwaWnDKNX390IRtrGnjPT5/m+ieqaGnvDDosYwLV2NrB9/+ylnNveJb9ze3c+akTOf/YCUGHZZJMVFOjrkdEzgJ+DmQAt6jqj6LG5wB3AAuBPcDFqrq5p/kuWrRIly1blviA09DOuha+98haHnm9muL8bC4+YRKXnDCZSWPygg5tWFBVWju6ONDmTjgyMoQMETJC7i8zJNaD/yDYuKuBu156iweWb6OhtYNLTpjMV8+aRVFedtChpQwRWa6qi4KOIxlSIumJSAZQCZwJbANeAS5V1bUR0/wbcIyqflpELgE+oKoX9zRvS3pHev6N3dz67Gb+sb6GLoXpxSN524yxzB1fyPSSkZQXjWDUiCzyczLJCA3eQVhVUYUuVbr8/0Pv3TCNGhf5PiRCKASZoRAZ/nU4oYSTS7ykoqq0dyrtnV20dXTR3tlFS3sXze0dNLV2cqCtk6a2jsP/t3bS3N5Bc2snzW2dNLd1RP33r1s7aW7v7LFBUUggJzODkTmZ5Oe4/+515qFh2YeG5eVkuHHZh17nZR8aNyIrw2+L3n2Pqkpnl9Lp/3d0KZ2dh95H/nV0ue8l/D68/TPEbeeMkBAS/HD3HYTk0HcSivheQuKSfm/j7I3mtg72NLbx1t5mNtU2smp7Hc+/sYdt+w6QlSGcNW88nzp1GsdOKkrYMocKS3rJDkLkZOA6VX2vf38NgKr+MGKav/tpXhCRTGAnUKI9rIAlvdi27z/AX1dV89zG3bz85l6a2o4s8szPyaQgNzNu7/LaiwTV1dV9QlMOf59sIriDa8QVliq0dXTR1s9bO7IzQ4zMziAvO5O87Az/51/nZJKXlUFezqHhI7IyCAkuoYQTTKcefN/S7pJqY2snTa0dNLZ20OT/wsMO9LF4Orze7ooy5JJRSA5LYOHXQQufpIQTaMhfBWdEfG/h/+7qGDq73AlLW2f4ZKWTlvbDv8/CEVmcNH0Mp8wo5ux54ykpyAloDVPfUE56qdJ6sxzYGvF+G3BirGlUtUNE6oCxwO7omYnIlcCVAJMnW595sZQXjeBTb5/Op94+na4uZUfdAd6obaKmroX6lnYaWjpoaOmgvqWdjh4SQsgfiMJn9hLxOiQg4g5OPU0TOjjdofeHpo/4vL9qEw6NCyfXw69C3PAOf7XS1XXkVUtIhKxMIScjRFZGiOxM95eVESInM8TInMzDE1m2uwIbkZ1BXlZGIF1UdXYpzW3uCrTJX0k2tnbQ3Nbh/7vk2NLeSWcXdHZ1HUxs4f9dqgcTR0YodPBK61ByPLzoNTwuJEJmRnTikSNOeroirgTD46KvDsPfUWdXl/sf8R11RcUa/n/4d+mWk5khZIW/vwwhJyuD0XnZjBmZxcTReRxVkk/pqBwrPjYpk/QSSlVvBm4Gd6UXcDhpIRQSJo7OY+Joq99LBxkhoSA3i4LcrKBDMSatpErrze1A5COJJ/ph3U7jizcLcQ1ajDHGmF5JlaT3CjBTRKaJSDZwCfBw1DQPAx/3ry8E/tFTfZ4xxhgTKSWKN30d3VXA33G3LNyqqmtE5LvAMlV9GPgt8HsR2QjsxSVGY4wxptdSIukBqOpSYGnUsG9FvG4BPjzYcRljjBk6UqV40xhjjEk6S3rGGGOGDUt6xhhjhg1LesYYY4aNlOiGLJlEpBbY0s+PF9NNjy9pxOIPVjrHn86xg8U/UFNUtSTA5SfNkE96AyEiy9K5/zmLP1jpHH86xw4Wv4nNijeNMcYMG5b0jDHGDBuW9OK7OegABsjiD1Y6x5/OsYPFb2KwOj1jjDHDhl3pGWOMGTYs6RljjBk2LOl1Q0TOEpENIrJRRL4WdDw9EZFJIvJPEVkrImtE5Go/fIyIPCYiVf7/6KBjjUdEMkTkVRH5i38/TURe8t/DH/1jp1KSiBSJyP0isl5E1onIyem0/UXki37fWS0id4tIbipvfxG5VUR2icjqiGHdbm9xrvfr8bqIHB9c5Adj7S7+//H7z+si8pCIFEWMu8bHv0FE3htM1EODJb0oIpIB/BI4G5gLXCoic4ONqkcdwJdVdS5wEvBZH/PXgCdUdSbwhH+fyq4G1kW8/y/gp6o6A9gHXBFIVL3zc+BvqjobOBa3Hmmx/UWkHPg8sEhV5+Ee73UJqb39bwPOihoWa3ufDcz0f1cCNw5SjPHcxpHxPwbMU9VjgErgGgD/W74EONp/5lf+OGX6wZLekRYDG1V1k6q2AfcAFwQcU1yqWq2qK/zrBtwBtxwX9+1+stuB9wcTYc9EZCLwPuAW/16AdwL3+0lSNn4RKQROwz3zEVVtU9X9pNH2xz1mbISIZAJ5QDUpvP1V9WncczUjxdreFwB3qPMiUCQi4wcn0u51F7+qPqqqHf7ti8BE//oC4B5VbVXVN4GNuOOU6QdLekcqB7ZGvN/mh6UFEZkKHAe8BJSqarUftRMoDSis3vgZ8B9Al38/FtgfcRBI5e9hGlAL/M4Xz94iIiNJk+2vqtuBHwNv4ZJdHbCc9Nn+YbG2dzr+pj8J/NW/Tsf4U5YlvSFERPKBB4AvqGp95Dh196ak5P0pInIusEtVlwcdSz9lAscDN6rqcUATUUWZKb79R+OuJqYBE4CRHFn0llZSeXv3RESuxVVZ3BV0LEORJb0jbQcmRbyf6IelNBHJwiW8u1T1QT+4JlyM4//vCiq+HpwCnC8im3HFye/E1ZEV+eI2SO3vYRuwTVVf8u/vxyXBdNn+7wbeVNVaVW0HHsR9J+my/cNibe+0+U2LyBLgXOAyPXQTddrEnw4s6R3pFWCmb7mWjatAfjjgmOLy9V+/Bdap6k8iRj0MfNy//jjw58GOrTdU9RpVnaiqU3Hb+x+qehnwT+BCP1kqx78T2Cois/ygdwFrSZPtjyvWPElE8vy+FI4/LbZ/hFjb+2Hgct+K8ySgLqIYNGWIyFm4Iv7zVbU5YtTDwCUikiMi03ANcl4OIsYhQVXtL+oPOAfXeuoN4Nqg4+lFvKfiinJeB1b6v3Nw9WJPAFXA48CYoGPtxbqcAfzFv56O+3FvBO4DcoKOL07cC4Bl/jv4EzA6nbY/8B1gPbAa+D2Qk8rbH7gbV//YjrvSviLW9gYE1yL7DWAVrpVqKsa/EVd3F/4N3xQx/bU+/g3A2UHHn85/1g2ZMcaYYcOKN40xxgwblvSMMcYMG5b0jDHGDBuW9IwxxgwblvSMMcYMG5b0zKATkU4RWRnxNzXomBJFRI4Tkd/612eISF3Een4rYrojetn3w2P2tB8xzQQRuT96eJyYNovIAxHvLxSR2/q1gvGXc0u8ztlFZImITIh4f4+IzEx0HMbEY0nPBOGAqi6I+NscHuFvIE7n/fLrwPUR75+JWM/vRgy/je67+uq2p/1IqrpDVS884pPxLUz200JU9VOqujbOJEtw3ZyF3Yi7GduYQZPOBxczRIjIVP+csDtwN0dPEpF/F5FX/BXPdyKmvVZEKkXkWXHPffuKH/6kiCzyr4t9l2bhZ/T9T8S8/tUPP8N/JvwMvLt8bySIyAki8ryIvCYiL4tIgYg8LSILIuJ4VkSOjVqPAuAYVX2tp3XW7p8SgMbuaT96e632r4/2Ma706xfryul/cTc4R84nJO7ZcyUR7zeKSInvkegFEVklIt8XkcaI7faXiHn8wneddfA78Nv8NnHP5lsl7ll9FwKLgLt8rCOAZ4B3y6GuzoxJOkt6JggjIor8HvLDZgK/UtWjgVn+/WJcTycLReQ0EVmI66ZsAa7HmRN6sawrcN1OneCn/xfflRO4p1F8AffcxOnAKeK6nvsjcLWqHovrl/IArpu3JQAiUgHkdpPcFuGSdqSTffL8q4gc3Yt4I0X2tB/Lp4Gfq+oCv/xtMaa7FzheRGaEB6hqF3AncJkf9G7gNVWtxfV9eqOqzsf1HNIXC4ByVZ3nP/87Vb0f12PNZf6q94Bf/kbc8weNGRSW9EwQIos3P+CHbVH3rDOA9/i/V4EVwGxcEnw78JCqNqt7ikRv+kR9D67fxZW4xy2N9fMCeFlVt/mD70pgKi7hVqvqKwCqWu+vvO4DzhXXsfcnccWT0cbjHjEUtgKY4pPnDbjuyXpFet/T/gvA10Xkq35ZB2JM1wn8D0cWl94KXO5ffxL4nX99Cq6rLHDdkvXFJmC6iNwgrj/J+jjT7uLwIk9jksqSnkkVTRGvBfhhRGKcoaq/7eHzHRzan3Oj5vW5iHlNU9VH/bjWiOk6cY8I6pa6DoAfwz2C5yK6T0YHIpftE2ajf70UyBKR4h7WI1ZP+7Hi+gNwvl/2UhF5Z5zJf4972O3BHvtVdSvu6QTvxF1ZR15ZdrfsyO0Mh2/r8Dz34a7ensRdid4SJ6ZcH7sxg8KSnklFfwc+Ke75gIhIuYiMA54G3i8iI3z92XkRn9kMLPSvL4ya12f8FRoiUiHuAa+xbADGi8gJfvqCiDqnW3CNVF7xB/Zo64CDxYciUhZRT7gY93vbE2/FJXZP+7Gmnw5sUtXrcU8VOCbWtOoeG/RT4ItRo27BFXPep6qdfthzuKJkOFT8CbAFmCuux/8i3BMZomMqBkKq+gDwDdxjlgAagIKoySs4skjYmKSxpGdSjr8S+wPwgoiswj2frkBVV+Dq217DXZG8EvGxH+OS26tA5NXULbjH5KzwjT9+TfwrujbgYuAGEXkNd3WX68ctxxXV/S7GZ9cDhT4hg0u+q/18rgcuCV+5icjduKLJWSKyTUSu8J/5BS4xPObrPG+Kv7W4yC9jJTAPuKOH6X/Lkev/MJAftV5XA5/12//gU7r9leG9uER1L64IOlo58KSP6U4OFaneBtwUbsgiIqW4ou6dPcRsTMLYUxZM2hKR64BGVf3xIC1vAq7IbravB+xumi8CDaoar0gvpfhWrz9V1bfHmaZRVfMTvNwvAvW9KLo2JmHsSs+YXhCRy3ENYa6NlfC8Gzm8rjClicjXgAfo5n7AQbAfuD2A5ZphzK70jDHGDBt2pWeMMWbYsKRnjDFm2LCkZ4wxZtiwpGeMMWbYsKRnjDFm2Ph/2hPcK/6KS8EAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"N = 4\n",
|
|
"f, H_im = sig.freqz(h)\n",
|
|
"posfreq = np.square(H[0:512//N])\n",
|
|
"negfreq = np.flipud(np.square(H[0:512//N]))\n",
|
|
"plt.plot((np.abs(posfreq) + np.abs(negfreq)))\n",
|
|
"plt.xlabel('Frequency (512 is Nyquist)')\n",
|
|
"plt.ylabel('Magnitude')\n",
|
|
"plt.title('Unity Condition, Sum of Squared Magnitude of 2 Neighboring Subbands')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 57,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"b = sig.firwin(80, 0.5, window=('kaiser', 8))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 58,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAEWCAYAAADy9UlpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy9h23ruAAAgAElEQVR4nO3deZwcZZnA8d/Tc2Yyk5kkM5lJJjfJ5CCBQEIAQcADBeTwQA5RjOKyuqJ47Srigcequ+t6gAoiIiAIciorUTmU+0xCIPdMCAk5JpPJNWfmfvaP9+2k05nuubqnumee7+czn+muqq56qrq6nqr3festUVWMMcaY4SAUdADGGGPMYLGkZ4wxZtiwpGeMMWbYsKRnjDFm2LCkZ4wxZtiwpGeMMWbYSHrSE5GbROSbyV5OMoiIisgM/zrueojI10XklsGLLrWIyAgR+T8RqROR+4KOJ5FEZLOIvDvoOGJJ9G9MRG4Tke8nan4R8y0VkadFpEFE/jfR8+9HPGtE5IxeThtzHxCRM0RkWwLjukxEHk3U/BJFRJ4UkU/FGDfVHy8zByGOAS2rx6QXeeCPGHadiNzZmwWo6qdV9Xv+cwPeOUSkQkTuE5Hd/gD7uoh8SUQyBjLfnvS0Hqr6A1XtdodIJBGZKCIPRKz/ahFZkuzl9sKFQCkwVlU/HD1SRIpE5FYR2ekPepUi8rXBDzOxfIJQEbkgavhP/fAlyY4h0b+xJLoS2A2MUtUvR48UkX/3+3ODiLwpIv8ea0YRB76lUcPvFJHrehOMqh6tqk/2bRWST1XvUtX3JGPeInKqiDzvjx17ReQ5ETkhGctKVWlVvCkiRwEvAVuB+apaCHwYWAQUBBnbIPo9bv2nAGOBjwE1gUbkTAEqVbUjxvifAvnAHKAQOB/YOEixHZSkM9FK4PKoZVwEvJGEZaWzKcBajd0jhuC242jgLOAqEbmkh3meKCJvS2CMgUrmlZKIjAL+AtwAjAHKge8ArclaZkpS1bh/gAIzooZdB9zpX58BbAO+DOwCqoFPREx7G/B9YCRwAOgCGv3fBKAZd3UQnv54oBbI6iaWO4FHeoj3fGANsB94EpgTMW4z8BXgdaAO+COQGzH+3338O4BPRq57L9bj4DYZaBw9rF8jsCDGuDOAbVHDNgPvjvje7vPbsQFYBVQA1/jvbivwnjjLnuPXZb9ft/P98O8AbUC7j++Kbj67Gnh/nHmfCaz32+MXwFPAp6L3N/9+qv9uMv37TwDr/DptAv41epsAXwV24k4aQsDXcElpD3AvMCbiMx8Dtvhx10Zuw27ivg34Me7EY7Qfdi7wV+BZYIkfdhTwDz/P3cBdQFHUfv+qX4f7/D7x/QT9xm4Lz6u7/QQ4Dljhl/1H4J6o6c8FVvrv/XngmDjf49uAV/z3+ArwtogY2/1+0hhre0bN63rghhjjwvvAV4F/Rh0jrutN7Bz+2xgB3A7s8/vSf0Rto83E+M1GfD9f99/tZuCyiM8WAnfgjmtbgG8AIT9uCfAc7qRwj/8elwDPRh2DPw1U+fX4JSB+XAbwv365bwJXEfHbiNpmi4D9cbb3dcT/nT0J/BB4GagH/oz/3URMeyXu+FkNfCViXouBF3z81bjfeHYf1vHHfh03AZ+NimuJH97gt8FlsdZRVRN2pVeG+2LLgSuAX4rI6MgJVLUJOBvYoar5/m8HbkNeFDHpx4B7VLW9m+W8G7g/VhAiUgHcDXwBKAGWAv8nItkRk12EO4ucBhyD22CIyFm4nfpMYKZf1hHirEdC4uiFF3Hb9xIRmdzLz0Q6D3fgH407yP4dlwTKge8Cv+7uQyKSBfwf8CgwDvgccJeIzFLVbwM/AP7ot8dvY8T9nyLyCRGZGTXvYuBB3MGgGJeMTunDOu3CHdxG4RLgT0Xk+IjxZbgz2ym4H+XngPcDp+OSwj7cjwwRmQvciNsPJ+Cupif2sPwW3AEgfFVyOe4gd9hq4g4YE3AnD5NwBxn8fvEQLjGMwe07H4j6/EB+YzH5Zf8Jt0+MwSXcD0WMPw64FfhX3Lb4NfCwiOR0M68xwCO4ZDUW+AnwiIiMVdUluET/3z6ux3uIS4C3406u4vkVUNFdfVtfYge+jTtwT8cdAz7azTTxfrNluH23HPg4cLOIzPLjbsB9d9Nx+9zluP007ETcQbsU+M8Y63kucIJf7kXAe/3wf8F95wtwJ07vj/F5cCUSnSJyu4icHb3/9NLluAuC8UAH7ruO9A7c8fM9wFcjvpdO4Iu4bXQy8C7g36I+G28dz8WdnC3CVaUAICIjfQxnq2oB7qRrZbwVSFTSawe+q6rtqroUdyY3q4fPhN2O38F8vdyluB9gd8bizhJiuRh3JfiYT5o/xp3B/UlEduEOONer6g5V3Ys7iC/wn70I+J2qrvYHj+viLOcJYJyIrBSRh/sQR2QxTKw4evJh4Bngm8CbPoa+lMk/o6p/V1cMeR8uKf/Ix3kPMFVEirr53Em44skfqWqbqv4DV1RyaS+X+zncQe8qYK2IbBSRs/24c4A1qnq/j+NnuKuyXlHVR1T1DXWewiXmt0dM0gV8W1VbVfUA7ozyWlXdpqqtuO/6Ql+0dCHwF1V92o/7pv98T+4ALvfb7nRcIomMcaPfH1pVtRaXEE73o08CMnH7RLuqPog7m440kN9YPCcBWcDP/Lzvx12hhV0J/FpVX1LVTlW9HVccdlI383ofUKWqv1fVDlW9G3f1fl4/4roOd3z6XQ/THcAliu4a3vQl9ouAH6jqPlXdxpEHc+j5N/tN//0+hUv+F/lj2iXANaraoKqbcVdmH4v43A5VvcFvswMx1vNHqrpfVd8C/snhx62f+315H/CjGJ9HVeuBU3FXSb8BakXkYREpjfWZbvw+4hj5zYh1DPuOqjap6ircd3epX/ZyVX3Rr+Nm3AnI6VHzjreOP1PVrX7b/zDqc13APBEZoarVqhr3RKk3Sa8T96OIlIX7EYbt0cPrcppxB8je+DMwV0Sm4c6w6lQ1+gd/cDm4M4xYJuCKDwBQ1S5ckd0y3BkaHH4wjYxzgp82bAuxtQG7VHWBqp7fhzjKI6aJFUdc/kf5NVU9GndmuBKX1KU3n+fw+r8DwG5V7Yx4T4xYJgBb/bqEbeHwdYoX9wF1jX0W4k5e7gXu81cHh217dWUWW7uf05H8WeuLvmJ+Py6JFkdMUquqLRHvpwAPich+P/063H5e2k0sTbj9rqf1exZ3AnEtLmkedvAS13LxHhHZLiL1uGK4cIwTgO1+vcOi138gv7F4ult25L4/BfhyeFv57TXJf667eUX/bnq9j4SJyFW4K4r3+ROPntwClIpIdHLta+yR27y7/S/eb3af31fCtvh5FuOOl1uixkVuk97s6709bsWdl6quU9UlqjoRmOc//7NeLL+7+W/BrVtxnPET4GADxL/4hmz1uJKhyM9BP47NfptfjDuRrRaRR0RkdrwV6E3Sewt32R9pGvGTQixHVGD7g9G9uKu9jxH7Kg/gcSKKXrqxA7ejAweLSCbh6lL2Rk7oG8V8FDhbRJ7BbeRJEZPEKzrs6dEUseLY3sPn+kRVd+OuIifgiqaagLyI5WbgDsSJsAOYJCKR+8xk+rFO/ozzB7g6qGm4q/eD2z5ie4Udtl64oqTwtDnAA7jtUKqqRbji5MiTgOjvayuuOKQo4i9XVbd3E0seLkn3xp24erfook1w66u4BlijcPteOMZqoDzqxGUS/dPdvhlz+8VYduS+vxX4z6htleev4qIdtt9HzKvX+4iIfBJX3/ouf8XVI1Vtw9Urf4/Dv/e+xF7N4cXYfd3+o31RW9hk3PbYjbtAmBI1LnKbDORRN/2OW1XX44rU5/lB8faT7uY/Gbduu+OMDxev34i76p/p9/+vc/h3Fc9hv0mijs2+5OpM3AXRetxVbEy9SXp/BL4hrql8yJfRnkecurU4aoCxIlIYNfwOXPn4+cRPet8G3iYi/yMiZQAiMsM3Uy7CJc/3ici7fB3Ul3HFGc93M6+bcQfHv+Lq8qYDS0Rkrj/QfTtOHNnABBF5RUS6K0PvSxxHENcU+4wY4/5LROaJSKaIFACfATaq6h5cmX2uiLzPL/cbQHf1F/3xEu7E4D9EJMvHdx6uSLRHIvJNETlBRLJFJBe4GldhvQFXFHS0iHzQFzF+nsN/cCuB00Rkst93rokYl41bx1qgwxeZ9tTc+yZc/eIUH1uJHLrl4H7gXHFNu7Nx9Zy9rQa4Hlda8XQ34wpwRZJ1IlKOazQV9gLuSvMq/71egKv474/ufmMrgXNEZIz/3XwhatkdwOf99/rBqGX/Bvi0iJwozki/f3XXWnoprn7tI349Lgbm4orBeyQil+FODs5U1U29XWHv90Auh0p0+hr7vcA1IjLafz9X9XH5AN/x+/fbcXVQ9/lSlHtx+1uB3+e+hDtBSoR7gatFpNwfA78aa0IRmS0iXxaRif79JFzx44t+kni/s7CPRhwjvwvcH1FSBPBNEckTkaNx9ZZ/9MMLcI1fGv2V2Gf6uI6f9zloNO6kKLxOpSJygT/haMX9xuJWR/Tmx/xd3MH6WVyF/3/jWses7kPQwMEzi7uBTb64YYIf/pwPdIWqxryCVNU3cJWgU4E1IlKHO8tfBjSo6gbcGfQNuLOP84Dz/JngQSKSj6tfuwhXFPZr3IHzZ7iWVHW4FlkAS0VkNe5gFjYFd4Y0A3hQRE6OirNXcXTH74jhlpXdycM1etiPq/yegjtZQFXrcJXDt+DOJJtwrcoGzMd+Hq7SfDeuAcHl/jvt1SxwZfy7cWd/Z+KKrxr9FeuHcfURe3AV4c9FLPsx3I/ndWA5EQdRVW3AJcl7cfvnR4Du6lkj/dxP86iINOB+9Cf6+a3BtQ77A+4Mcx+93IaquldVn4gqKgz7Dq6hQR0uyT8Y8bk24IO4Bir7cfvOX+hHU/IYv7HfA6/hWhU+yqEDUeSyl+BKQy6Oim0ZriHBL3DbYiMxGl35E69zcSd5e3AtIM/1329vfB93Vf2KiDT6v5t6ud6dwLdwJR59jh13nNuGa/33OO7kpy/bf6dfxg5c3fWnI34bn8P9FjfhjqN/wDWwSYTf4L7T13EN05biTmI6u5m2AbefvyQiTbj9fjXu+4r7O4vwe9yxbyfuJOPzUeOfwm3nJ4Afq2r4Jvuv4H6bDT7mP9J7v8E1uHsN18r4wYhxIdxJxA7c/ns6PSRU6f73OfhE5B/AH1Q1Kb2aiMhUXF3LPHH3q2xQ1Xj1g72d721+vv258u1ufh8FjlbV7s6yhg0ReRLXfHpY9nIjIi8BN6lqTw05TBKIyGeAS1Q1urFFSvMlHTepanQxs/FS4uZ0ca0Pj6dv2b/ffJ3SmyLyYb98EZFje/NZX/yR418X45rWr01gbHcO94Q3HInI6SJS5osFP45rtv23oOMaLkRkvIicIq4KZxbu6uehoOPqibju/87x+005rlom5eMOUuBJT0RuxxUnfMEXVSVjGXfj6i5micg2EbkCuAy4QkRew90LdEG8eUSYAyzzn/snrpltwpKeGbZm4Ypv9uMOuBeqarzbc0xiZeOqORpwDd/+jCvCT3WCKzrfhyveXIcr5jUxpEzxpjHGGJNsgV/pGWOMMYMl6Y+BCFpxcbFOnTo16DCMMSZtLF++fLeqJuoe35Qy5JPe1KlTWbZsWdBhGGNM2hCR/nQ+khaseNMYY8ywYUnPGGPMsJESSU9EJonIP0VkrYisEZGru5nmDHFP+13p/6xZrjHGmD5JlTq9DuDLqrrC94u3XEQe6+b+t2dU9dwA4jPGGDMEpMSVnn8G0gr/ugF3g2WfHkdijDHG9CQlkl4k30fmcbhe/aOdLCKvichffS/eseZxpYgsE5FltbW1SYrUGGNMukmppOeffvAArkuy+qjRK4Apqnos7ukFf4r+fJiq3qyqi1R1UUnJkLzVxBhjTD+kTNIT9/y3B4C7VPXB6PGqWq+qjf71UiDLd/icFD99rJIVb+1L1uyNMSYpVJWnK2u55Zm+PpJweEiJpCciAvwWWKeqP4kxTZmfDhFZjIt9TzLi2dfUxl0vvcUHf/U8V96xjI27GpOxGGOMSajXt+3nI795ictvfZm7XnqL1o7uHqs3vKVEh9MicirwDO7BqeGn3n4d/1h4Vb1JRK7CPRywAzgAfElVe3wS+aJFi7Q/PbI0tXbwu+fe5NdPbQKBx790OqWjcvs8H2OMGQyVNQ287/pnGJWbxefeOYNLT5xMTmZGv+YlIstVdVGCQ0wJKZH0kqm/SS9sU20jZ/38Gc6cW8ovP3J8AiMzxpjE6OpSLr75Bap2NfL4l06nOD9nQPMbykkvJYo3U9n0knw+944ZPPJ6Nf9cvyvocIwx5gj3Ld/KK5v38fWz5ww44Q11lvR64crTpzNjXD7f+NNqmts6gg7HGGMO2t3Yyg+WrmfxtDF8eNHEoMNJeZb0eiEnM4PvXTCP7fsPcP/ybUGHY4wxB9367Js0tLTzgw/Mw7f1M3FY0uulk48ay9zxo7h32dagQzHGGAA6u5QHVmzjjFnjmDGuIOhw0oIlvT64aNFEVm+vZ+2O6PvmjTFm8D1dVUtNfSsXWbFmr1nS64MLFpSTnRHivuV2tWeMCd59y7YyZmQ275xdGnQoacOSXh+MHpnNmUeX8qdXt9tNn8aYQO1tauOxtTW8f0E52Zl2KO8t21J9dNGiSexrbueJdXb7gjEmOH9euZ32TuWiE6xosy8s6fXRqTOKGV+Yy4MrrBWnMSY4D67YzvzyQmaXjQo6lLRiSa+PMkLCmXNLeW7jHiviNMYEYldDC6u213HWvLKgQ0k7lvT64fSKEg60d7Jssz2FwRgz+J6p3A24Y5HpG0t6/XDyUWPJzgjx5Aar1zPGDL6nKmspzs9h7ngr2uwrS3r9kJedyeJpY3iq0p7KbowZXJ1dyjNVtZxWUUwoZD2w9JUlvX46vaKEyppGduw/EHQoxphh5PVt+9nX3G5Fm/1kSa+fzpjldji72jPGDKanKmsRgdNmWtLrD0t6/TRjXD4TCnN5aoMlPWPM4HmqspZjJxYxemR20KGkJUt6/SQinD6rhOc27qa9s6vnDxhjzADta2rjta37rWhzACzpDcCpM0poaO1gjXVAbYwZBC9v3kuXwqkzi4MOJW1Z0huARVNHA7Bs896AIzHGDAfLt+wjOyPE/PLCoENJW5b0BqB0VC4TR49g+Ra7Sd0Yk3zLNu9l/sRCcrMygg4lbVnSG6BFU0azbMs+VDXoUIwxQ1hLeyert9ezaMrooENJa5b0Bmjh1DHUNrSyda/dr2eMSZ5V2+to6+xioSW9AbGkN0Dhs65lW6xezxiTPOG+fi3pDYwlvQGqKC2gICeTZVavZ4xJouVb9jK9eCRj83OCDiWtWdIboIyQcNyU0Sy3Jy4YY5JEVVm+ZZ9d5SWAJb0EWDRlNJW7Gqg70B50KMaYIeiN2ib2NbcfvE3K9J8lvQRYNGU0qvDqW3a1Z4xJvOW+zcDCKWMCjiT9WdJLgAWTi8gICSusXs8YkwQrtuynKC+Lo0pGBh1K2rOklwB52ZnMKMln1fa6oEMxxgxBr2+vY355ISL2/LyBsqSXIPMnFrJqe53dpG6MSaiW9k4qaxo4ZqJ1PZYIlvQSZH55Ibsb29hZ3xJ0KMaYIWRddT2dXWr9bSZISiQ9EZkkIv8UkbUiskZEru5mGhGR60Vko4i8LiLHBxFrLPP8DrlqmxVxGmMSZ7WvNplnSS8hUiLpAR3Al1V1LnAS8FkRmRs1zdnATP93JXDj4IYY39zxowjJoR3UGGMSYdX2OkbnZVFeNCLoUIaElEh6qlqtqiv86wZgHVAeNdkFwB3qvAgUicj4QQ41phHZGcwcV2CNWYwxCbVqez3zrBFLwqRE0oskIlOB44CXokaVA1sj3m/jyMQYnseVIrJMRJbV1tYmI8xuzSsvZNX2emvMYoxJiJb2TqqsEUtCpVTSE5F84AHgC6ra78eRq+rNqrpIVReVlJQkLsAezC8fxe7GVmrqWwdtmcaYoWv9zgY6rBFLQqVM0hORLFzCu0tVH+xmku3ApIj3E/2wlDHfn429vm1/wJEYY4aCVf5YYo1YEiclkp64wurfAutU9ScxJnsYuNy34jwJqFPV6kELshfmji+0xizGmISxRiyJlxl0AN4pwMeAVSKy0g/7OjAZQFVvApYC5wAbgWbgEwHEGZc1ZjHGJJI1Ykm8lEh6qvosEPdbVdc65LODE1H/zSsv5OmqwWs8Y4wZmlo7XCOWd8yaHnQoQ0pKFG8OJXPGF1Db0MruRmvMYozpv6qaRjq6lLkTRgUdypBiSS/B5o53O+j66oaAIzHGpLP1O90xZM54S3qJZEkvwWb7HXRddb/vuDDGGNZV15ObFWLqWHucUCJZ0kuwMSOzKR2Vw7qdlvSMMf23fmc9s0oLyAhZI5ZEsqSXBLPLRrHOijeNMf2kqqyrbmB2mRVtJpolvSSYM34UG3c10NbRFXQoxpg0VNvQyt6mNuaMLwg6lCHHkl4SzBlfQHunsml3Y9ChGGPS0FrfJmC2NWJJOEt6STDHGrMYYwYgXD0yx4o3E86SXhJMLx5JdkbIblswxvTL+p31lBeNoDAvK+hQhhxLekmQmRFiZmn+wSIKY4zpi3XV9cwus/q8ZLCklyRzxo86eHOpMcb0VmtHJ2/UNtlN6UliSS9JZpdZd2TGmL6rqmmks0uZbS03k8KSXpLMtcYsxph+CJcQ2T16yWFJL0kqfHl8ZY3dtmCM6b3KmgayM0NMK7bux5LBkl6SFOfnMHZkNlU1Vq9njOm9ypoGZpTkW/djSWJJL4lmluazwZKeMaYPKnc2UFGaH3QYQ5YlvSSqKC2gqqYR9/xbY4yJr6GlnR11LcwstUYsyWJJL4kqSgtobO1gR11L0KEYY9JA1S7XBmCWJb2ksaSXRBWl4cYsVsRpjOlZpW+5WWFJL2ks6SVRuFzeGrMYY3qjsqaREVkZTBw9IuhQhixLeklUlJfNuIIcNuy02xaMMT2rrGlgZmk+IWu5mTSW9JKsorSAql12pWeM6VllTQMzx1nRZjJZ0kuycAvOri5rwWmMiW1/cxu7GlqZVWa3KySTJb0kqyjN50B7J9v2HQg6FGNMCgv33mS3KySXJb0km2ktOI0xvRA+RljLzeSypJdk4Rac1jOLMSaeqpoG8nMymVCYG3QoQ5olvSQryM1iQmGu3bZgjIlrg2+5KWItN5PJkt4gmFlawAZ72oIxJo6qmkYqrOVm0lnSGwSzygp4o9Y9GNIYY6LtbmxlT1PbwUeSmeSxpDcIZo7Lp62jiy17moIOxRiTgg41YrHbFZLNkt4gmFVmLTiNMbFV1VhH04MlZZKeiNwqIrtEZHWM8WeISJ2IrPR/3xrsGPtrxjh39mZPUTfGdGdDTQOFI7IoKcgJOpQhLylJT5yPhhOTiEwWkcU9fOw24KwepnlGVRf4v+8mItbBkJedyaQxI+y2BWNMt6pq3INjreVm8iXrSu9XwMnApf59A/DLeB9Q1aeBvUmKJ3CzSgvstgVjzBFUlcqaRrspfZAkK+mdqKqfBVoAVHUfkJ2A+Z4sIq+JyF9F5OhYE4nIlSKyTESW1dbWJmCxAzeztIBNtU20dXQFHYoxJoXsamil7kC7Jb1Bkqyk1y4iGYACiEgJMNCj/QpgiqoeC9wA/CnWhKp6s6ouUtVFJSUlA1xsYswqLaCjS9lsLTiNMRGs+7HBlaykdz3wEDBORP4TeBb4wUBmqKr1qtroXy8FskSkeMCRDpKZpeHGLFbEaYw5JNzAzW5XGByZyZipqt4lIsuBdwECvF9V1w1kniJSBtSoqvpGMSFgz8CjHRxHleQTEqjc2QDHBB2NMSZVVO5sYOzIbMbmW8vNwZDQpCciYyLe7gLujhynqjEbqojI3cAZQLGIbAO+DWQBqOpNwIXAZ0SkAzgAXKKqadPFSW5WBlPHjrTbFowxh6nc1WBFm4Mo0Vd6y3H1eAJMBvb510XAW8C0WB9U1UtjjfPjfwH8ImGRBmBmaT6V9hR1Y4ynqlTVNPKh48uDDmXYSGidnqpOU9XpwOPAeaparKpjgXOBRxO5rHRUUVrA5t1NtLR3Bh2KMSYF7KhrobG1wx4cO4iS1ZDlJN/YBABV/SvwtiQtK21UlBbQpbCp1lpwGmOs5WYQkpX0dojIN0Rkqv+7FtiRpGWljQp7iroxJkLlTncssD43B0+ykt6lQAnutoWHgHEc6p1l2JpWPJLMkFjSM8YA7naF0lE5FOZlBR3KsJGsWxb2AlcnY97pLDszxLTikZb0jDGAK/Wxos3BlZSkJyL/xPfGEklV35mM5aWTirICVm2rCzoMY0zAurqUql0NXHbilKBDGVaSkvSAr0S8zgU+BHQkaVlppWJcAUtXVdPc1kFedrI2vzEm1W3d10xLe5f1xDLIklW8uTxq0HMi8nIylpVuZpXlowobdzVyzMSioMMxxgTkUPdjVrw5mJL1PL0xEX/FIvJeoDAZy0o3Mw+24LSeWYwZzsJ1+3aP3uBKVvlaZM8sHcCbwBVJWlZamTImj+yMkDVmMWaYq6xpoLxoBPk5Vs0xmJK1teeoakvkABGx3lSBzIwQR43Lt6RnzDDnHhxr9XmDLVn36T3fzbAXkrSstFNRmn/wplRjzPDT0dnFG7vsaelBSPRTFsqAcmCEiByHK94EGAXkJXJZ6ayitIA/r9xBQ0s7Bbl2U6oxw82Wvc20dXZZ0gtAoos33wssASYCP4kY3gB8PcHLSlvhHb1qVyPHTx4dcDTGmMEWLumxpDf4Epr0VPV24HYR+ZCqPpDIeQ8l4X72Knc2WNIzZhiqrGlEBGaMszq9wZbo4s2PquqdwFQR+VL0eFX9STcfG3Ymjh7BiKwMu23BmGGqsqaByWPyGJGdEXQow06iizdH+v92+hJHKCTugbLWgtOYYcn63AxOoos3f+3/fyeR8x2KZo4r4Jmq2qDDMMYMsraOLt7c3cR7ji4NOpRhKVkdTpcA/wJMjVyGqn4yGctLR7PK8nlgxTb2N7dRlJcddDjGmEHy5u4mOrrUrvQCkqyb0/8MPAM8DnQmaRlpLbI7ssXTxjW/iS4AABzjSURBVAQcjTFmsGywp6UHKllJL09Vv5qkeQ8JkU9Rt6RnzPBRVdNARkiYXjKy54lNwiWrR5a/iMg5SZr3kDChMJf8nExrzGLMMLNhZwNTx+aRk2ktN4OQrKR3NS7xHRCRehFpEJH6JC0rLYlYC05jhqMq634sUElJeqpaoKohVR2hqqP8+1HJWFY6m1VaYPfqGTOMtLR3smVPkyW9ACWr9ebx3QyuA7aoqj1B3ZtZWsA9r2xld2Mrxfn2EApjhrqNuxrpUmvEEqRkNWT5FXA8sMq/nw+sBgpF5DOq+miSlptWIrsjK55hSc+Yoa5ql6vOmFVm/XcEJVl1ejuA41R1oaouBBYAm4Azgf9O0jLTTvhZWlavZ8zwsGFnI1kZwpSx1nIzKMlKehWquib8RlXXArNVdVOSlpeWSgpyKMrLonKX1esZMxxU1TRwVEk+WRnJOvSaniSreHONiNwI3OPfXwys9U9Pb0/SMtOOiFAxrsAeKGvMMLGhpoHj7MkqgUrW6cYSYCPwBf+3yQ9rB96RpGWmpYqyfDbUNKCqQYdijEmixtYOtu07wKxSq88LUlKu9FT1APC//i+aleVFmF02ijtb3mL7/gNMHG0PlzdmqNqw092qPLvM7t4KUlKu9ERkpojcLyJrRWRT+K+Hz9wqIrtEZHWM8SIi14vIRhF5PcZtEWlnznj3A1hfbUWcxgxl6/xvfM4ES3pBSlbx5u+AG4EOXHHmHcCdPXzmNuCsOOPPBmb6vyv9/NPerDJ328K6auuwxpihbP3OegpyM5lQmBt0KMNaspLeCFV9AhBV3aKq1wHvi/cBVX0a2BtnkguAO9R5ESgSkfEJizgg+TmZTB6Tx3przGLMkLauuoE5ZaMQkaBDGdaSlfRaRSQEVInIVSLyAQb+NPVyYGvE+21+WNqbM77ArvSMGcK6upQNOxuYM956YglaMjuczgM+DywEPgZ8PEnLOoKIXCkiy0RkWW1t6j+dfHbZKN7c08SBNnv0oDFD0fb9B2hs7WD2eKvPC1qyWm++4l82Ap9I0Gy3A5Mi3k/0w7pb/s3AzQCLFi1K+XsB5owfharrmeXYSUVBh2OMSbC1viRnjiW9wCU06YnIw/HGq+r5A5j9w8BVInIPcCJQp6rVA5hfyggXeayrrrekZ8wQtL66AZFDXQ+a4CT6Su9kXL3b3cBLQK9rbEXkbuAMoFhEtgHfBrIAVPUmYClwDu6m92YSdwUZuEmj8xiZnWGNWYwZotZV1zN17EjyspPVCZbprUR/A2W4TqUvBT4CPALcHdkPZyyqemkP4xX4bCKCTDWhkDCrrOBgEYgxZmhZv7OeuXZ/XkpIaEMWVe1U1b+p6seBk3BXZU+KyFWJXM5QNHv8KNZX11t3ZMYMMU2tHWzZ22w9saSIhLfeFJEcEfkg7mb0zwLXAw8lejlDzZyyAupbOthR1xJ0KMaYBHJ968LsMrtdIRUkuiHLHcA8XP3bd1S12y7FzJHCrbrW7ainvGhEwNEYYxJlnbXcTCmJvtL7KK6bsKuB50Wk3v81iIhVWMUxZ/woRGDNDttMxgwla3bUUzgii4mj7WQ2FST0Sk9V7cmI/TQyJ5NpxSNZvaMu6FCMMQm0ZnsdR0+w7sdShSWpFDJvQiFrtlvSM2aoaO/sYt3OBuaVFwYdivEs6aWQeeWj2FHXwp7G1qBDMcYkwMZdjbR1dHG03a6QMizppZB5E9zZoNXrGTM0rPYlN3allzos6aWQo33Ss3o9Y4aGNTvqGZmdwbSxI4MOxXiW9FJIYV4Wk8aMYM12u9IzZihYvb2OuRNGEQpZI5ZUYUkvxcybUGhXesYMAZ1dytrq+oMlOCY1WNJLMfPKC9myp5m6A+1Bh2KMGYA3dzfR3NZp9XkpxpJeigm38lprjVmMSWtrdoQbsVjLzVRiSS/FHH2wBacVcRqTzlZvryMnM8SMEnuGXiqxpJdiSgpyKBuVyyq7Sd2YtLZ6ez2zywrIzLDDbCqxbyMFzZ9YyGtb9wcdhjGmnzq7lNe37eeYiUVBh2KiWNJLQQsmFbF5TzP7mtqCDsUY0w8bdzXS1NbJgkmW9FKNJb0UdJz/oby2za72jElHK7fuA2DBZEt6qcaSXgqaP7EQEVhpRZzGpKWVW/czKjfTemJJQZb0UlBBbhYzx+Vb0jMmTb361n6OnVRkPbGkIEt6Keq4SaN5bet+VDXoUIwxfdDU2kFlTcPBagqTWizppagFk4vY19zOlj3NQYdijOmDVdvr6FKrz0tVlvRSVLjVlxVxGpNewr/ZY+12hZRkSS9FVZQWkJedYUnPmDSz8q39TB6Tx9j8nKBDMd2wpJeiMkLC/PJCXrWkZ0xaWbl1v92fl8Is6aWwBZOLWLejnpb2zqBDMcb0ws66FnbWt1jSS2GW9FLYwsmjaevssn44jUkTr2zeC8DxU0YHHImJxZJeCjth6hgAXn5zb8CRGGN64+U395KXncG8CfY4oVRlSS+FjR6ZzazSAl6ypGdMWnj5zb0snDLanqyQwuybSXGLp41h+ea9dHR2BR2KMSaOfU1tbKhp4MRpY4IOxcRhSS/FLZ42hqa2TtZW25PUjUll4fq8xdPGBhyJiceSXopbPM3q9YxJBy+/uZfszBDHTCwMOhQTR8okPRE5S0Q2iMhGEflaN+OXiEitiKz0f58KIs7BVjoql6lj86xez5gU9/LmvSyYVERuVkbQoZg4UiLpiUgG8EvgbGAucKmIzO1m0j+q6gL/d8ugBhmgxdPG8MrmvXR1WefTxqSixtYOVm+vs/q8NJASSQ9YDGxU1U2q2gbcA1wQcEwpY/G0sexvbqdqV2PQoRhjurF8yz669FB1hEldqZL0yoGtEe+3+WHRPiQir4vI/SIyKdbMRORKEVkmIstqa2sTHeugC589vvTmnoAjMcZ056VNe8gICcdPtpvSU12qJL3e+D9gqqoeAzwG3B5rQlW9WVUXqeqikpKSQQswWSaOHsGkMSN4pmp30KEYY7rx7MbdHDepiJE5mUGHYnqQKklvOxB55TbRDztIVfeoaqt/ewuwcJBiC5yIcNrMEp7fuJu2Drtfz5hUsqexlVXb6zi9Iv1PsIeDVEl6rwAzRWSaiGQDlwAPR04gIuMj3p4PrBvE+AJ3ekUJTW2dLN+yL+hQjDERnt24G1U4zZJeWkiJpKeqHcBVwN9xyexeVV0jIt8VkfP9ZJ8XkTUi8hrweWBJMNEG4+SjxpIZEp6uSv86SmOGkqc21DJmZDbzy+3+vHSQMgXQqroUWBo17FsRr68BrhnsuFJFQW4WC6eM5qkNtXz1rNlBh2OMAbq6lKerdnPqjGJCIQk6HNMLKXGlZ3rntIoS1lbXs6uhJehQjDHA2up6dje2Wn1eGrGkl0bCP6xnKq0VpzGpIFzd8PaK4oAjMb1lSS+NzB0/iuL8bKvXMyZFPLWhlrnjRzGuIDfoUEwvWdJLI6GQcFpFCU9uqKXdHjVkTKD2N7exfMs+Tp9lRZvpxJJemjnr6DLqDrTzwhvWO4sxQXpsbQ0dXcrZ88qCDsX0gSW9NHNaRQkjszP46+rqoEMxZlhbuqqaiaNH2K0KacaSXprJzcrgXXNK+fuaGnuaujEBqTvQzrMbd3PO/PGI2K0K6cSSXho6Z34Ze5va7Bl7xgTk8bU1tHda0WY6sqSXhs6YNY687AweWWVFnMYEYemqaiYU5rJgUlHQoZg+sqSXhnKzMnjH7HH8ffVOOu3BssYMqvqWdp6p2s3ZVrSZlizppan3zR/PnqY2nn/DblQ3ZjA9uqaGts4uzplvRZvpyJJemnrn7HEUjsjinle29jyxMSZh7nn5LaYVj7QHxqYpS3ppKjcrgw8dP5FH1+xkd2Nrzx8wxgxYZU0Dy7bs49LFk6xoM01Z0ktjHzlxEu2dygPLtwUdijHDwt0vv0V2RogPHT8x6FBMP1nSS2MzxhWweOoY7n75LbqsQYsxSdXS3skDy7fx3nlljM3PCToc00+W9NLcR06czOY9zby4ybolMyaZlq6qpr6lg0sXTwo6FDMAlvTS3FnzyijKy+L2FzYHHYoxQ5aqcvsLW5hWPJKTp48NOhwzAJb00lxuVgaXnzyVv6+pYV11fdDhGDMkPV21m9e27udTb59mDVjSnCW9IeCKU6ZRkJPJDf+oCjoUY4YcVeXnj1cyoTCXDy+0os10Z0lvCCjMy2LJKVNZumon63fa1Z4xifRM1W5WvLWfz7xjBtmZdshMd/YNDhFXnDqN/JxMbnhiY9ChGDNkqCo/f6KK8YW5XLTIblMYCizpDRFFedl84pSpPLKqmuVb7OkLxiTC31bvZPmWffzbGUeRk5kRdDgmASzpDSGfPv0oyotG8LUHVtHWYc/aM2Yg6g608+2H1zB3/CguXTw56HBMgljSG0JG5mTy/ffPo2pXIzc99UbQ4RiT1v7rb+vZ3djKf33oGDIz7FA5VNg3OcS8Y/Y4zjt2Ar/4x0Y27moIOhxj0tJLm/bwh5fe4pOnTGP+xMKgwzEJZElvCPrWuXPJz83kyjuWU9fcHnQ4xqSVHfsP8Nk/vMrkMXl86T0VQYdjEsyS3hBUUpDDTR9dyNZ9zfzbH5bT3mn1e8b0RlNrB1fcvozW9k5u+fgi8rIzgw7JJJglvSFq8bQx/PCDx/Dcxj1c+9Aqe8K6MT1oae/k83e/yoad9dzwkeOoKC0IOiSTBHYaM4RduHAib+1t5vonqtjX3M71lxzHiGxrdm1MtP3NbfzLHct4ZfM+vvf+eZwxa1zQIZkksSu9Ie5LZ1Zw3XlzeXxdDZf85kW27GkKOiRjUsq66no+eOPzvLa1jusvPY6PnTQl6JBMElnSGwaWnDKNX390IRtrGnjPT5/m+ieqaGnvDDosYwLV2NrB9/+ylnNveJb9ze3c+akTOf/YCUGHZZJMVFOjrkdEzgJ+DmQAt6jqj6LG5wB3AAuBPcDFqrq5p/kuWrRIly1blviA09DOuha+98haHnm9muL8bC4+YRKXnDCZSWPygg5tWFBVWju6ONDmTjgyMoQMETJC7i8zJNaD/yDYuKuBu156iweWb6OhtYNLTpjMV8+aRVFedtChpQwRWa6qi4KOIxlSIumJSAZQCZwJbANeAS5V1bUR0/wbcIyqflpELgE+oKoX9zRvS3pHev6N3dz67Gb+sb6GLoXpxSN524yxzB1fyPSSkZQXjWDUiCzyczLJCA3eQVhVUYUuVbr8/0Pv3TCNGhf5PiRCKASZoRAZ/nU4oYSTS7ykoqq0dyrtnV20dXTR3tlFS3sXze0dNLV2cqCtk6a2jsP/t3bS3N5Bc2snzW2dNLd1RP33r1s7aW7v7LFBUUggJzODkTmZ5Oe4/+515qFh2YeG5eVkuHHZh17nZR8aNyIrw2+L3n2Pqkpnl9Lp/3d0KZ2dh95H/nV0ue8l/D68/TPEbeeMkBAS/HD3HYTk0HcSivheQuKSfm/j7I3mtg72NLbx1t5mNtU2smp7Hc+/sYdt+w6QlSGcNW88nzp1GsdOKkrYMocKS3rJDkLkZOA6VX2vf38NgKr+MGKav/tpXhCRTGAnUKI9rIAlvdi27z/AX1dV89zG3bz85l6a2o4s8szPyaQgNzNu7/LaiwTV1dV9QlMOf59sIriDa8QVliq0dXTR1s9bO7IzQ4zMziAvO5O87Az/51/nZJKXlUFezqHhI7IyCAkuoYQTTKcefN/S7pJqY2snTa0dNLZ20OT/wsMO9LF4Orze7ooy5JJRSA5LYOHXQQufpIQTaMhfBWdEfG/h/+7qGDq73AlLW2f4ZKWTlvbDv8/CEVmcNH0Mp8wo5ux54ykpyAloDVPfUE56qdJ6sxzYGvF+G3BirGlUtUNE6oCxwO7omYnIlcCVAJMnW595sZQXjeBTb5/Op94+na4uZUfdAd6obaKmroX6lnYaWjpoaOmgvqWdjh4SQsgfiMJn9hLxOiQg4g5OPU0TOjjdofeHpo/4vL9qEw6NCyfXw69C3PAOf7XS1XXkVUtIhKxMIScjRFZGiOxM95eVESInM8TInMzDE1m2uwIbkZ1BXlZGIF1UdXYpzW3uCrTJX0k2tnbQ3Nbh/7vk2NLeSWcXdHZ1HUxs4f9dqgcTR0YodPBK61ByPLzoNTwuJEJmRnTikSNOeroirgTD46KvDsPfUWdXl/sf8R11RcUa/n/4d+mWk5khZIW/vwwhJyuD0XnZjBmZxcTReRxVkk/pqBwrPjYpk/QSSlVvBm4Gd6UXcDhpIRQSJo7OY+Joq99LBxkhoSA3i4LcrKBDMSatpErrze1A5COJJ/ph3U7jizcLcQ1ajDHGmF5JlaT3CjBTRKaJSDZwCfBw1DQPAx/3ry8E/tFTfZ4xxhgTKSWKN30d3VXA33G3LNyqqmtE5LvAMlV9GPgt8HsR2QjsxSVGY4wxptdSIukBqOpSYGnUsG9FvG4BPjzYcRljjBk6UqV40xhjjEk6S3rGGGOGDUt6xhhjhg1LesYYY4aNlOiGLJlEpBbY0s+PF9NNjy9pxOIPVjrHn86xg8U/UFNUtSTA5SfNkE96AyEiy9K5/zmLP1jpHH86xw4Wv4nNijeNMcYMG5b0jDHGDBuW9OK7OegABsjiD1Y6x5/OsYPFb2KwOj1jjDHDhl3pGWOMGTYs6RljjBk2LOl1Q0TOEpENIrJRRL4WdDw9EZFJIvJPEVkrImtE5Go/fIyIPCYiVf7/6KBjjUdEMkTkVRH5i38/TURe8t/DH/1jp1KSiBSJyP0isl5E1onIyem0/UXki37fWS0id4tIbipvfxG5VUR2icjqiGHdbm9xrvfr8bqIHB9c5Adj7S7+//H7z+si8pCIFEWMu8bHv0FE3htM1EODJb0oIpIB/BI4G5gLXCoic4ONqkcdwJdVdS5wEvBZH/PXgCdUdSbwhH+fyq4G1kW8/y/gp6o6A9gHXBFIVL3zc+BvqjobOBa3Hmmx/UWkHPg8sEhV5+Ee73UJqb39bwPOihoWa3ufDcz0f1cCNw5SjPHcxpHxPwbMU9VjgErgGgD/W74EONp/5lf+OGX6wZLekRYDG1V1k6q2AfcAFwQcU1yqWq2qK/zrBtwBtxwX9+1+stuB9wcTYc9EZCLwPuAW/16AdwL3+0lSNn4RKQROwz3zEVVtU9X9pNH2xz1mbISIZAJ5QDUpvP1V9WncczUjxdreFwB3qPMiUCQi4wcn0u51F7+qPqqqHf7ti8BE//oC4B5VbVXVN4GNuOOU6QdLekcqB7ZGvN/mh6UFEZkKHAe8BJSqarUftRMoDSis3vgZ8B9Al38/FtgfcRBI5e9hGlAL/M4Xz94iIiNJk+2vqtuBHwNv4ZJdHbCc9Nn+YbG2dzr+pj8J/NW/Tsf4U5YlvSFERPKBB4AvqGp95Dh196ak5P0pInIusEtVlwcdSz9lAscDN6rqcUATUUWZKb79R+OuJqYBE4CRHFn0llZSeXv3RESuxVVZ3BV0LEORJb0jbQcmRbyf6IelNBHJwiW8u1T1QT+4JlyM4//vCiq+HpwCnC8im3HFye/E1ZEV+eI2SO3vYRuwTVVf8u/vxyXBdNn+7wbeVNVaVW0HHsR9J+my/cNibe+0+U2LyBLgXOAyPXQTddrEnw4s6R3pFWCmb7mWjatAfjjgmOLy9V+/Bdap6k8iRj0MfNy//jjw58GOrTdU9RpVnaiqU3Hb+x+qehnwT+BCP1kqx78T2Cois/ygdwFrSZPtjyvWPElE8vy+FI4/LbZ/hFjb+2Hgct+K8ySgLqIYNGWIyFm4Iv7zVbU5YtTDwCUikiMi03ANcl4OIsYhQVXtL+oPOAfXeuoN4Nqg4+lFvKfiinJeB1b6v3Nw9WJPAFXA48CYoGPtxbqcAfzFv56O+3FvBO4DcoKOL07cC4Bl/jv4EzA6nbY/8B1gPbAa+D2Qk8rbH7gbV//YjrvSviLW9gYE1yL7DWAVrpVqKsa/EVd3F/4N3xQx/bU+/g3A2UHHn85/1g2ZMcaYYcOKN40xxgwblvSMMcYMG5b0jDHGDBuW9IwxxgwblvSMMcYMG5b0zKATkU4RWRnxNzXomBJFRI4Tkd/612eISF3Een4rYrojetn3w2P2tB8xzQQRuT96eJyYNovIAxHvLxSR2/q1gvGXc0u8ztlFZImITIh4f4+IzEx0HMbEY0nPBOGAqi6I+NscHuFvIE7n/fLrwPUR75+JWM/vRgy/je67+uq2p/1IqrpDVS884pPxLUz200JU9VOqujbOJEtw3ZyF3Yi7GduYQZPOBxczRIjIVP+csDtwN0dPEpF/F5FX/BXPdyKmvVZEKkXkWXHPffuKH/6kiCzyr4t9l2bhZ/T9T8S8/tUPP8N/JvwMvLt8bySIyAki8ryIvCYiL4tIgYg8LSILIuJ4VkSOjVqPAuAYVX2tp3XW7p8SgMbuaT96e632r4/2Ma706xfryul/cTc4R84nJO7ZcyUR7zeKSInvkegFEVklIt8XkcaI7faXiHn8wneddfA78Nv8NnHP5lsl7ll9FwKLgLt8rCOAZ4B3y6GuzoxJOkt6JggjIor8HvLDZgK/UtWjgVn+/WJcTycLReQ0EVmI66ZsAa7HmRN6sawrcN1OneCn/xfflRO4p1F8AffcxOnAKeK6nvsjcLWqHovrl/IArpu3JQAiUgHkdpPcFuGSdqSTffL8q4gc3Yt4I0X2tB/Lp4Gfq+oCv/xtMaa7FzheRGaEB6hqF3AncJkf9G7gNVWtxfV9eqOqzsf1HNIXC4ByVZ3nP/87Vb0f12PNZf6q94Bf/kbc8weNGRSW9EwQIos3P+CHbVH3rDOA9/i/V4EVwGxcEnw78JCqNqt7ikRv+kR9D67fxZW4xy2N9fMCeFlVt/mD70pgKi7hVqvqKwCqWu+vvO4DzhXXsfcnccWT0cbjHjEUtgKY4pPnDbjuyXpFet/T/gvA10Xkq35ZB2JM1wn8D0cWl94KXO5ffxL4nX99Cq6rLHDdkvXFJmC6iNwgrj/J+jjT7uLwIk9jksqSnkkVTRGvBfhhRGKcoaq/7eHzHRzan3Oj5vW5iHlNU9VH/bjWiOk6cY8I6pa6DoAfwz2C5yK6T0YHIpftE2ajf70UyBKR4h7WI1ZP+7Hi+gNwvl/2UhF5Z5zJf4972O3BHvtVdSvu6QTvxF1ZR15ZdrfsyO0Mh2/r8Dz34a7ensRdid4SJ6ZcH7sxg8KSnklFfwc+Ke75gIhIuYiMA54G3i8iI3z92XkRn9kMLPSvL4ya12f8FRoiUiHuAa+xbADGi8gJfvqCiDqnW3CNVF7xB/Zo64CDxYciUhZRT7gY93vbE2/FJXZP+7Gmnw5sUtXrcU8VOCbWtOoeG/RT4ItRo27BFXPep6qdfthzuKJkOFT8CbAFmCuux/8i3BMZomMqBkKq+gDwDdxjlgAagIKoySs4skjYmKSxpGdSjr8S+wPwgoiswj2frkBVV+Dq217DXZG8EvGxH+OS26tA5NXULbjH5KzwjT9+TfwrujbgYuAGEXkNd3WX68ctxxXV/S7GZ9cDhT4hg0u+q/18rgcuCV+5icjduKLJWSKyTUSu8J/5BS4xPObrPG+Kv7W4yC9jJTAPuKOH6X/Lkev/MJAftV5XA5/12//gU7r9leG9uER1L64IOlo58KSP6U4OFaneBtwUbsgiIqW4ou6dPcRsTMLYUxZM2hKR64BGVf3xIC1vAq7IbravB+xumi8CDaoar0gvpfhWrz9V1bfHmaZRVfMTvNwvAvW9KLo2JmHsSs+YXhCRy3ENYa6NlfC8Gzm8rjClicjXgAfo5n7AQbAfuD2A5ZphzK70jDHGDBt2pWeMMWbYsKRnjDFm2LCkZ4wxZtiwpGeMMWbYsKRnjDFm2Ph/2hPcK/6KS8EAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"f, H_im = sig.freqz(h)\n",
|
|
"posfreq = np.square(H[0:512//N])\n",
|
|
"negfreq = np.flipud(np.square(H[0:512//N]))\n",
|
|
"plt.plot((np.abs(posfreq) + np.abs(negfreq)))\n",
|
|
"plt.xlabel('Frequency (512 is Nyquist)')\n",
|
|
"plt.ylabel('Magnitude')\n",
|
|
"plt.title('Unity Condition, Sum of Squared Magnitude of 2 Neighboring Subbands')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 79,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(63,)"
|
|
]
|
|
},
|
|
"execution_count": 79,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"b.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 102,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEWCAYAAACqitpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy9h23ruAAAgAElEQVR4nO3deXycZbn4/8+VTPakSZomXdOk0JRSCrSQtqAIiKBFloIilIMCfjlf9Kscj4eDCi6oHDgH1N9BPeKCiIKsPSxSZKkgsimUpjultE3bpEmXrE2bpVkmc/3+eJ4p0yF7ZuaZSa/36zWvzNzPdt/JZK65l+e+RVUxxhhjIinJ6wwYY4wZeyy4GGOMiTgLLsYYYyLOgosxxpiIs+BijDEm4iy4GGOMiTgLLiZuiMirIvLPA2z/tYh8L5Z5ShQiMl1E2kQkeYTHV4nIuZHOVzwRkU0icrbX+ThaWHAxfXI/bA65H1j7ROQPIpIdw+tfKyJvhqap6pdV9T+icK1SEVG3rG1u2W8O2S4i8g0R2eb+TnaJyH+KSGrIPn9wz7Ek7Nx3u+nXhpSrN+RabSLyiz7ydKWIbA5Le6mftJtVdZeqZqtqb4R+LRElIj8QkZ6wcn8zitf7g4jcHpqmqieo6qvRuqY5kgUXM5CLVDUbmAfMB27xOD/RlueW90rgVhFZ7Kb/HLgeuBrIAc4HzgUeCzt+q7sPACLiAy4Htoft95YbCIKPG/rIy+vAbBEpDDnXyUBGWNrp7r6J4PGwcv/I6wyZ6LHgYgalqvuAFThBBgAROU1E/iEiLSKyPrS5wf12vkNEWkVkp4hc5ab/QEQeCtkvWGPwhV5PRI4Hfg2c7n7DbXHTD38bFZGzRaRWRP5dROpFZK+IfDHkHAUi8qyIHBSRVSJye3hNaIDyvgVsAuaKSBnwFeAqVX1LVf2qugn4LHCBiJwVcuizwBkiku++XgxsAPYN5bphedgN7ADOdJNOcfP0WlhaErAq/HfpNjH+h4j83f07/EVEJoT8fr4gItUi0iQi3wm9toikichPRWSP+/ipiKS5214Tkc+6zz/qXvMC9/UnRGTdcMo52HtiCOU4I+R9WOO+964HrgK+6b5/nnX3Pdz0N0gZB3xvmaGx4GIGJSLTcL6tV7qvpwLPAbcD44GbgCdFpFBEsnC+6Z+vqjnAR4BhfeCo6mbgy3zwDT+vn10nAbnAVOA64J6QD/Z7gHZ3n2vcx1DKKiLyUeAEYC3wCaBWVd8Jy2MN8DbwyZDkTuAZYKn7+mrgwaFctx+v80EgORN4A3gzLO1tVe3p5/h/Ar4IFAGpOH8nRGQO8CvgC8AUoACYFnLcd4DTcL5MnAwsBL7rbnsNONt9fhZHBsCz3O2R1l85SoAXgP8BCt38rlPVe4GHgR+575+L+jjnQGWEgd9bZggsuJiB/ElEWoEaoB74vpv+eeB5VX1eVQOq+hJQAXza3R7A+dafoap73W/60dAD3KaqPar6PNAGHCdOp/Znge+raoeqvgc8MITzNQLNwH3Azar6V2ACsLef/ffifKiFehC4WkTycD5s/9THcae537SDj9P6OX9oLeVjOMHljbC0gT7Mf6+qW1X1ELCMD2qelwF/VtXXVbUL+B7O3yzoKpzfa72qNgA/xAlEwTwFa2tnAv8V8nqw4HJ5WLmnDLDvUMrxT8DLqvqo+x5oUtWhfpEZqIzQz3triOc2WHAxA7vErX2cDczG+aAFKAE+F/pBAZwBTFbVduAKnJrHXhF5TkRmRyl/TarqD3ndAWTjfOD7cIJiUOjz/kxQ1XxVPV5Vf+6mNQKT+9l/srv9MFV9073+d3A+wA/1cdzbqpoX8ni7n/O/DpzkfmM+Dacm9z4w2U07g4H7W0Kb44K/G3BqK4d/H+7frClk3ylAdcjrajcN4C1glohMxPmQfxAodpuqFg6Sn2Vh5d4zwL5DKUcxH+7PGqqBygj9v7fMEFlwMYNS1deAPwA/cZNqgD+GfVBkqeqd7v4rVPU8nA/f94Hfuse1A5khp5400GVHkeUGwM+RTT3FIzzXKzgfngtDE0WkGOcD/9U+jnkI+HdG1ySGqu4A9uAMJtilqm3uprfctGycprnh2kvI70NEMnGaxoL24HyBCJrupqGqHcBq4F+Bd1W1G/gHcCOwXVWPCLZDMJz3RLga4Nh+tg32/um3jCYyLLiYofopcJ6InIzz4XmRiHxKRJJFJN3tBJ0mIhNFZInb99KF05wQbHJZB5wpzj0ZuQw8+qwOmCYhw32Hyh2O+xTwAxHJdGtOVw9yWH/n2oozuOBhcQYxJIvICcCTOB+qL/dx2M+B84jMKK43cD643whJe9NNq+inZjSYJ4AL3c7wVOA2jvwseBT4rtuHNgG4FedvHvQacAMfNIG9GvZ6OIbzngj3MHCuiFwuIj5xBnEEm8zqgGMGOHawMppRsuBihsRtl34QuNXtzF4CfBunllADfAPn/ZSE88G3B6f/4izg/7nneAl4HGcE1WrgzwNc8hWc0VH7RGS434bB+bDLxWlS+SPOh0nXCM4TPNd9OB8+HcC7OM0ol6hqIHxnVW1W1b9qZBZLeg2nIzt0pNsbbtqIgpfbB/ZV4BGcWsx+oDZkl9tx+tA2ABuBNW5aaJ5yQq4f/no4eRnOeyL82F04/Xz/jvNeW4fTOQ/wO2CO22zbV7/XYGU0oyS2WJg5GojIXcAkVR3SqLFBzvVD4FLgTFVtGXXmjBmDrOZixiQRmS0iJ7lDixfiDCd9OhLnVtXvA/fi9LkYY/pgNRczJonIApymsCk47e/3AndGqKnKGDMICy7GGGMizprFjDHGRJxv8F3GvgkTJmhpaanX2TDGmISyevXqRlUNn6UCsOACQGlpKRUVFV5nwxhjEoqIVPe3zZrFjDHGRJwFF2OMMRFnwcUYY0zEWXAxxhgTcRZcjDHGRJynwUVEFovIFhGpFJGb+9h+poisERG/iFwWtq1XRNa5j+Uh6TNEZKV7zsdHMquuMcaY0fEsuLirBd6Ds3zuHOBKd/nVULuAa3Fmbw13SFXnuY+LQ9LvAu5W1Zk4s71eF/HMG2OMGZCXNZeFQKWq7nAXHHoMZxr3w1S1SlU3cOQSrP0SEQHOwVmvApylbS+JXJaNiZ2Obj/LKmro7On1OivGDJuXwWUqRy49W+umDVW6iFSIyNsiEgwgBUBLyPKk/Z5TRK53j69oaGgYbt6Nibpbn9nEN5/YwJ0vvO91VowZtkTu0C9R1XLgn4Cfikh/y532SVXvVdVyVS0vLOxz9gJjPPPiu3t5YnUt08dn8od/VPHGNvsCZBKLl8FlN0euaz7NTRsSVd3t/tyBs8zqfKAJyBOR4LQ2wzqnMfGgvrWTW57ayIlTc3nua2cwsyibm/53PS0d3V5nzZgh8zK4rALK3NFdqcBSYPkgxwAgIvkikuY+nwB8FHjPXavjb0BwZNk1wDMRz7kxUaKqfPOJDXR093L3FSeTk57CT6+YR1NbN9/907vYEhkmUXgWXNx+kRuAFcBmYJmqbhKR20TkYnAWfBKRWuBzwG9EZJN7+PFAhYisxwkmd6rqe+62bwE3ikglTh/M72JXKmNG5+GVu3h1SwPf/vTxzCzKAWDu1Fz+7bxZ/HnDXpav3+NxDo0ZGlssDCgvL1ebFdl4bUdDGxf8/E3KS/N54IsLSUqSw9v8vQGuuPdttta18uLXz2RqXoaHOTXGISKr3b7vD0nkDn1jxgx/b4B/W7aeVF8SP77s5CMCC4AvOYn/vvxkAgHlpmXrCQTsS6GJbxZcjIkDK3c2s76mhe9dOIdJuel97lNSkMU3F8/mrR1NbNx9IMY5NGZ4LLgYEwdW7mgiSeBTJ0wccL/z505y9t/ZFItsGTNiFlyMiQNv72zmhCm55KSnDLhf0bh0ZkzIYuWO5hjlzJiRseBijMc6e3pZV9PCohnjh7T/ohnjeaeqmV7rdzFxzIKLMR5bV9NCtz/AomMKhrT/omPG09rpZ/Peg1HOmTEjZ8HFGI+t3NGMCCwsHWrNxQlCK3da05iJXxZcjPHYyp1NzJ40jtzMgftbgqbkZVA8PoOVO6xT38QvCy7GeKjbH2DNrv1D7m8JWjSjgHeqmu1+FxO3LLgY46ENtS109gQ47ZjhBpfxtHT0sLW+NUo5M2Z0LLgY46Fgv8nCGUPrzA86ze38f8f6XUycsuBijIdW7mxm1sRsxmelDuu4afkZTMlNt/tdTNyy4GKMR/y9AVZXNR8e/TUcIsKiYwpYubPJpuE3ccmCizEeeXfPQdq7e1k0zP6WoEUzxtPY1s32hvYI58yY0bPgYoxHgkOJFw5zpFhQ8KZLm2fMxCMLLsZ4ZOXOZo4pzKIop+9ZkAdTWpBJUU6a9buYuGTBxRgP9AaUVTubh31/SygRYeGM8dbvYuKSBRdjPLB570Fau/wj6swPteiYAuoOdlHd1BGhnBkTGRZcjPFA8P6WkXbmB53m1nzsfhcTbyy4GOOBlTuamD4+k8m5GaM6z8yibAqyUnnbOvVNnPE0uIjIYhHZIiKVInJzH9vPFJE1IuIXkctC0ueJyFsisklENojIFSHb/iAiO0VknfuYF6vyGDMUgYDyTtXo+luCDve7WKe+iTOeBRcRSQbuAc4H5gBXisicsN12AdcCj4SldwBXq+oJwGLgpyKSF7L9G6o6z32si0oBjBmh6uYOWjp6KC/Nj8j5ykvHs7vlEA2tXRE5nzGR4GXNZSFQqao7VLUbeAxYErqDqlap6gYgEJa+VVW3uc/3APVAYWyybczobKtzJps8btK4iJzvuIk5znltEksTR7wMLlOBmpDXtW7asIjIQiAV2B6SfIfbXHa3iKT1c9z1IlIhIhUNDQ3DvawxI7atvg1w+ksiYdZE5zzb6toicj5jIiGhO/RFZDLwR+CLqhqs3dwCzAYWAOOBb/V1rKreq6rlqlpeWGiVHhM72+pamZqXQXaaLyLnK8xJY1y6z2ouJq54GVx2A8Uhr6e5aUMiIuOA54DvqOrbwXRV3auOLuD3OM1vxsSNbfVtEau1gNOpXzYxx2ouJq54GVxWAWUiMkNEUoGlwPKhHOju/zTwoKo+EbZtsvtTgEuAdyOaa2NGoTegVNa3HW7KipRZE7MPN7cZEw88Cy6q6gduAFYAm4FlqrpJRG4TkYsBRGSBiNQCnwN+IyKb3MMvB84Eru1jyPHDIrIR2AhMAG6PYbGMGVDt/g66/AHKinIiet6ZRTk0t3fT1GYjxkx8iEyj7wip6vPA82Fpt4Y8X4XTXBZ+3EPAQ/2c85wIZ9OYiAk2Xc2McM2lzG1m21rXxunZfY5hMSamErpD35hEE1zzviyCfS4As9zhyJXWqW/ihAUXY2Kosq6Nybnp5KSnRPS8E8elkZPms34XEzcsuBgTQ5EeKRYkIsycmM3WOqu5mPhgwcWYGAkcHikW2c78oFlFOVRazcXECQsuxsTI7pZDHOrpjXh/S1DZxGwa27ppbu+OyvmNGQ4LLsbESPAO+rIIjxQLCja3bbOmMRMHLLgYEyNbg8OQI3yPS9CswxNYWtOY8Z4FF2NiZFtdGxPHpZGbEdmRYkGTc9PJTvNZzcXEBQsuxsTItvrWqHXmgztirMimgTHxwYKLMTEQHCkWjWHIocosuJg4YcHFmBjYc+AQHd29EZ9TLFzZxGwaWrto6bARY8ZbFlyMiYHgnGKRng05XJl16ps4YcHFmBgIDkOORbMYYHfqG89ZcDEmBrbVtVGYk0ZeZmpUrzMlN4PM1GRbOMx4zoKLMTGwNQoLhPUlKUkoK8q2aWCM5yy4GBNlqkplXWvUO/ODZhblWLOY8ZwFF2OibO+BTtq7e6Pe3xJUNjGb+tYuDnT0xOR6xvTFgosxURasRUTzBspQwea3bbZwmPGQBRdjoizY/xGt2ZDDBZvfbDiy8ZIFF2OibFtdGxOyU8nPiu5IsaCpeRlkpNiIMeMtT4OLiCwWkS0iUikiN/ex/UwRWSMifhG5LGzbNSKyzX1cE5J+qohsdM/5cxGRWJTFmP5srY9dZz44I8acOcasWcx4x7PgIiLJwD3A+cAc4EoRmRO22y7gWuCRsGPHA98HFgELge+LSL67+VfA/wXK3MfiKBXBmEE5I8XaoraGS3/KimzJY+MtL2suC4FKVd2hqt3AY8CS0B1UtUpVNwCBsGM/Bbykqs2quh94CVgsIpOBcar6tqoq8CBwSdRLYkw/Gtu6ae3yc8yErJhe99iibOoOdtHR7Y/pdY0J8jK4TAVqQl7XummjOXaq+3zQc4rI9SJSISIVDQ0NQ860McNR3dQOQGmMg0tJQaZ7/Y6YXteYoKO2Q19V71XVclUtLyws9Do7Zoza2egGl4LYBpfg9arc6xsTa14Gl91AccjraW7aaI7d7T4fyTmNibjqpg6Sk4Sp+Rkxve50t+ZSZTUX4xEvg8sqoExEZohIKrAUWD7EY1cAnxSRfLcj/5PAClXdCxwUkdPcUWJXA89EI/PGDEVVUzvT8jNISY7tv9q49BQKslIPN8sZE2ueBRdV9QM34ASKzcAyVd0kIreJyMUAIrJARGqBzwG/EZFN7rHNwH/gBKhVwG1uGsBXgPuASmA78EIMi2XMEaqbOmLeJBZUOiGLKgsuxiM+Ly+uqs8Dz4el3RryfBVHNnOF7nc/cH8f6RXA3Mjm1JjhU1Wqmto5ZXqeJ9cvKcjkre1NnlzbmKO2Q9+YaNvf0UNrp58Sr2ouBVnsPdBJZ0+vJ9c3RzcLLsZEyeGRYhMyPbm+DUc2XrLgYkyUBDvTvay5ANbvYjxhwcWYKKlq6iBJoDjfm5pLMLjYiDHjBQsuxkRJdVM7U/MzSPV582+Wm5lCfmaK3etiPGHBxZgoqfJwGHJQSUGW1VyMJyy4GBMl1U3thzvVvVJakElVo9VcTOxZcDEmClo6umnp6ImLmsueA4dsOLKJOQsuxkRBsJ/Dq5FiQaUTMlGF2v1WezGxZcHFmCg4PNW+x81iJYdnR7bgYmLLgosxUVDV2IEIFI/3NrjMsHtdjEcsuBgTBdVN7UzJzSA9JdnTfORlpjAu3Wd36ZuYs+BiTBTsjIORYgAiYrMjG09YcDEmCqqbOjzvzA8qKbDgYmLPgosxEXbgUA/N7d2ed+YHlRZksnv/Ibr9Aa+zYo4iFlyMibBdcTIMOaikIIuADUc2MWbBxZgICzZBzZgQH8FlxgSbet/EngUXYyIseI/LdI+HIQeV2HBk4wELLsZE2M7GDiaNSycj1dthyEEFWalkp/moarTgYmLH0+AiIotFZIuIVIrIzX1sTxORx93tK0Wk1E2/SkTWhTwCIjLP3faqe87gtqLYlsoc7eJhwspQIkJJQaZNvW9iyrPgIiLJwD3A+cAc4EoRmRO223XAflWdCdwN3AWgqg+r6jxVnQd8AdipqutCjrsquF1V66NeGGNCxMNU++FKbep9E2Ne1lwWApWqukNVu4HHgCVh+ywBHnCfPwF8QkQkbJ8r3WON8Vxbl5/Gti5KJsRPzQWgpCCT2v2H6Om14cgmNrwMLlOBmpDXtW5an/uoqh84ABSE7XMF8GhY2u/dJrHv9RGMjImaYO1gRrzVXCZk4Q8oe1oOeZ0Vc5RI6A59EVkEdKjquyHJV6nqicDH3McX+jn2ehGpEJGKhoaGGOTWHA2q4+wel6DSwyPGrN/FxMaQg4uIRLqevxsoDnk9zU3rcx8R8QG5QFPI9qWE1VpUdbf7sxV4BKf57UNU9V5VLVfV8sLCwlEUw5gP7HRHZMVThz58MPW/jRgzsTJocBGRj4jIe8D77uuTReSXEbj2KqBMRGaISCpOoFgets9y4Br3+WXAK6qqbj6SgMsJ6W8REZ+ITHCfpwAXAu9iTIxUN7VTmJNGVprP66wcoTAnjYyUZLvXxcTMUP4D7gY+hfvBr6rrReTM0V5YVf0icgOwAkgG7lfVTSJyG1ChqsuB3wF/FJFKoBknAAWdCdSo6o6QtDRghRtYkoGXgd+ONq/GDJUzUiy+ai3wwXBku0vfxMqQvl6pak1Yv3hEFuRW1eeB58PSbg153gl8rp9jXwVOC0trB06NRN6MGYnqpnY+VhafzaylBVlsrWv1OhvmKDGUPpcaEfkIoCKSIiI3AZujnC9jEk5Ht5+6g11xM6dYuNIJWdTs76A3oF5nxRwFhhJcvgx8FWdY8G5gnvvaGBPig5Fi8dcsBk6nfk+vDUc2sTFos5iqNgJXxSAvxiS04D0u8XZ3flDoBJbFcTKpphm7Bg0uIvJ74EP1aFX9P1HJkTEJKngPyfR4rbm4swZUNXXwsTKPM2PGvKF06P855Hk6cCmwJzrZMSZxVTe1U5CVyrj0FK+z0qeJOemk+ZKotntdTAwMpVnsydDXIvIo8GbUcmRMgqpq7Ijb/haApCSbHdnEzkimfykDbBp7Y8JUN7VTGqcjxYJsdmQTK0Ppc2nF6XMR9+c+4FtRzpcxCaWzp5c9BzrjtjM/qHRCFq9ubSAQUJKSbE5XEz1DaRbLiUVGjElku5rjexhyUElBJt3+AHsPdjI1L8Pr7JgxrN/gIiKnDHSgqq6JfHaMSUzBCSHjvubi5q+6sd2Ci4mqgWou/98A2xQ4J8J5MSZhBW+gjPfgEqxZVTV18JGZHmfGjGn9BhdV/XgsM2JMIqtqaicvM4XczPgchhw0OTeD1OQk69Q3UTekiStFZC7OOvfpwTRVfTBamTIm0VQ3dcR9rQUgOUmYXpBpU++bqBvKaLHvA2fjBJfngfNx7nOx4GKMa2djOwtK873OxpCU2tT7JgaGcp/LZcAngH2q+kXgZJwVIY0xQJe/lz0HDsXd0sb9KSnIoqqpHXfdPWOiYijBpVNVA4BfRMYB9Ry5PLExR7Wa5kOofjB3V7wrLciksydA3cEur7NixrB+g4uI3CMiZwDviEgezoqOq4E1wFsxyp8xcS/YOZ5INRfA+l1MVA3U57IV+DEwBWgHHgXOA8ap6oYY5M2YhFCVIMOQgw7f69LUzmnHFHicGzNW9VtzUdWfqerpOGvVNwH3Ay8Cl4qITdhtjKuqsZ1x6T7y43wYctCUvHRSksUmsDRRNWifi6pWq+pdqjofuBK4BHg/6jkzJkFUuRNWiiTGXF2+5CSK8zPtXhcTVYMGFxHxichFIvIw8AKwBfhMJC4uIotFZIuIVIrIzX1sTxORx93tK0Wk1E0vFZFDIrLOffw65JhTRWSje8zPJVH+403Cqm7qSJj+lqCSgkyqGq3mYqJnoA7980TkfqAW+L/Ac8CxqrpUVZ8Z7YVFJBm4B+e+mTnAlSIyJ2y364D9qjoTuBu4K2TbdlWd5z6+HJL+Kze/Ze5j8Wjzakx/uv0Bavd3UBrnE1aGK3Gn3rfhyCZaBqq53AL8AzheVS9W1UdUNZL16IVAparuUNVu4DFgSdg+S4AH3OdPAJ8YqCYiIpNxBhy8rc5/zYM4zXjGRMXulkMENHFGigWVFmTS3t1LQ5sNRzbRMVCH/jmqep+q7o/StacCNSGva920PvdRVT9wAAgOb5khImtF5DUR+VjI/rWDnBMAEbleRCpEpKKhoWF0JTFHreBw3oSruUwIjhizpjETHSNZiTIe7AWmu4MMbgQecW/wHDJVvVdVy1W1vLCwMCqZNGPf4an243wFynAzgve6NFqnvokOL4PLbo6803+am9bnPiLiw5l2pklVu1S1CUBVVwPbgVnu/tMGOacxEVPd1EF2mo+CrFSvszIsU/MzSE4Sq7mYqPEyuKwCykRkhoikAkuB5WH7LAeucZ9fBryiqioihe6AAETkGJyO+x2quhc4KCKnuX0zVwOjHnxgTH+qmtopKchMmGHIQSnJSUzLz7C79E3UDGnK/WhQVb+I3ACsAJKB+1V1k4jcBlSo6nLgd8AfRaQSaMYJQODc2HmbiPQAAeDLqtrsbvsK8AcgA2fo9AuxKpM5+lQ3dTBn8rBaZOOGM2LMai4mOjwLLgCq+jzONP6habeGPO8EPtfHcU8CT/ZzzgpgbmRzasyH+XsD1DR3cP7cSV5nZURKCzJZu2s/qppwNS8T/xK1Q98Yz+1p6cQf0ISZUyxcSUEWrZ1+mtu7vc6KGYMsuBgzQjsPz4acWMOQg4LDp22OMRMNFlyMGaHg3FwzEmwYclDphA9mRzYm0iy4GDNCVY0dZKQkU5iT5nVWRmRafgZJYjUXEx0WXIwZoeoEHYYclOZLZkpehtVcTFRYcDFmhHY2tidsZ37QjAlZ7LS79E0UWHAxZgS6/L1UN3cwsyjb66yMyrGF2VTWt9nsyCbiLLgYMwJVjR30BpSyiYkdXGYWZdPR3cueA51eZ8WMMRZcjBmByvo2wPnmn8iCNa9geYyJFAsuxozAtvpWRBI/uJS5wWVbXavHOTFjjQUXY0agsr6NafkZZKQme52VUSnITiM/M4XtDVZzMZFlwcWYEaisb6OsKMfrbEREWVEO2+osuJjIsuBizDD5ewPsaGxP+JFiQccWZbPNRoyZCLPgYsww1ew/RLc/MGaCS1lRNgcO9dDYZhNYmsix4GLMMAVHVpWNleAy0UaMmciz4GLMMG2rd0ZWHTtGgssHw5FtxJiJHAsuxgxTZX0bk8alMy49xeusRMSkcelkp/ms5mIiyoKLMcNUWd82ZvpbAETkcKe+MZFiwcWYYVDVMRdcwOk/spqLiSQLLsYMw54DnXR094654DKzKJv61i4OHOrxOitmjPA0uIjIYhHZIiKVInJzH9vTRORxd/tKESl1088TkdUistH9eU7IMa+651znPopiVyIz1o21kWJBZTbHmIkwz4KLiCQD9wDnA3OAK0VkTthu1wH7VXUmcDdwl5veCFykqicC1wB/DDvuKlWd5z7qo1YIc9QJzsE1FmsuYCPGTOR4WXNZCFSq6g5V7QYeA5aE7bMEeMB9/gTwCRERVV2rqnvc9E1Ahogk5lqzJqFsb2hjfFYqBdlj6+02LT+TNF+STQNjIsbL4DIVqAl5Xeum9bmPqvqBA0BB2D6fBdaoaldI2u/dJrHvST9r0IrI9SJSISIVDQ0NoymHOYpsq2tjZoLPhNyX5CThmMJsKm0CSxMhCd2hLyIn4DSVfSkk+Sq3uexj7nXtQTkAABl0SURBVOMLfR2rqveqarmqlhcWFkY/sybhqSqVDW3MTPAFwvpTVpRtNRcTMV4Gl91AccjraW5an/uIiA/IBZrc19OAp4GrVXV78ABV3e3+bAUewWl+M2bUmtq7aenoGZM1F3D6XXa3HKKj2+91VswY4GVwWQWUicgMEUkFlgLLw/ZZjtNhD3AZ8IqqqojkAc8BN6vq34M7i4hPRCa4z1OAC4F3o1wOc5QIfqtP9KWN+xMcMba9vt3jnJixwLPg4vah3ACsADYDy1R1k4jcJiIXu7v9DigQkUrgRiA4XPkGYCZwa9iQ4zRghYhsANbh1Hx+G7tSmbEs2B8x1kaKBR0eMdZgI8bM6Pm8vLiqPg88H5Z2a8jzTuBzfRx3O3B7P6c9NZJ5NCaosq6V7DQfk8ale52VqCgpyMKXJNbvYiIioTv0jYmlyoY2ji3Kpp8BiAkv1ZdESUGm3UhpIsKCizFDtK2ubczdmR+urCjHgouJCAsuxgzBgUM91Ld2jdn+lqCZRdlUN3fQ5e/1OismwVlwMWYIxuqcYuHKJmbTG1CqGju8zopJcBZcjBmC7fVje6RY0LGFNoGliQwLLsYMwbb6VtJ8SUzLz/Q6K1F1bGE2Ih8s5WzMSFlwMWYItta1cUxhNslJY3OkWFBGajLF+Zk2HNmMmgUXYwahqmyobeHEqeO8zkpMzJ06jvW1LV5nwyQ4Cy7GDKK6qYP9HT3Mn57vdVZiYn5xPrX7D9HQ2jX4zsb0w4KLMYNYV+N8i59XnOdxTmJj3nSnnMFyGzMSFlyMGcTaXfvJTE1m1sQcr7MSE3On5OJLEtbu2u91VkwCs+BizCDW1bRw0rTcMd+ZH5SRmszsyTlWczGjYsHFmAF09vTy3t6DR01/S9D84nzW17TQG1Cvs2ISlAUXYwawac9BenqV+UdJf0vQ/Ol5tHf32s2UZsQsuBgzgGC/Q7CT+2gRHLxg/S5mpDxdz8WMbYGAs+b86ur9dPX0UpiTTtG4NAqz0ygal0Zmavy//dbVtDA1L4OinLG5hkt/ZkzIIjcjhXU1LSxdON3r7AyqvctPfWsXDa1d1Ld2Un+wi+w0H6eU5HNsYdaYXSYhnsX/f7dJKO/uPsBrWxuoqGpmza4WDhzq6Xff048p4DsXHM/cqbkxzOHwrN3VctTVWgBEhHnFeazdFd+d+mt27eeO5zazurr/GlZ+ZgqnluRTXjqejx9XxHGTjo5Rf16z4GJG7UBHD8+s381j79Tw3t6DgDPB4/lzJx3+px6X7qOhrYv6g863y+rmDh56u5qLfvEmnz1lGjd98jgm5cZX7aC+tZPdLYf44kdLvc6KJ+ZPz+Nnf91GW5ef7LT4+qio3d/Bj17cwvL1eyjMSePG82YxLT+Dwpw0inLSKcxJY39HNxVVzVRU7Wd19X5e3lzPnS+8z8nFeSxdUMyFJ00mJz3F66KMWfH1jjEJQ1V5e0czj6/axQvv7qPLH+CEKeO4bckJXHDiZAqy0z50TEF2GrMnffD6ujNm8Mu/VfL7v1fx3Ia9fOmsY/jyWceSnpIcw5L0b537rX3+UVhzAaffRRU21LTwkZkTvM4O4DR/3fO3Su57cydJAl87ZyZfOutYsvoIfuOzUjm2MJsrFjjNevWtnTy7fi/LVtVwy1Mbue3Z97jgpMksXVDMqSX51nQWYRZczLA0tnXxxOpaHl9Vw87GdnLSfVxeXswVC4qH3byVm5HCLZ8+nqsWlXDXi+/z05e38c7OZu6/dkFcBJi1NS2kJAsnTInfZrtoOtypHyfBpb3Lz+d/t5K1u1r4zPyp3PSp45iSlzHk44ty0rnujBn8n4+Wsq6mhWUVNSxft4cnVtdSVpTN0oXT+cz8qeRnpUaxFEcPUfVuHLuILAZ+BiQD96nqnWHb04AHgVOBJuAKVa1yt90CXAf0Al9T1RVDOWdfysvLtaKiIlLFGnM6uv28sa2RZ9bt5i+b6vAHlAWl+SxdMJ1PnziZjNTIBIKn1tRy47L1fHLORH551Sn4kr0dzHjlvW/T3u1n+Q1neJoPL53zk1c5pjCb+64p9zQfXf5e/vmBCv5e2cgvrzqFxXMnR+S87V1+ntuwl0fe2cW6mhZSk5NYPHcSS+ZN4aMzJ8TFl5x4JiKrVbXPN4dnNRcRSQbuAc4DaoFVIrJcVd8L2e06YL+qzhSRpcBdwBUiMgdYCpwATAFeFpFZ7jGDnTNiVBVVUCBw+Ln7M+R5QBXFSXMODPk9JEGyCEkiiIAvSTz/UAWoO9jJy5vr+Ovmet6sbKTbHyA/M4VrP1LK0oXFzCyKfKfoZ06ZRmunn+8v38S3ntzIjy87iSSP7orvDTgzIV926jRPrh8v5k3P4/WtDaiqZ81GvQHl64+t441tjfz4spMiFlgAstJ8XL6gmMsXFLN570Eee2cXT6/dzfL1e0hPSeJjZYWcd/xEPj67iMKcDzf1xpKq0htQ/AEloEog+NkSCNnJ/ROJOE+DnyuC+9N9niTOoA0J7huFv62XzWILgUpV3QEgIo8BS4DQQLAE+IH7/AngF+L8FpYAj6lqF7BTRCrd8zGEc0bMb17fwZ0vvB/x8yYJpPqSSE1OItWXTEZqElmpPrLTfGSl+chKS2Zcegq5mSnkZvT/yElP6XfKElWlyx+gtdNPU3sXW/a1smVfK1vrWnl/Xyu1+w8BUDw+g88vKuHcOUUsKB1PSpQD3zUfKeXAoR7++6WtjMvwceuFczz5UNtW30p7d+9ROVIs1PziPJ5as5va/YcoHh/7hdJUlW8/tZEX3t3H9y6cw+fKi6N2reMnj+OHS+by7QuOZ+WOZl7eXMfL79Xx0nt1AEwfn8lxk3KYPSmHWROdx/isVHLSfaT5kvp9n/YGlIOHejjgPg52Oj9bOtzXIeltXb20d/mdR7efQ929dPkDdPsDdPcGiEZD0+2XzOXzp5VE/LxeBpepQE3I61pgUX/7qKpfRA4ABW7622HHTnWfD3ZOAETkeuB6gOnTRzaOv7wkn6+fW+Z8O+DIbwDBbwxJId8a3Os6P8GtzXzwLaQ34HwzCb6Ruv0BuvwBDnX7ae923nQtHd3U7vdzsNPPgUM9dPsDfeYtKCVZ3CDlPHxJSXR0+2nt9OMPm9rDlyQcU5jF/On5fP60Es6ZXURZUXbMP9z/5ZyZtHT0cP/fd5KXkcq/nlsW0+sDh4fgzi8+uqZ9CRec9mZtTUvMg4uq8p/Pb+bxihq+9okyrjtjRkyum+ZL5sxZhZw5q5AfXnwC7+09yKtbGnhvz0G21LXyyvv1H5oWJyVZyE7zkZnqwx9wg4H7f9zTO3BESPMlkZuRwriMFLLSfGSnJTM+K5PsNB/pKcmkuf+7wf/j5CRxHsFaifv5c7hhxI1AwdaTgNuSEjicHmxRcbafNC06fYpHbYe+qt4L3AtOn8tIzlFeOp7y0vERzddwdfb0Hv4GFPotKPhN6PC3HvfhDyhZaclkp/nITveRk+YjNzOVsqJsji3MJtXnfZOciPDdC47nYGcPd7+8lWn5GXw2xs1T63a1kJ+ZQknB2F7WeDDHTcohzZfEul0tXHzylJhe+6G3q/ntGzu59iOl/JsHXzDAeS+eMCX3iEEdnT29bG9oo7K+jYOHejjY6aety09bp1PbSEn64Mtcmi+JNF8y4zJ8TgDpo8VhrPbreBlcdgOhddxpblpf+9SKiA/IxenYH+jYwc45pqSnJDMpNznu7hEZraQk4c7PnMiu5g5+sHwTpx9bMKyRQaO1tmY/84rzjvrhqSnJSZw0LZe1NbGdBmZHQxt3PL+Zs48r9KxptD/pKckfCjjmw7z8mroKKBORGSKSitNBvzxsn+XANe7zy4BX1KnzLQeWikiaiMwAyoB3hnhOkyB8yUn85LKT6VXlW09uIFYjG1s7e9hW38a8o7xJLGhecR6b9hyky98bk+v1BpSb/nc9ab5k7vqsd4M6zOh4FlxU1Q/cAKwANgPLVHWTiNwmIhe7u/0OKHA77G8EbnaP3QQsw+mofxH4qqr29nfOWJbLRNb0gky+/enjeWNbIw+v3BWTa26oPYDq0XvzZLj50/Pp9gfYvLc1Jtf77Rs7WLOrhduWnMDEcWOrRn408bTPRVWfB54PS7s15Hkn8Ll+jr0DuGMo5zSJ7apF01mxaR//+fxmziwrZHqU+0GCi2SdfJRNs9+f4M2U63btj/pSz1vrWvnvv2xl8QmTYt7HYyLL+95bYwYhItz12ZNIFuGmJ9YTiPICVq9vbWDWxGxyM2zeKYDJuelMzcvg9W2NUb1OT2+AG5etIyfdx+2Xzo2rfhYzfBZcTEKYkpfBrRfN4Z2dzfz+H1VRu87ulkOs3NnMRSfZt+YgEeHCkybz+tYGmtq6onadX/5tO+/uPsgdl85lQh9z05nEYsHFJIzLTp3GJ2YX8aMX32d7Q3RWSHxmnTO48JL5UwfZ8+hyyfyp+APKcxv3RuX8m/Yc4H9e2caSeVMiege+8Y4FF5MwRIT/+syJpPmS+M7TGyM+ekxVeXrNbhaU5ntyN3o8O37yOGZPyuGpNZEf2d8bUG55aiN5man88OITIn5+4w0LLiahFI1L5+bzj+ftHc08sbo2oufetOcg2+rbrNbSj0vnT2VdTQs7G9sjet4H36piQ+0Bbr1oDnmZNiPxWGHBxSScpQuKKS/J547nN0e0D+DptbtJTU7ighOtWaYvF8+bggj8aW3kai97Wg7xkxVbOGtWIRedZL/3scSCi0k4SUlO81h7l587ntsckXP6ewMsX7+Hj88utG/P/Zicm8FHji3gT+t2R6xJ8gfLN9Gryu2X2OiwscaCi0lIZRNz+NKZx/LU2t28GYEhsv/Y3kRDaxeXWpPYgC6ZN5Xqpg7WuBN7jsaKTfv4y3t1fP3cWdbHNQZZcDEJ64ZzZlJakMl3/7SRzp7RTU3y9NrdjEv38fHZRRHK3di0eO4k0nxJo24aa+vy8/1nNjF7Uk7MZjs2sWXBxSSs9JRk7rj0RKqaOvjFK5UjPk97l58X393HBSdNIc03NmeojZSc9BQ+ecIknt2wZ9DlHgbykxVbqGvt5L8+c2LU1wgy3rC/qkloH505gc/Mn8qvX9vOxtoDIzrHX97bx6GeXmsSG6JL50+hpaOH17Y2jOj4VVXNPPBWFV84reTwejFm7LHgYhLedy+cQ1FOGl9+aDXN7d3DPv7ptXuYmpdBeYl90A3Fx8oKKchKHVHTWN3BTr7y8BpKxmfyjU8dF4XcmXhhwcUkvPFZqfzq86fS0NbFvzy6Bn/v0Jtr6ls7eXNbA5fOn2pTuw9RSnISF508hZc213Gws2fIx3X7A/y/h1bT3uXn3qvLyUm3udvGMgsuZkw4uTiP25fM5e+VTfx4xZYhH/fQW9UEFC6Zb3OJDccl86fS7Q/w6DCWQfjhs5tYs6uFH192MrMm5kQxdyYeWHAxY8blC4r5/GnT+c3rO/jzhj2D7v/Ht6r4+SuVXHDSZGYW2YfdcJw8LZezjyvkzhff58khzJTw+KpdPLxyF18+61gusJsljwoWXMyYcuuFJ3BqST7ffGIDW/b1v7jVIyt38b1nNnHu8UXcffm8GOZwbBARfv35Uzn9mAJuemL9gP0v62pa+N6fNvGxsgnWz3IUseBixpRUXxK/vOoUstJ8/PODq1i+fs+H7oF5fNUuvv30Rs6ZXcQ9V51Cqs/+DUYiPSWZ312zgEUzxnPjsnUsX39kbfFQdy9Pranly39cTdG4NH6+dD7J1q911JBYrUsez8rLy7WiosLrbJgIWrNrP//yyFp2txxiXLqPS+ZP5fLyYjbvPcg3n9zAmWWF/OYLp5KeYve1jFZHt59r71/F6l37+dnSeUzNy2BZRS3Prt9DW5ef0oJMfnnVqcyZMs7rrJoIE5HVqlre5zYLLhZcxqpAQPnH9iaWVdTw4qZ9h2/6+1jZBH57dbkFlghq7/Jzzf3vUFG9H4D0lCQ+feJkLi8vZtGM8TZv2BgVd8FFRMYDjwOlQBVwuaru72O/a4Dvui9vV9UHRCQT+F/gWKAXeFZVb3b3vxb4MRBsAP6Fqt43WH4suIx9Bzp6WL5+N1VNHXzjU8dZYImCti4/P1mxheMm5XDhSZNtqPFRIB6Dy4+AZlW9U0RuBvJV9Vth+4wHKoByQIHVwKlAF7BIVf8mIqnAX4H/VNUX3OBSrqo3DCc/FlyMMWb4BgouXvVkLgEecJ8/AFzSxz6fAl5S1Wa3VvMSsFhVO1T1bwCq2g2sAabFIM/GGGOGyKvgMlFVg4tx7wMm9rHPVKAm5HWtm3aYiOQBF+HUXoI+KyIbROQJESmOYJ6NMcYMkS9aJxaRl4FJfWz6TugLVVURGXbbnIj4gEeBn6vqDjf5WeBRVe0SkS/h1IrO6ef464HrAaZPnz7cyxtjjBlA1IKLqp7b3zYRqRORyaq6V0QmA/V97LYbODvk9TTg1ZDX9wLbVPWnIddsCtl+H/CjAfJ3r3sOysvLbcicMcZEkFfNYsuBa9zn1wDP9LHPCuCTIpIvIvnAJ900ROR2IBf4eugBbqAKuhiIzBq4xhhjhsWr4HIncJ6IbAPOdV8jIuUich+AqjYD/wGsch+3qWqziEzDaVqbA6wRkXUi8s/ueb8mIptEZD3wNeDaWBbKGGOMw26ixIYiG2PMSMTjUGRjjDFjmNVcABFpAKpHePgEoDGC2fGClSF+jIVyWBniQyzKUKKqhX1tsOAySiJS0V+1MFFYGeLHWCiHlSE+eF0GaxYzxhgTcRZcjDHGRJwFl9G71+sMRICVIX6MhXJYGeKDp2WwPhdjjDERZzUXY4wxEWfBxRhjTMRZcBkFEVksIltEpNJd9Czuicj9IlIvIu+GpI0XkZdEZJv7M9/LPA5GRIpF5G8i8p473c+/uukJUw4RSReRd0RkvVuGH7rpM0RkpfueetxdEC+uiUiyiKwVkT+7rxOqDCJSJSIb3amkKty0hHkvgbP8iLvMyPsisllETve6DBZcRkhEkoF7gPNx5jm7UkTmeJurIfkDsDgs7Wbgr6pahrM2TrwHSj/w76o6BzgN+Kr7u0+kcnQB56jqycA8YLGInAbcBdytqjOB/cB1HuZxqP6VIyeJTcQyfFxV54XcF5JI7yWAnwEvqups4GScv4e3ZVBVe4zgAZwOrAh5fQtwi9f5GmLeS4F3Q15vASa7zycDW7zO4zDL8wxwXqKWA8jEWVF1Ec4d1T43/Yj3WDw+cJbC+CvOukl/BiQBy1AFTAhLS5j3Es4M8TtxB2jFSxms5jJyg66UmUCGsjJoXBKRUmA+sJIEK4fbnLQOZz2jl4DtQIuq+t1dEuE99VPgm0DAfV1A4pVBgb+IyGp3EUFIrPfSDKAB+L3bPHmfiGThcRksuJgjqPM1JyHGp4tINvAk8HVVPRi6LRHKoaq9qjoP59v/QmC2x1kaFhG5EKhX1dVe52WUzlDVU3CauL8qImeGbkyA95IPOAX4larOB9oJawLzogwWXEZuN1Ac8nqam5aI6oILrQ2wMmhcEZEUnMDysKo+5SYnXDkAVLUF+BtOE1Keu4Q3xP976qPAxSJSBTyG0zT2MxKrDKjqbvdnPfA0TqBPpPdSLVCrqivd10/gBBtPy2DBZeRWAWXuyJhUYCnOCpuJaCgrg8YNERHgd8BmVf3vkE0JUw4RKRSRPPd5Bk6f0WacIHOZu1tcl0FVb1HVaapaivP+f0VVryKByiAiWSKSE3yOs+LtuyTQe0lV9wE1InKcm/QJ4D08LoPdoT8KIvJpnDbnZOB+Vb3D4ywNSkQeBc7GmY67Dvg+8CdgGTAdZ+mBy9VZCTQuicgZwBvARj5o6/82Tr9LQpRDRE4CHsB57yQBy1T1NhE5BqcWMB5YC3xeVbu8y+nQiMjZwE2qemEilcHN69PuSx/wiKreISIFJMh7CUBE5gH3AanADuCLuO8rPCqDBRdjjDERZ81ixhhjIs6CizHGmIiz4GKMMSbiLLgYY4yJOAsuxhhjIs6CizFRIiLfcWc83uDOuLsoitd6VUTKB9/TmNjwDb6LMWa4ROR04ELgFFXtEpEJOPcgGHNUsJqLMdExGWgM3jyoqo2qukdEbhWRVSLyrojc6842EKx53C0iFe56HAtE5Cl3LY7b3X1K3fU6Hnb3eUJEMsMvLCKfFJG3RGSNiPyvOwebMTFlwcWY6PgLUCwiW0XklyJylpv+C1VdoKpzgQyc2k1QtzrrifwaZ6qOrwJzgWvdO8YBjgN+qarHAweBr4Re1K0hfRc4152MsQK4MTpFNKZ/FlyMiQJVbQNOBa7HmQ79cRG5Fvi4u0rjRpyJHk8IOSw4N91GYJOq7nVrPjv4YJLUGlX9u/v8IeCMsEufhrN43d/d6fyvAUoiWjhjhsD6XIyJElXtBV4FXnWDyZeAk4ByVa0RkR8A6SGHBOffCoQ8D74O/q+Gz9cU/lqAl1T1ylEXwJhRsJqLMVEgIseJSFlI0jyclQEBGt1+kMs+fOSgpruDBQD+CXgzbPvbwEdFZKabjywRmTWC6xgzKlZzMSY6soH/cafV9wOVOE1kLThTuu/DWbZhuLbgLGh1P8606r8K3aiqDW7z26MikuYmfxfYOpJCGDNSNiuyMQnCXdL5z+5gAGPimjWLGWOMiTiruRhjjIk4q7kYY4yJOAsuxhhjIs6CizHGmIiz4GKMMSbiLLgYY4yJuP8f4qhAidPtIUcAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"cutoff = 0.15\n",
|
|
"beta = 9\n",
|
|
"ntaps = 63\n",
|
|
"N = 4\n",
|
|
"\n",
|
|
"b = sig.firwin(ntaps, cutoff, window=('kaiser', beta))\n",
|
|
"w, h = sig.freqz(b)\n",
|
|
"\n",
|
|
"plt.plot(b)\n",
|
|
"plt.title('Resulting PQMF Window Function')\n",
|
|
"plt.xlabel('Sample')\n",
|
|
"plt.ylabel('Value')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 103,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAEWCAYAAADl19mgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy9h23ruAAAgAElEQVR4nOydd3hVVdb/PyudhN6r9F4SEBTbCIoDCoqAIkrJ1XF8HXVmnFffmZ8z48So4ziOfazojBQLomLFLiAWUBAIvXcIvbeEJOv3xz7n5ubmtoQkN4n78zznufecs84+617C+d6999priapisVgsFkt1IibaDlgsFovFUtZYcbNYLBZLtcOKm8VisViqHVbcLBaLxVLtsOJmsVgslmqHFTeLxWKxVDusuFlCIiIviMi9ZW0b5HoVkQ5BzjURkbkiclREHhORP4vIy865Ns61caW9dwS+Fbl/ed3HYrGUDeX2MLBUfkRkM9AEyAPygZXAFGCiqhYAqOqtkbbnaysiA4BXVbVlGbl7C7APqK1hFmeKyBzn3i+X0b1LdH+LxRJ9bM/NcqWq1gJaAw8DfwL+E12XAtIaWFkRwiIisSW9f3n2GisjQb4ji6XyoKp2+5luwGZgkN+xc4ACoIezPwl40Of8H4FsYCdwM6BAB19bIAU46bRzzNmaO23PAw45bTwDJPi07W3Lz6dJwGkg12lrEHAfpncG0Ma5Ng74O6YXesqxfcax6QJ8ARwA1gCj/dp/HvgYOB7gOwl2/7eBV4EjzndRB/PDIBvY4XwXsU4bscCjmN7fRuB21+dA/xa+n8/Z7w9873x3WcAAn3NzgAeA74CjwOdAQ5/zF/pcuw3wAP2A3a5/jt1IICvI30qx78j5N30H2AtsAn7n93e00PludgOP+/1b3YL5G8oG7va5LhF40jm303mf6JwbAGwH7gL2ONfe6HPtFZjRh6PO9+/b7jBgifMdfA/0ivb/P7uV7xZ1B+wWxX/8AOLmHN8K/MZ5PwlH3IAhwC6gO5DsPNiLiZvzfgCw3a/ds52HdJzzkFsF3OlzPqC4+bft7Hsf/j4PTFco5gA3+9imOA/1G51798aITDeftg8DF2BGM5IivP9p4GrnmhrAu8CLzv0aAz8C/+PY3wqsBloB9YHZRChuQAtgv/PwjgEuc/Yb+XzeDUAnx485wMPOudaYh/31QDzQAEhzzq0ELve557vAXSG+f9/vKBn4CfgbkAC0w4j2YMd+HjDeeV8T6O/3b/WG8z31xIjjIOf8/cB85/trhBGiB3z+pvIcm3jn+zgB1HPOZwMXOe/rAX2c970xYngu5kdGuvN9J0b7/6Ddym+zw5KWQOzEPID9GQ28oqorVPUE5gEcMar6k6rOV9U8Vd2MEYKLz9TZCBgGbFbVV5x7L8b0OK71sXlfVb9T1QJVPRVhu/NU9T0185O1MQ/bO1X1uKruAZ4Axji2o4EnVXWbqh4A/lEC/8cBH6vqx45/X2B6RVf42LyiqmtV9SQwHUhzjt8AfKmqb6jqaVXdr6pLnHOTnbYRkfrAYOD1EH54vyOMKDVS1ftVNVdVNwIv+Xze00AHEWmoqsdUdb5fW5nO97QMeAUjvgBjgftVdY+q7gUygfE+1512zp9W1Y8xPenOPue6iUhtVT2oqouc47cAL6rqD6qar6qTgRzMDy1LNcWKmyUQLTDDd/40x/SAXLYFsAmKiHQSkY9EZJeIHAEeAhqW3s2IaQ2cKyKH3A3zEG3qY1OizxLgmtaY3kS2zz1exPRAoPh3t6UE92kNXOvn/4VAMx+bXT7vT2B6S2B6ihuCtPsqcKWIpGDE9xtVzQ7hh//nbe7n058xAUoAv8L0JFeLyAIRGRairS2Y7wfndUuQcwD7VTXPZ9/3s47CCP4WEflaRM7z8fUuP19b+bVrqWb8rCbBLeERkX4Ycfs2wOlswDf6sVWIpgIFXjwPLAauV9WjInIncE1pfS3BvbcBX6vqZSW4pqT32YbpDTT0e/i6ZFP0+zrL7/xxzFCfi7/wTlXVX5fCx22Y+a9iqOoOEZmHmWsbj/n3CYX/592kqh2DtL0OuF5EYpz23xaRBj4mrTDDtGC+i53O+50YMVoR4Fxo51QXAMNFJB64A9ODbeX4+ndV/Xsk7ViqB7bnZgFARGo7v66nYeZ6lgUwmw7cKCJdRSQZCLWmbTfQQETq+ByrhQkwOCYiXYDflJH7ge7dzmf/I6CTiIwXkXhn6yciXcvqhk6P53PgMee7jBGR9iLiDrtOB34nIi1FpB7w//yaWAKMcXzrS1HRd3tYg0UkVkSSRGSAiESyzOI1YJCIjBaROBFpICJpPuenYIKEegIzSvCRfwSOisifRKSG41cP58cRIjJORBo5Q5iHnGsKfK6/V0SSRaQ7Zi70Tef4G8BfRaSRiDTEzOm9Gs4ZEUkQkbEiUkdVT2P+ztz7vQTcKiLniiFFRIaKSK0SfF5LFcOKm+VDETmK+XX7F+BxzMOmGKr6CfA0JhhiPWbiH0yPxd92NeZBtdEZCmoO3I2ZAzqKeeC86X9dGfEUcI2IHBSRp1X1KPBLzHzQTswQ3j8xkXllyQRMcMVK4CAmmtIdOnwJ+AwT6biI4kJyL9DeuS4Tn7kvVd0GDMcM++3F/Fv9HxH8/1XVrZihurswQ81LgFQfk3cxPaV3nXnUiFDVfMxcZhomUnIf8DImYhRM8NEKETmG+fcY48wHunyN+Rv6CnhUVT93jj+ImU9cCizDfFcPRujWeGCzM+R9K2boGVVdCPwaE5170LmvJ9LPaqmaiKpdj2opHU7PZzkm6izQUJwlCCLSBiMK8dH+7kRkAyaq88sKuFcbKsnntlRvbM/NUiJEZISIJDpDa/8EPrQPqaqLiIzCzKXNirYvFktZYsXNUlL+B7NmaANmsXR5zZtZyhknTdnzwO3O3JjFUm2ww5IWi8ViqXbYnpvFYrFYqh3Vfp1bTEyM1qhRI9puWCwWS5XhxIkTqqpVuvNT7cWtRo0aHD9+PNpuWCwWS5VBRE6Gt6rcVGlltlgsFoslEFbcLBaLxVLtsOJmsVgslmqHFTeLxWKxVDusuFksFoul2lHlxE1EhojIGhFZLyL+mdUtFovFUgFU9mdxlRI3EYkFngUuB7ph6kV1i65XFovF8vOiKjyLq9o6t3OA9U5Je0RkGqYUyMqyvMnJ0ycZ8Y/naJTXm3ZyCSKU21azJtSrV7i1aAF165blp7FYLJYyp0KexWdCVRO3FhQtT78dONffSERuAW4BaNGiBXPmzCnRTfI1n+95iLMSupBWo/SdW1WzheLkSdi7t+ixuDhITIQaNYz41axp9i0Wi6WCiBORhT77E1V1os9+RM/iaFLVxC0inH+EiQApKSk6YMCAErfxP6dv4skfnmT8rd1olNzYK1RlvR07BgcPwoED5nXbNli1CtauhcWL4ZBTw7hLFxg5EiZMgM6dy/DLslgsluLkqWrfaDtxJlQ1cdsBtPLZb+kcK3PS09J5dN6jvL7sde7sfyci5XEXaNIk+LmCAlizBmbNgnffhX/+Ex56CAYPhrvvhkGDyscni8ViCUOFPYtLS5UqeSMiccBa4FLMF7kAuEFVVwS7JiUlRUubW7LfS/04nX+aJbcuKdX1Zc3u3TBxIjz/PGRnG5F79FHo0SPanlksluqEiJxQ1ZQQ50v8LK5oqlS0pFPx+Q7gM2AVML08v8z01HSydmexZFflELcmTeDee2HTJnj8cfjhB0hNhb/+FXJzo+2dxWL5uVDRz+LSUKV6bqXhTHpu+0/sp9ljzbi93+08MeSJMvbszNm/3wxPTpoEffrAjBnQunW0vbJYLFWdcD23qkCV6rlVNA2SG3BV56t4bdlrnM4/HW13itGgAbzyipmP27AB+vaFuXOj7ZXFYrFEHytuYUhPTWfvib18sv6TaLsSlKuvhh9/hIYN4bLL4IMPou2RxWKxRBcrbmEY0mEIjVMaM2nJpGi7EpJOneC77yAtzSwZePPNaHtksVgs0cOKWxjiY+MZ13McH639iH0n9kXbnZDUrw9ffgnnnw/jxsGnn0bbI4vFYokOVtwiID0tndMFp3lj2RvRdiUstWrBhx9C9+4wahQsWBBtjywWi6XisdGSEdLnxT6ICD/d8lMZeFX+7NoF/ftDXh789FPoxeIWi8Xii42W/BnhSfOwKHsRy3Yvi7YrEdG0Kbz3nknrde21cLryBXtaLBZLuWHFLUKu73E9cTFxTM6aHG1XIiYtDV5+Gb75Bh58MNreWCwWS8VhxS1CGqU0YlinYby69FXyCvKi7U7E3HADpKcbcZs3L9reWCwWS8Vgxa0EeFI97D6+m8/WfxZtV0rE00+bzCXjxsGJE9H2xmKxWMofK24l4PKOl9MwuSGTsiZF25USUbu2yWSycSM88EC0vbFYLJbyx4pbCUiITWBsz7F8sOYDDpw8EG13SsTFF4PHY6oILF8ebW8sFoulfLHiVkI8aR5y83OZtnxatF0pMf/6F9SpA7ffHr5CuMVisVRlrLiVkLSmafRq0qvSp+MKRMOGZlhy7lyz0NtisViqK1bcSoEn1cOCnQtYuXdltF0pMTffDJ07w5/+ZBZ4WywWS3XEilspGNtrrFnztqTqrHlziY+Hhx+G1avhP/+JtjcWi8VSPlQ6cRORf4nIahFZKiLvikhdn3P3iMh6EVkjIoOj5WPjlMZc3uFypi6dWqXWvLkMH25Scz30kM1cYrFYqieVTtyAL4AeqtoLWAvcAyAi3YAxQHdgCPCciMRGy0lPmofsY9l8seGLaLlQakTg3nth61aYOjXa3lgsFkvZU+nETVU/V1W3OzQfaOm8Hw5MU9UcVd0ErAfOiYaPAEM7DqV+jfpVKh2XL5dfDn36wD/+YefeLBZL9aPSiZsfNwFuCewWwDafc9udY8UQkVtEZKGILMwrpyd3YlwiN/S4gfdWv8fBkwfL5R7liQj89a+wfj28/Xa0vbFYLJayJSriJiJfisjyANtwH5u/AHnAayVtX1UnqmpfVe0bFxdXlq4XwZPmISc/hzdXVM2y18OHQ4cO8NRT0fbEYrFYypaoiJuqDlLVHgG29wFExAMMA8ZqYcG5HUArn2ZaOseiRp9mfejeqHuVHZqMiYHf/hbmz4cff4y2NxaLxVJ2VLphSREZAvwRuEpVfdP8fgCMEZFEEWkLdASi+kgWETxpHuZvn8/qfauj6Uqp8XhM9e6nn462JxaLxVJ2VDpxA54BagFfiMgSEXkBQFVXANOBlcCnwO2qmh89Nw1je44lVmKr5Jo3MEmVb7oJpk+H3buj7Y3FYrGUDaLVPMlgSkqKHj9+vFzvMfT1oWTtymLLnVuIjYna6oRSs3o1dO1qck/efXe0vbFYLNFGRE6oakq0/TgTKmPPrcrhSfWw4+gOvtr0VbRdKRVdusB558F//2sTKlssluqBFbcy4MrOV1IvqV6VDSwBMzS5ahX88EO0PbFYLJYzx4pbGZAUl8SYHmOYsWoGh08djrY7pWL0aEhONkVNLRaLpapjxa2M8KR5OJV3iukrpkfblVJRuzZcey1MmwY5OdH2xmKxWM4MK25lRL/m/ejasGuVHpocMwaOHIHPPou2JxaLxXJmWHErI0SE9NR0vtv2Hev2r4u2O6Xi0kuhfn2zLMBisViqMlbcypBxvcYRIzFVtvcWHw8jR8L778PJk9H2xmKxWEqPFbcypEXtFvyy/S+ZkjWFAi2ItjulYvRoOHbMDk1aLJaqjRW3MiY9NZ1tR7Yxe9PsaLtSKgYOhIYN7dCkxWIpHSJyn4jscDJMLRGRK6LhhxW3MmZ45+HUSazDpKxJ0XalVMTFwbBh8Mknts6bxWIpNU+oapqzfRwNB6y4lTE14mswpscY3ln5DkdyjkTbnVIxdCgcOgTffx9tTywWi6V0lF+xs0pC/fr1mTNnToXes2d+T07mneTBGQ9yRbOo9MjPiPr14bHHYNs2qOCvzmKxVA7iRGShz/5EVZ1YguvvEJEJwELgLlWt8IrONnFyOaCqdHm2C01SmjD3xrkVeu+y4tJLTZWA5cuj7YnFYqlowiVOFpEvgaYBTv0FmA/sAxR4AGimqjeVi6MhsMOS5YCI4En18M3Wb9hwYEO03SkVw4bBihWweXO0PbFYLJWNUAWnVXW3quaragHwEnBONHy04lZOjE8djyBMyZoSbVdKxdCh5nXmzOj6YbFYqhYi0sxndwQQlfEfK27lRMvaLRnUbhCTsyZXyTVvnTpB69Ywa1a0PbFYLFWMR0RkmYgsBQYCf4iGE5VW3ETkLhFREWno7IuIPC0i60VkqYj0ibaP4UhPTWfL4S3M3VI1590GDjQBJQVVT5stFkuUUNXxqtpTVXup6lWqmh0NPyqluIlIK+CXwFafw5cDHZ3tFuD5KLhWIkZ0HUGthFpMWjIp2q6UioED4cABWLYs2p5YLBZLyaiU4gY8AfwRE23jMhyYoob5QF2/sd1KR3J8Mtd1v463V77Nsdxj0XanxAwcaF7t0KTFYqlqVDpxE5HhwA5VzfI71QLY5rO/3TlWqUlPS+f46eO8s/KdaLtSYlq1gvbtYXbVzCRmsVh+xkRF3ETkSxFZHmAbDvwZ+NsZtn+LiCwUkYV5Uc4hdUGrC2hfr32VTcc1cCDMnQv5+dH2xGKxWCInKuIWbI0EsBFoC2SJyGagJbBIRJoCO4BWPs20dI4Fan+iqvZV1b5xcdFNwiIieNI8zNk8h82HNkfVl9IwcCAcPgyLF0fbE4vFYomcSjUsqarLVLWxqrZR1TaYocc+qroL+ACY4ERN9gcORysKp6SM7zUeoEquebvoIvM6b150/bBYLJaSUKnELQwfY3p26zGr3m+LrjuR07puay5pewmTsyZT1dKdtWoFLVpYcbNYLFWLSi1uTg9un/NeVfV2VW3vrKFYGO76yoQn1cPGgxv5duu30XalxPTvD/PnR9sLi8ViiZxKLW7ViZFdR1IzoWaVXPN23nmwaZNJpGyxWCxVAStuFURKQgrXdruW6Sunczy3YqsUnCnnnWde7dCkxWKpKlhxq0A8aR6O5R7j3dXvRtuVEtGnj6nQ/eOP0fbEYrFYIsOKWwVy4VkX0rZu2yo3NJmUBN262eUAFoul6mDFrQKJkRjSU9OZtWkWWw9vDX9BJaJPH1i0CKpYsKfFYvmZYsWtgpmQOgFFmZo1NdqulIg+fWDPHsiuEisLLRbLzx0rbhVM23ptubj1xUzKmlSl1rz1cQoMLVoUXT8sFoslEqKbm+pniifNw43v38j3277ngrMuiLY7EZGaCiJG3IYNi7Y3FoulOiOZch4wDrgIaAacxFT0ngm8qhl6OGwbwXoPInwQgQ8HVPFE6nA0SElJ0ePHK1fo/bHcYzR9tCk39LyBiVdOjLY7EdO5M3TvDjNmRNsTi8VSnojICVVNicq9M+UTYCfwPrAQ2AMkAZ0wlb2vBB7XDA2pUaF6bl2Bm0P5ADxbAp8tDjUTajKq2yjeXPEmTw55kuT45Gi7FBE9esDy5dH2wmKxVHPGa4bJTOXDMWCRsz0mmdIwXCOhxO0vqnwd6mIRMsO6aQmIJ9XDlKwpvLf6PW7oeUO03YmIbt3gvfcgJwcSE6PtjcViqY64wiaZkgKc1AwtkEzpBHQBPtEMPR1A/IoRNKBElelhnYjAxhKYi9tcTOs6rZmcNTnarkRM9+5QUABr1kTbE4vF8jNgLpAkmdIC+BwYD0yK9OKg4iZCQxEyRPidCDVFeF6E5SK8L0KHM3b7Z06MxDAhdQJfbPiC7Ue2R9udiOje3byuWBFdPywWy88C0Qw9AYwEntMMvRboHunFoZYCvA4kAh2BHzHlZq4BPgJeLrW7Fi/pqelVas1bp04QGwsrV0bbE4vF8jNAnKjJsZgoSYDYSC8OJW5NVPkz8Dugpir/UmW1Ki8BdUvtrsVL+/rtufCsC6tMnbfEROjY0fbcLBZLhfB74B7gXc3QFZIp7YDZkV4cKqAkH0AVFcF/8q6gxG5aAuJJ9XDzhzfzw44f6N+yf7TdCUu3blbcLBZL+aMZOhcz7+bub8R0tiIilLi1c9a6ic97nP22pfA1YkTkt8DtGIGdqap/dI7fA/zKOf47Vf2sPP2oCK7tfi2//eS3TFoyqUqIW4cO8NFHkJ9vhigtFoulPHAiJO8G2uCjVZqhl0RyfShxG+7z/lG/c/77ZYaIDHTunaqqOSLS2DneDRiDmVBsDnwpIp1UNb+8fKkIaifWZmTXkUxbPo0nhzxJUlxStF0KSfv2kJsLO3bAWWdF2xuLxVKNeQt4ARPjUeLnfFBxC7fGrRz5DfCwquYYP3SPc3w4MM05vklE1gPnAFW+hKYnzcNry17j/dXvc12P66LtTkjatzevGzZYcbNYLOVKnmbo86W9OKi4ibAMCBrloEqv0t40DJ2Ai0Tk78Ap4G5VXQC0AOb72G13jlV5BrYZSKvarZicNbnSi1sHZxHI+vUwcGB0fbFYLNWaDyVTbgPeBXLcg5qhByK5ONSwpJse93bn1Y1XH0cI0YsEEfkSaBrg1F8cn+oD/YF+wHQRaVfC9m8BbgFISEg4E1crhNiYWMb3Gs/D3z3MzqM7aV6rebRdCkrLlhAfb3puFovFUo6kO6//53NMgYj0IGjiZK+BsFiV3n7HFqnSpyReRoqIfAr8U1VnO/sbMEJ3M4Cq/sM5/hlwn6qGHJasjImTA7F2/1o6P9OZfw76J3+84I/RdicknTtDr17w1lvR9sRisZQH0UycXFZEUvJGRLhAle/MDudTvnXg3sNkfp4tIp2ABGAf8AHwuog8jgkocReXVws6NejE+a3OZ3LWZP7v/P9DRKLtUlDatzfDkhaLxVKeSKb0ALphqgIAoBk6JZJrIxGpXwHPibBZhM3Ac8BNpfAzUv4LtBOR5cA0IF0NK4DpwErgU+D2qh4p6U96ajor965k4c6F0XYlJB06mGHJKrDu3GKxVFEkUzKAfzvbQOAR4KpIrw8rbqr8pEoqmE2VNFXKrR6zquaq6jhV7aGqfVR1ls+5v6tqe1XtrKqflJcP0WJ099EkxSUxacmkaLsSkrZt4ehROHgw2p5YLJZqzDXApcAuzdAbMRpUJ9KLQyVOLlJvWZXDqhwOZWM5M+om1WVElxG8sfwNcvJywl8QJVq1Mq/btkXXD4vFUvkQkWtFZIWIFIhIX79z94jIehFZIyKDwzR1UjO0AMiTTKmNKVraKlI/QvXc/iVCbxH6BNuAhyK9kSUy0lPTOXjqIB+u/TDargTFipvFYgnBckwm/7m+B/0ScQwBnhORUHmOFkqm1AVeAn7CFCqNeF1zqICS3cDjYa5fF+mNLJExqN0gmtdqzqQlk7im2zXRdicgrrht3RpdPywWS+VDVVcBgYLiSpSIQzP0NuftC5IpnwK1NUOXRupHqAwlAyJtpDJTv3595syZE203SsSAugOYtm4aMz6fQf2E+tF2JyCPPQZ16kAV+2otFktkxImIb2TbRFWdeIZtRpSIQzKli2boasmUYsvNJFP6aIZGFPMRyVKAKs2BAwcYMGBAtN0oEU17NOX1Z19nU81NjDx/ZLTdCYjHAxddBFOrRik6i8VSMvJUtW+wk6EScajq+2d477uAXwOPBTinwBknTrZEiS4Nu3Bui3OZlDWJ/z3vfyvlmrdmzWDXrmh7YbFYooGqDirFZTsoGhDS0jlWtO0M/bXzekYJ/qy4VVI8aR5+M/M3LN61mD7NyiUZzBnRtKldyG2xWEpERIk4JFNCDldphs6I5GZh17mJkCzCvSK85Ox3tEsAyp/rul9HYmxipV3z1rQpZGdH2wuLxVLZEJERIrIdOA+Y6aRKpASJOK50tl8B/wHGOtvLlCCBSCQZSl7BZGQ+z9nfATwY6Q0spaNejXoM7zKc15e9Tm5+brTdKUazZrB/v6ntZrFYLC6q+q6qtlTVRFVtoqqDfc6FTcShGXqjs2g7HuimGTpKM3QUZglBfKR+RCJu7VV5BDhtnOMEphq3pZzxpHrYf3I/M9fOjLYrxWjqTCXv3h1dPywWS7WllWao7/jQbiDiKpKRzLnlilADp8yNCO3xqa1jKT8ua38ZTWs2ZVLWJEZ0HRFtd4rgituuXYXr3iwWi6UM+Uoy5TPgDWf/OuDLSC+OpOeWgRkfbSXCa8BXQOWuyVJNiIuJY3yv8Xy87mP2HN8T/oIKpGFD87p/f3T9sFgs1RPN0DuAF8Gb23iiZuhvI70+bD03ABEaYGqqCTBflX2lc7fiqSr13IKxYs8KejzfgycGP8Gd/e+Mtjte1qyBLl3g1Vdh7Nhoe2OxWL7b+h39W/YnNiZURqvIqA713EIlTvbNIdkayAZ2Amc5xywVQPfG3enbvG+li5ps0MC82p6bxVK+LNy5kFmbZoW02XBgAxe+ciEv/vRiBXlV/kim9JdMWSCZckwyJVcyJV8y5Uik14calnzM2Z4FfgAmYhJY/uAcs1QQnlQPWbuzWLJrSbRd8VKvnnm14maxlI5jucf4zUe/Ye/xvSHt7v/6fq6Zfk3ISiGHc0zBlleWvFKmPkaZZ4DrMTmMawA3UwLtCSpuqgxUZSCmx9ZHlb6qnA30JsCqckv5MabHGOJj4pm8ZHK0XfESGwt161pxs1gC8eDcB/nb7L+FtFmUvYgXfnqB5xc+H9LuZN7JsJVCXOFbuHMhK/asKLnDlRTN0PVArGZovmboK5hqAhERSUBJZ1WWeW+mLAe6ltxNS2lpkNyAqzpfxWvLXuN0/ulou+OlQQMrbhZLIGaum8kj3z3CoVOHgtq461cnZ00mVOyDaxdqasJ3LezkrMrzI/gMOSGZkgAskUx5RDLlD0SmWRCh4VIRXhZhgLO9BERcdqCkiEiaiMwXkSUislBEznGOi4g87RS6WypSPGN0dcaT5mHvib18sr7yFCC34mb5ObJy70p+2P5DSJvc/Fxy8nN4c/mbIW0ANh7cyLdbvw1r9+n6T9l1LHBCV9emSUoTpi6dSl5BXkj/qgjjMRp1B3Ack5dyVKQXRyJuNwIrgN8720rnWHnxCJCpqmnA35x9gMsxucg6ArcAofvy1YzB7QfTOKVxpQosadAADhyItn0ECy4AACAASURBVBcWS9lwKu8U93x5DwdPHgxp99dZf2Xo60NDZg7y7ZWFs4HwvbJODTqRr/m8tvS1kG3d1Psmdh3bxecbPg/1ESo9kimxwEOaoac0Q49ohmZqhv6vM0wZEWHFTZVTqjyhyghne0KVU2fkeZhbArWd93UwEZpgCt1NUcN8oK6INCtHPyoV8bHxjOs5jo/WfsS+E5VjJUatWnDsWLS9sFjC89T8p3jku0dC2izcuZCHv3uYFxa+ENLu+Onj7D+5n4/XfRzUJjc/F0GYt30ea/atCWoDcG6Lc5m+cjrHcwMvWcrNz6VH4x70b9mfSVmTAg5hum2N6DKCBjUaVPmhSc3QfKC1MyxZKiJJnLxJhI3+W2lvGAF3Av8SkW3Ao8A9zvEWwDYfu4CF7ozPcoszpLkwL69adM8BSE9L53TBad5Y9kZ44wogJcWKmyW6rNm3htZPtg4qIC5vrXyL++bcx5Gc4JHk3rmtIAJSzC5Mb2tQu0HESExQoXHbueXsWziWe4x3V78b0C4nL4eE2AQ8qR6W71nO4l2Lg7ZVM6EmN/S8gfdWvxe2B1oF2Ah8J5lyr2TK/7pbpBdHMizZF+jnbBcBTwOvlspVBxH5UkSWB9iGA78B/qCqrYA/YLJClwhVnaiqfVW1b1xc9anq06tJL3o37c2krEnRdgWAmjWhCq+Pt1QD1u5fy9bDW3lp0Ush7XLzczmZd5K3VrwV0sZt84cdwefUXLuZ62YGDePPzc+ldZ3WDOkwhKlLp5JfUDz5vRvheEnbS2hXr11QsczNzyUhNoHregSvFOL6lBCbgCfNQ25+Lm+uCD7fV0XYAHyE0alaPltERDIsud9n26HKk8DQ0npr2tRBqtojwPY+kA649XreAs5x3kdU6K6640nzsCh7Ect2LwtvXM7YnpulPDmdf5p/fvtPjuYcDWrjPtRfXfpqyCCKnHwjJGUxB5aTl0Pbum3JK8jj9WWvB23L7W1tP7I94CJs935JcUlM6DWBWZtmsfXw1sBtxSRQN6kuV3e5OmClEPfzJcQm0Ltpb3o27lmp5udLgzPPVmyL9PpIhiX7+Gx9RbiV8i1yuhO42Hl/CWYBH5hCdxOcqMn+wGFV/dlVFLuh5w1mzVslGFOvWRPy8mzZG0vJ+e/i//LcgudC2izcuZD/99X/CzkH5j7Udx/fzWfrPwtq54rBN1u/Yf2BwDEJbk+qd9PeTFs+jZOnTwZtK61pGmc3OzvoKIo7lHhl5yupm1Q3oJ3rU2JsIhNSJ6AoU7OmBrRLjEsEzI/bQJVCfHtuIsKtfW+lY4OOlbJcVjgkU16STOkZ5FyKZMpNkilhk/5FMiz5mM/2D6APMLokzpaQXwOPiUgW8BAmMhLgY8wY7HpMppTbytGHSkvD5IYM7TSUV5e+GvU1bylO5jk7NGlx2XRwE6kvpLLxYOhp+VeWvMIfv/gjx3KDd/1d4Qo1B+Y+vONj4kMO1+fm5zKgzQAEYUrWlJBt3XL2LRzOOcz7a94PaucO/y3ZtYSsXVlBbZLikri+x/W8u+pdDp86HPB+CbEJtK3XlgFtBgRc8+a2BXBZu8toVrNZsc/qFUpHBG/rdxtTR0z1XlfFeBa4VzJllWTKW5Ipz0mm/Fcy5Rvge8zQ5NvhGolE3H7lZitR5TJVbgHK7eeAqn6rqmeraqqqnquqPznHVVVvdwrd9VTVheXlQ2XHk+oxv1Q3BP+lWhG44maHJi0uK/euZOnupbz0U/g5sOOnjzNj1YyQNm6bP2X/FNLm6i5X88GaDzhwMvDalNz8XNrVbcdl7S9jStYUCrQgaFuD2w+mVe1WIQNBEmITuL7H9QFHUVS1WG/rZN5J3lr5VrF2AK8Apaems+7AOuZtnxfwfgCxMbGM7zWemWtnsvvY7qBtVWU0Q5doho7GxHk8C3yDGbm7WTM0VTP0Kc3QsGXXIhG3QAoZVjUt5ccVHa+gUXKjqA9N1qxpXm3P7edBfkE+Ly58MehwHRQ+ZKcsnRIwiMLfLtKsG6GCLcD0tnLzc5m2fFpQu4TYBNJT09lyeAtfb/46aFtJcUmkp6bz+YbP2XGk+LS+21aD5AZc2fnKYqMo+ZqPol6h6de8H10adin2/9XtmcbFmFmea7pdQ0p8SpHPqqrk5OcUEa30tHTyNb/IfF91EjcXzdBjmqFzNEPf0Ax9TzM0dEisH6GqAnQRYRRQR4SRPpsHSDpDvy1nQHxsPDf0vIEP1nzA/hPRSxFie27Vh+krpgcdrnNZlL2IW2feGjLzvPuQ3Xl0J19t+iqs3ezNs9lyaEtIm26NuvH6stcDJg52bc5pcQ6pTVKDiqA7B3Z1l6upnVg75BxYQmwCE1InUKAFvLq0eGC4b0/Kk2oyB326/tOA7QCICJ5UD99u/bbIfJ/bjogAJoz/mm7X8OaKN70/INwgGV/R6taoG/2a9ysilu66ulg583I31YVQPbfOwDCgLnClz9YHMy9miSJuuG+wX6oVge25VR+eW/Acv/3ktyF7ZSfzzLlIeluxEhvW7vxW5wMEFVVXzG7pcwsHTx3ko7UfBb2f2ytbsHMBK/euDGiXEJtAcnwy13W/jndWvlNsvs+3rY4NOnJBqwvCzoEN6TCERsmNiohloF7UuF7jzJq3JUUFKTE2sUjb6anpHMk5wnur3yvSlr+dJ61opRB/obSErgrwvio3AsNUudFn+50q31egj5YApDVNI7VJalSHJm1ASdXg4MmDZB8NHVick59T5KEa0MYRm1Dll9yhtqGdhvLu6neDJg52U0oNbDMwaOJg98F+RccraF6redje1theY4mLiQtYPcNXkNJT0zl++jhvr3w7aFtgBGTVvlUs2Lmg2Gd0beJj4xnXaxwfrvnQO4oSSNxa1G7BZe0uY8rSwvk+X59cLm5zMa3rtPZ+1mDDjWN6jCEhNsH7A8LtmVZHJFOSS3NdqGHJPzpvbxDhaf+tVF5ayhT3l2q0Slz4Dkvu2RMVF37WqCpvLn8zbLj3nZ/dyYWvXBgwiMLFNztHOBsgaPkl7xxYn1s4lXeK6SumB7TLycshIcZEHG44uIHvtn0XtK3k+GTG9xrPJ+s+KRJE4bYTFxNHjMTQOKUxl3e4vFji4PyCfPI13xvgcX6r8+lQv0PQObD42HgAru12LUlxScV6oP6i5EnzmMxBy98o4re/2HjSPGw9vJU5m+cEbAcgRmKYkDqBLzZ8wfYj24O2Vb9GfW+lkNz83IBtVXUkU86XTFkJrHb2UyVTQq8f8SHUsOQq53Uh8FOAzRJlvL9Uo9R7c4cln3kGmjSBxX5ZgQqCP0stZcCSXUsY884YXlwYuvry/hP72Xhwo/ehGgj3Ifrlxi8DBlH42nSs3zFo+SXX5vxW59O9UfeQEYeJcYmM7DqyWBCFf1vukGO+5vPasteK2fgLTfaxbL7c+KX32OmC0952oHAObM7mOWw6uKlIW/Ex8cSIeSzWSarDyK4jmbZ8GqfyTDrd/IJ8CrSgyDBhrya9SGuaVqQX5Xs/l+Gdh1MnsY7XLpggpaemoyivLn21yOJsfzypHvad2Mcn6z4pEp1ZjXgCGAzsB9AMzQJ+EenFoYYlP3ReJwfaztBpSxnQOKUxV3S8Imx2hvLC7bl98415/dCppXj0KPTvD23awK7AFTosERAqvyGYBL4Qvn5XpJGJ/Zr3o0ALmLq0+EJi33Z+3efXQcsv+a63Sk9N5/tt37N2/9qAdgmxCdRMqMm13a9l+orpnDh9ImBbCbEJdG3UlXNbnMsrS14p8r34C8SwTsNoUKNBkc8aqPczPnV8sTVvgcTGk+oxhULXfBi0Ldfup+yfWL5nedB5shrxNRjTYwzvrHqHozlHi0VBurSv356LzrqISUsmBRVKgMEdBtMkpQmTsiaRW1D9em4AmqHb/A4FD8H1I9Sw5IcifBBsK7W3ljIlPTWd7GPZfLHhiwq/t9tzc/nKCY57/XX44QfYtg3uv7/C3aoWHDp1iKaPNY0o64b7UA1n5z5Ug9l0bdTV+1ANNQd2ZecrzUM1TG8rUBCFr53vHNjR3KO8u6po4mD/Xkt6anqxxMH+guSuP/NNHBxIIM6qcxaXtL2EyVmTQ86BXdL2ElrUahF2DuyGnjd45/tCheWnp6Zz4vQJ3l75dsihxPTUdNbsX8M3W80vx0C9sriYOMb1MpVCdhzZUR3FbZtkyvmASqbES6bcTeGIYlhCDUs+StHsJP6bpRLg/aUahWTKSUngG5y1ebN5fest6NYNrr0WZsyA/Ih/a1lcso9ms+f4Hv7947+D2viGxgebAwPzQG5Qo4H3oRqsLXcObM3+Nfy448eA7QCkxKcwtufYgOWXcvJyvCHpzWo1Y0iHIcXWvKkqpwtOex/Gv2j9C9rUbRM064Zr5wZR+EccBprbysnP8c73hZoD23Rok7dQaKC2YmNimZA6gc/Wf0b20eygbTVKacTQjkOZunSqtwcaSGz6t+xPpwadmJw1OeRQ4rXdr6VGXA1vQuhQIphXkMesTbOqo7jdCtyOqf6yA0hz9iMi1LDk1+4GzAMOAgeAec4xSyXA/aX6/ur3K7zEhQjExha+37nTCNnSpXDeeXDVVbB7NyzzyfGsCh99BBvLs2hSJUdVefjbh9l8aHNQG/chGkn15dZ1WoesvpyTn8O5Lc+lY/2OQX8EuQ/2a7pdQ424GuHnwIKUX/IPSU9PTWf7ke3M3jzba+M/BxYjMaSnpvPVxq/YdnhbkbZiJZbYGPNHVq9GPa7ucrU3iAIgt6B4OH2fZn3o0bhHsd6Wv92ILiOomVAzojkwd74vVK/Mk2YyB3249sOgNu5839dbvmbNvjVBBal2Ym1GdRvF/O3zg7YF0LNJT/o061Nk0Xh1QTN0n2boWM3QJpqhjTVDx2mGRrywN5LEyUMxpQeeBp4B1otweeldtpQ17i/VaJS4cEevunY1SZRXrIC9e6F7d+jXz5xb4hM1/te/wpVXmvPr1hVv7+fAvhP7uOere3jg6weC2rgP0UiqL9/c52Z2H98dtPqyu57Kk+Zh7pa5AfM+ur0I96E6bUVhEIWL7zBhrya96NOsT8Delm9v5KrOV5nEwWHmwLyJg33m+wKJTXpqepHEwYFsRIT01HTmb5/Pmn1rggpSSkIKo7uN5q2Vb3E893hQcevcsLMpFLpkUsgAjys6XkHD5Ia8suSVoDZQON+37sC6kIKUnprufR/KzpPqCWtTlZBM+bdkytPBtkjbiTRx8kBVBqhyMTAQE8ViqSS4v1SjETXpilvnzub1C2fqr1s36NABkpMLxe3gQXjySejd2/T4MjIq3N0KYc/xPSFTT7kPyHDVl8E8sCKpvtwwuWHIFFWJcYmM71U8iMLXxndu69CpQ3yw5oNiNlA4/5Oeml6s/JK/QCTFJTGm+xhmrJrhLRQaaA6sXb12/KL1L4qseQskNr9s/0ua1mzq/VsPJkhje44lVmK9w3/+93PxpHk4lnuMGatmBA3wACMgK/auYN62eUHbSohN4IYeN3h72sHaalm7JYPaDQppAzCwzUBa1W4V1u76nibHZXURN4JH6JcoUj8ScTuqim+NiI1A8AJLlgrH95fq6n2ro+JDly7m9VszfUG7dkbAevYsHJb88ks4ccIsHZgwAd5/3+xXJwq0gM7PdOaBueF7Ze5DNZTNqK6jWL5nOYuyFwW1qZlQkxt63MD7a94PmDjYFYBWdVpxabtLiwRRQGGiX/fh6D5UA63vgsIHbaDyS8HmwHwLhQbNupHqYe3+td6huEALk+Ni4kzi4HUz2XN8T9DFy81qNWNwh8FMyZoScg7swrMupF29dmHnwNxCoRMXTTS+B7HzpHm870P2thy7UDbufF84u4bJDbnrvLsY0n5IUJuqhGbo5FBbpO1EIm4LRfhYBI8I6cCHwAI312SpP4GlTPH+Ug0RWFAeuB2K9u3N6xontWnDhua1TRsTNQlmyUByshmuHDnSCNvs2UWaY9MmeOop2BI43WClJycvh0OnDvHyopeD9t6KLIYO0tt2e3fje40nMTYxoJ2v2HirLy8vPjSdm2+KXYIRkM2HNvPNlm+85/0T/XqDKDZ8xs6jO4u045u/sGFyQ4Z1GlYkcXCg3s85Lc6hS8MuYSMOr+l2DcnxyRHNgbmFQkNFHHpSPew4usO7ZCHYHFh6ajqzNs1i/YH1Qduqm1SXEV1HMHfL3KBtgckc1KtJLyC4AIKpYlAroRY14moEtQG445w7+J+z/4fUJqkh7f4x6B/cc9E9IW2qGpIpH0qmfOC3TZVM+b1kStj8xpGIWxKwG1NAdACwF6iByTM57Ax8t5QhbmRasJL25YUrbo0bm9cdOyAmBurUMfstW8L27cbuhx/gnHMgPt4EnMTEmGMuhw6Z43feaV4PVmx8TETc9dldxQpF+uI+uHcc3RE0cbBrk9oklVmbZgVMHOzaNE5p7A2i8E8c7Dv/4z5Ug6Woch/GI7qOoFZCrSJ2gYYJ3cTBvvN9gfIXpqemFym/FGoOzE0cHEzcaiXWYlTXUd7EwcHWbnVv3J2+zft6e1vBhObKzldSL6ke/1n8HyC42LjzfSv3rjzjOTAR4ca0GwETFBKM5Phk3hn9Dn++6M9BbQCa1mzKC8NeoEZ8aBGspmwEjmHqd74EHMGMGnZy9kMSVtz88kr6bzedofOWMiQ9NT3kQ7U8ccXtyBGoV88IFxhxO3kSDhyADRsK5+ZSUkxQyUKfqnzPPWeiK//9b7P4+8knK/YzRMILP73AX2f/Nej5iHpljpjc3OfmYkEU/u24vbIDJw8wc13o6svpqen8uONHVu1dVczOfRgnxyczuvto3lrxljdxcCCx6dSgE+e3Or/IfF8gIfEvvxRMbMb3Gk+MxDAla0rYOTC3UGioYUJPqikUumzPsqA2SXFJjOkxhu1Htge9H0Cbum0Y0GZASBswhUKb12oe1u6Oc+7g2xu/5aw6ZwW1Abis/WX0adYnpM3PnPM1Q2/QDP3Q2cYB/TRDb8ck8A9JJNGSbUV4XIQZZbWIW0SuFZEVIlIgIn39zt0jIutFZI2IDPY5PsQ5tl5E/t+Z3L+64v5SDZWJorxwhyEB6tcvfN+ypXldtQr27zfDlC5nn100kvKdd0xmkzvugEGDYPLkwp5hRbB8z/KgYfcuufm5LNm1JGjiYPfBXTuxNjNWzShWfdnXpnODziGrL4PpbbgPVX+x9A/w8A2i8MV/XsqT5ilSKDTUHNjKvStZuHOh187/oR4fG8/YnmO95ZfcyEx/3MTBk7Mme6MwAwnEgDYDOKvOWUxaMilkr2xMjzHEx8Rz6NShiOa2gt3P97OGs3ELhYazi4uJ44KzLgh6vroT7PkuIm1E5KSILHG2F8I0VVMyxfsLwXnvpo4IWzA7kmHJ94DNwL8pu0Xcy4GRwFzfgyLSDRgDdAeGAM+JSKyIxGIqsl4OdAOud2wtPnhL2q8uXtK+vKlVy8ynQWBxc1N0tW1beK5DB8jONnNv+/bBokVmmQDAddeZebfVfvExkydDo0YwfHjZB6OMmj4Kz3ueoOcLtMC7lixc4uBxPccFTRzsnzNx/YH1fL/t+6A2sTGxjOs5Lmj15fgYk+i3Sc0mXNHxiiJD0/7BIgAXtLqA9vXaF5nbcu/ly+juo0mKS/KKZbDgjfS0dHLzTfmlcFk3th7e6l2yEMguRmKY0GsCX2z8gk0HNwVtq0FyA67qfFXQdlz6Ne9H14Zdw9qN6jaKlPiUgMLsyx3n3MF13a+jR+MeIe1+5gR8vjtsUNU0Z7s1TDt3Ad9KpsyWTJkDfAPcLZmSAuFTQEYibqdUeVqV2X4Lu0uNqq5SDVhVdTgwTVVzVHUTsB44x9nWq+pGVc0Fpjm2Fj/S09JDZmMvL2rWLBS3Bg0Kj7s9ukVOsJ+vuLnvN2+GrCzz3l0bN2CAef3a5y9tyxb49a/NfT74AB58sCw/ARw+dZgvNn4RNnEwEDZx8AVnXUDXhl3DBoIEqr7sbwPBqy/Hx8QXmwPbeXSnN3GwGyziO3TnDmHO3jybzYc2BxW3Okl1GNFlhLdQaLA5MN/yS6HEzS0U+vLilwPez/sZ0tIp0AKydmedccShiHjtaibUDGpXM6EmU0ZM4e7z7w5qAyaMf9o100LOp/3cCfF8L1k7Gfox0BG4E/g90FkzdKZm6HHN0LCTFnER3OMpETKAzwHvjLYqxWOTz5wWwHyf/e3OMYBtfsfPDdaIiNwC3ALQokUL5syZU7ZeVmJUldbJrXlq7lN0PNqx3O83daqZJ/vxR/jb3yA31/Tc3K88Lw8efRRq1DBDjocPF56rU8ecW7cOTp0y70UKzz/1lEnx5e7v3An/+IdZXrB9u5nfmz27aAqwYDyx9glqxdfi5rY3B7U5kXOCAi3g/vfu5/qzri92/nieWZOWVieNJYeX8Mi7j3BBw6LDTxuPmQXS61av46JaFzFx00Re/fhVWia39Nr8tM8s1Vm6ZCk5tXK4sP6FvLH0DUaljCIp1gSBLd9hckUumL+AOvEmOqdLrS48+92z9M7pDcD6zeuJJbbI33etglrUjqvNI58/QuL2RE7lmyHAbZu3Maeg0K7jKfO3cf/79/OLhibR+ro165hzsNAGoLf05o1Tb/Dwuw+zfe92CnILAv5/urDmhTy74VnqxNehY82OQf/PXVT/ImZmm7nDlctWErs1cOXoHrV7sPzIck4cORG0raSCJBolNiLnQE7I/+NpBWk81OMhtmZtZStbg9rVpz555DFnY/C2fkbEiYjPjDgTVXViGbTbVkQWY4JD/qqq34SxPxtog9GqVMkUNENDl4x3UdWQG+g/QLeDfg0629lmhb+OLzHdU/9tuI/NHKCvz/4zwDif/f8A1zjbyz7HxwPPhPNBVUlOTtafG//89p/KfejafWvL/V4FBWZTVe3cWRVUf/e7wvPHjpljjRqZ1yNHCs9lZ5tjTz+teuONqk2aFG37sstU+/Yt3O/ZU/XSS837zz83177zTtFrDh5UHTxYtV071ZkzC493f7a7pvw9RY/mHA36WVL+nqLch3Z5posWuB/Kh73H9yr3oY9//7g2/ldjHfnmyGI2C3YsUO5DP1j9gW4/vF1jMmP0L1/9pYjN2yveVu5Dl+5aqqqqszbOUu5DX1v6mtfm0e8eVe5DD5867D327I/PKvehi7MXq6rqHTPv0HoP1yvmwx0z79DEBxL14MmDevDkQeU+9Il5TxSzGzhpoLZ7qp0u2rlIuQ+dsXJGMZu8/Dxt8VgLHfb6MB355kjt8VyPgN/d7mO7Ne7+OOU+dOhrQwPaqKp+t/U75T6U+9Aftv8Q1O6ln15S7kMHTx0c1Ma977GcYyFtLCUHOK5l/3xPBBo478/GdFhqB73HfUzlPr7nPp7jPv7tbE+H8st3i2RY8lqgnSoXqzLQ2S6JQDQHqWqPANv7IS7bAbTy2W/pHAt23BIAbzb2CshYIlLYcwo0LJmcbM7v3Wv23TI5YGrAxcaayMjt26F166Jtd+1q5txUTbTlsmWFw5UDBpi2Zs0qes3dd5ssKSdPwpgxplcJZggvUPVlX3Lzc2lWsxmr960OnTg4IYVxPU31Zf/Ewb5DfC1qt+CX7X/JlKwpRRZN+w8DeqsvB0hR5TsH5F99OVg0YXpaujdxcLjIxI0HNzJrk/kSA7XlBlF8su4Tth7eGnQI0C2/FKwdl/NankfH+h2D+uTiFgoNl3WjcUpjUhJSQtpYyp7SPN/VTDftd97/hEnr2CnEbfoCF2iG3qYZ+ltn+12kPkYibsuBupE2eIZ8AIwRkUQRaYsZb/0RWAB0FJG2IpKACTqxZXeC0LxW84AP1fImUECJSGFpnFq1CpcIuOfq1TPClZ0NzZoVba9LF1Ple8eOwvVwF15oXuPj4fzzCwNVwLQzdSr85jdG9I4eheefN+fch7yJTDRDnUUTOptM9dd1v44acTXCzpWFShwMRVNUbTuyjdmbCler++cndBMHf7nxS2/YujdYxKkKDQGqLweZAzu72dl0b9TdG3Hoey9fRnUdRc2EmuEzzzvzfQt3LjzjiEN3vg8IuYC5TlIdXhz2Irf3izgJvKWSIyKNnOBARKQd5vkeKoX6cqBpae8XibjVBVaL8FkZLgUYISLbgfOAmSLyGYCqrgCmAyuBT4HbVTVfVfOAO4DPMPV8pju2liB4Uj3FHqrlTSBxAyNqvq++1KtnFmsHEreOzpThhg2FmU96+ASpnX++Eajdh47Q6/lePDZ9Hrm5cNNNRhgHDYJp04xtTn4OsRLLnM1zuOVPmxg4ENLS4E0noYcrAo1SGjGy60jeWP5G8cTBeUUTB/du2jtoeL77gPdWX/ZZNO0vgOCTODhrqtcmLibOWxXaxb/6cqisG/O2z/PmfQxkl5KQwjXdrmHN/jVBbQC6NOzCuS3ODWkDMLTTUBqnNKZeUr2gNgB/OO8PvDriVTo1CPWj3XwngzsMDmljqXwEe75jqmgvFZElwNvArapaPF9cIQ2BlZIpn/lmKYnUj0jELQMYATxEGS0FUNV3VbWlqiaqahNVHexz7u+q2l5VO6vqJz7HP1bVTs65v5/J/X8ODO9S/KFa3gQaloRCUasdIMCsfn0jbPv3Fxc3d3/XLli/3gSg+LbdrZsZsvx22TaW7VnG6xufpEEDk5gZYNgwI4qbNhmxGNppKILwnwVTGD0a+vQxa+qOHy8enn/o1CFeW/Ahp30CIv2Fy5Nmqi/7Jw72tfFWX175jjdxcKDelLf6srNoOlgS3yLVl0NEJrpD0+F6ZW5vK5SN+1nD2STEJvDjzT/y90tC//dMjk9mbK+xRaI8LdWHYM93VX1HVburWQbQR1U/DNPUfcDVlFJ7IslQ8rUWXQKQD4yO9AaW6OBmZ/B9qJY3NZxRJv+em++wpD/165sF3lBc3Jo6AxKuuHXoUDQysqtZvsTayU2N9QAAIABJREFUDUYstiS9T9+LDnptLrvMvM6dawSlQ70OnJV/KZo6maeeLuDRR836unffLTrHdUnbS6hV0JKbn5lEt26w1Qmw8xel63tcb6ov+yUO9rUBMzR5Mu+kd74vVPHMtfvX8sOOH4IKV6TVl910bG5m/2Drty5qfRFt67YN6I8v13U3iYPDzYG1rtuaejVC99wslkjQDP3ad6OE2hNJzw0ReovwLxE2Aw9QglLflujhZmMPFURRlpSm51avXmGwib+41asHcXEmKGTDhsLkzC4dO5o5vPWbjFhobA5xaYWJgzt3Nj4tXlyYXeP0gnSot4m1p77lF78wGVOmTy8qON99G8vRbydAx0/ZeTSb3//etOcf5FEvsREXNBzG1KxXvYu7AwmXW3053KJp30KhwTJ9QGHi4Hnb54XNhZiv+QHv5RIjMd7M80lxwXPR1qtRj8cHP86vev8qqI3FUtZIpvSWTPmXZMpmSqg9QcVNhE4iZIiwGpOdZCsgTrTkM2fqtKX8ObfFuUUequVNsDm3cD03F//zMTEmonLB4Y/YdPHFNGleNONOUhI0bw7Ze5zllwWxrE6a5D0fGwu9esHiJSZLx+lTCez8agSJ1GLSkkmImN7d3LlwMrdQcJ59FuptmwBSwAW/eY333jOVw31FKT8fhgyBr5/ysOfEbiZ/W5g42LVxcasvf7P1GzYc2FAss4iLt1Do8mkczjkcVJDc6ssQvEcGhYVC/f3x5w/9/8Azlz/jzeQRjNv63cbIrrYQiKV8kUzpJJmSIZlSVHsydKBmaMTaE6rnthq4BBimyoWq/BvTLbRUEfwfquVN7dqQkFC8hxZuzs0lMcBzumlT2HDqR/JbzWVv3eLZ+Js2hb0HHNFbO4wNp34oUtOuVy9YvtJMnO3bkwCnU7ikSWH15QEDzMLyZSud3l9+Ah9+CGMGdea8luexpe4kQJk2rahw/ec/8NVXcMeQy+FEQ/42YxJQPMP+ggXg8UDS2sJCobn5ucRKLLExxRcwe1JN4uCP1318xpGJbjq2cHZ1kupw+zm32zkwS2WhUHsy9ELN0FJpTyhxGwlkA7NFeEmESwH711/FcEvaB6q+XNbcfjt89FHRcH8o7LnFBkhGUc9neiaQuDVpAvsOGlFZEV88PL9pUzhw2BG3xTcVq2nXpk3h+b3Z5gF/2wXp3kKhZ59t7JavNqK0fUsCJ0/C5Zc7c2CHVtB5wCK+/LJoCP+LL5qAlKefSODcGmPZWesDlq47UGTocutWGDjQ5MP835tb0r3GIG/iYF+xyc01hVy3b4eBbU2h0CM5R0IKUqTVl2/rdxudG3SmQ/0OIe0slkpEofZkykuSKaXSnqDipsp7qowBugCzMfm9GovwvAi/LKXTlgrGLWnvX325PGjevDCIw5fhThbQdu2Kn3OHMsEMM/pTqxYcPWEEY+VpU33ZF19xq5F7FkM6DGHK0inexMGtWwOxjrjtSqB5cxjaw1RfnpQ1ifbtTW/TDUrZuNaIRf/+JnFwYmwiif0nMX8+nMgxNruzE1i0CMaPNwEu917pgbhcMt6aVqR39+CDkJ9v5gvPOQd2fuxhy+EtfLHxC+8ygLw8GDrUfG+dO8Oin2KCVl/OzjaRnWAKhT4w8AHG9BhT/EvzoUfjHqy+YzUtarcIaWexVBY0Q9/TDC2uPZnyvGRKxNoTSbTkcVVeV+VKTGaQxcCfSum3JQp40sxD9evNZ5TvutQMHWqSI98dICdtjRrAFXfARX8P2HNLSsKIU0EM+eQVSRwMRtwOHzOCUq+2qX228+hOb027s87CK26HDyTSurVP4uBNs9lxbAudO8OGzY64rUukbVtTecCtvrwx5XVO5uZ4A1eWLTaO/tL5bzb07DQSD/Vi9sHCRdOal8D06TB6tBH1P/4RDnx/NTViarF091KvcL36qum1/fnPZoj217+GCb3MImdfcXvwQfPjoUULM9QJ8KcL/+QVQpc9ewoDdCyWqoyTIPl1zdBSaU9E0ZLemykHVZmoyqUl9NMSRdyS9hWRjisYrVsH7pklJQHtvoALHqEg9mSx8zVqYMTpeBO61u5b7DM0bQoaYwSlbq0EruxUtKadb8/t8IEEbwke76LppVPp0gW2bDc22dsT6NKlsH1Pqodj+Qeg00y27jA2WYsSqFuXInZ9YjwcrrmAxdmmztsP8xI4fNiIG5hSPjUTk2lz/DqgULiefRZSU414ZWSY+na7V3XkkraX0LSmWQuxaBHce68ZKq1Tx/QY8wPMQLz+uikx1Ly5eR+MdeuMoOblBbexWCoTmqEHNUMnaoZGrD0lEjdL1SQ5Ppnrul/H2yvf9lZfrix4xSvpCLN2vlfsvOm55UB+Atd29BQrFPr/2zvz+CiqrO//TnYIJOxhJ7IJRCAgKoqoqOAyiKigKEqizouOMvq8Ko7K+IyzqI/jjDOPOjPvMDoDCrjgKOBHEGXAFZFFEpaEJYQl7AYIOwlJzvvHqdtV3V1VqZBOdyd9v59PPp2uul11b3VSvzrnnntOmzbGfoi4JSck+9W069ABPnE7UpqEToZ3LrNFJkZkjsDM/Jno2Il983r7dif5uU+v7X4tOjbrCGTPwJ790qZwQxKGDPGfW7zrgolAVQI+3PQh4igO338XDyIzXVhSkvx+anmuvI9Pwq5dUon8rrvEvXnXXTLejz4C5k+Yj3duk9Ref/6zuGffeQf44x9lYfrHActfDxwAHnxQFrBfeCHwwAPixgxk4UJZHzhyJDB+PFDt4KlesgR49FEz7ZlG09DQ4hYjqOrL/y74d6S74odP3ADM3RJsWfrckpXJmJgt1ZetASPWz7dKNzOHqJp2CQlAarqIX8Vp03ID4CsUWtFuOc6clTYnjyX51ZyLj4vHPQPvAXotRHGpVF3aXpSE3gGZo4b2bwcU3YCzRr7H774DsrLE0lJceSWw8+vL0D29J5Lik3xJn3/yE3lt2lTaLFok9cVSk1Jx9qzUrhs/Xo41dqysI5w71//8M2ZILs2ZM4G33pKcnP/8p3+bigoRwH79gKlTgXnzgA8/DP5OvvhCXK6vvgpccYV/Dk4rf/2rPFxcc43k9bSDGZg/X6qsOwmpRlMfaHGLES7rchl6tuoZ1nRcXrDOqS3dGVwo1CdeVUno3r61L3GwKhTqJ25pMhc2pOMQ9GvbzzfWZulGNGWVabkBZvXlguQZvmOgKiko8CVnYA4QV4WiZiKqx8uS0DMg+LBPHwB5uQDEKtuwwUwDphg4EAAIj3Sfjt+O+C1WrRKLrK9ledmIEVIJ4cgReb9ihSxVuFES7iMhQVycCxf6i8WcOcCwYdKP3r2lasKsWf7nnzcPKCkBXnpJ6uL16gX86U8I4vHHpZBscbEs35g6NbjNd99JdGzXrsA334ho2jF1qgjyuHGS0NqO48eBMWNEtP/nf+zbAOJOfeYZsWzd2LlTgng0sY0WtxhBBVF8seMLbD+yPdLd8eETp603opqr8fa6t/32+8SvKgkJCWKV/XjqRywqWuT/eQCtWojlpsa6vGQ5th7aitQ0Q7gqk32VwQGxjsb1G4dVp94DUsp8bbpYiysB6Nu2L9qUX4yKpjt9bQLFrVkzoNPJ0Uiuao3k+GTs3o2gNllZ8pq8d4Scd5W4EK3uTSWIeYbndYVRuleV+gGA4cOBsjIzmXRpKbBunSmAgOTV3LRJKioo5s2TQJlRo2RZxqRJwPLl/u7LtWtlju+xx0TgHn4Y+OwzEQwrL74oVtvXXwNPPSWWZEGBf5sNG4BXXpFE1j//OTB9ur2b84kngE8+kev19NPAp58Gt9m3T9y6L74I3HqrWKd2/Otf0m8n4QakMO7EiUC7djLPKeXFglm7VsomPfss/HKMWmEGZs8GXn7Z2XoFJNBnzhx5uHBj7drg6xjI8eNSud5u3lVRUWGWe4pVtLjFEJMGTgKBggQkkvjE68d+uLzr5UZJGvNu4xOvahGu63pI4mAVWOL7PIA2LczoQmtNu6bNTassNaD0V252Lk5VHQey3ve1CcywAgCDKdd8Y2PdAUD3bklov2sKujfrDyA4XViXLmKpbdwoN8XCQllkbkWsO1Pc8vIkSMSa0mzoUHlVQvHNN/J65ZVmmxEj5HWZURSCGVi8WFygar3hmDHyahWTBQtk/m+CscLgnnvks9Y5vrIycZ3ee6/U1Hv4YRHo98zMZwCAf/xD5hpffhl4/nkZ++sB+SX27hX36UMPiVD26AH85jcI4oUXRDzWrpVqEE8+KTX7rOzZI4mwhw8HrrtOrMYtW4KP9atfidBkZsq5PrDJTrdvnzwEzJsnwT52kb6AfP7uu6U/o0YB5eXBbfbulTWREyfKA86mTcFtAKlkP3iwtPnrX+3bbN0qwp2dLRlyKiqC2zDLA8XQoeKejlW0uMUQXdO7YsR5IzAjb0ZY67wBwLNLn8U3u74J2p6SwkCCBIzkDMwJKhSqxIsMcUuMT8TE/hN9hUKbNIF8HkDrlgm+z1lr2jVpbpSuqUryW1cHAFd0uwJdm2cCPRf72rS0yft7ResJQGUSCHEAx6Ndu+A27dsDKSuew7TOsgwh0HIjkpv3zp1yoz5xAn7ze4AsWm/b1nx6z883BU/Rp4/Mz+Xny/u1a0Vc1IJ0QD6TkiL7AKmMcPgwcOmlZpsLLhC340pLXdZly8R6VGLao4eIgLUo7OLFEmk5dqy8b9dOBGW+pUwls1hzo0fLEofmzWXe8OOP/aM033tP3j/6qAjh5Mni8ty61WxTXi5ziXfdJTf13/xGrJL5AWUx33hDBO+f/5Q5yPh4mTe0UlYGvPaaiPby5fJw8etfB1tvf/yjuIbXrhV36l/+Im5aKyUlIroTJsg41qyR8wbyzDNiXc+eLWOcMiW4TV6eiOjtt0uwz+OPmwm7rUyeLFbk1KkS9BP4sACIWM+eDfz0p2YChVhEi1uMkTswF9vLttsKTX3ywjcvYNrSaUHbE5OrAGKgKhnj+433JQ5WKMtNiRsAv0KhZsBJElq29E9ioGraHWtnmCY2llscxeHu/pOkDwBQneQXBKI4r31LYPPNiK+SA9gJYEaG3HSVCy8zM7hNhw7yJL/d8AwHihsgyxdKSmRObcsW053p63OciI6aV9q0SY5jXWoRHy9zeRuNqodqbdyQIf7HGTLE3FdVJdag1QIExCX69demACxfLhbbJZeYbUaMENfo8ePyfutWsX6uv95sc/31Mn9oFdNPP5V+qgcBtXTCak0uWSLHVdbkVVfJtQ4MhpkzR/b16CH7x46VG711bvL990UAH31U5i8ffliu0Zo1ZpvKSnFv3nab9O2ZZ+QYs2f7n2/mTLGcXnxRhPuii0QErRw6JFGukyeLOE+dKmnb1PeieO01eWCZPl0s3vJyebWyZo0E+/zyl8Dvfw9cfbW4XgMDdV5+WR6AnnoKMY0Wtxjj1r63ollSM7+Iw/qmqroK1VyNr3Z+heIj/o+/8UmmyzA9JR239r0V725811coNCUFQEK5n7gNyBiAwR0GY2b+TEvASXJQ4mVV025ni5m+cwSKGwDcO9hcCJ3WNCkofRggN0ss+l90Wf4R0tPlxmjXpqxMxAsIro4AyBq0vXtlUTtgL4Bdu8pT+8GD8pTetWtwmx49pAwQIOJmDUpRZGWZN9H160XwrMVeAbH21q0TYSsulvkoO1dpaan0B5DlC4MG+adTGzpUxE8J5Vdfyevw4WYb5SpdvlxeKyulnVoMr65Ht27m5wGxJpOT5WYOyHlvvFFEQgluSYk8CChXKyAu2AMHTBcvIFZnly7i/gNEwIhku+Lbb8XKVULbubPM9/07INB47lzZnpkpx7jzTrnO1mCWefNEAO+9V97n5prbFZWVcmwVEdutm1yTwLWKH3wgf3fqWD/9qaRs+8bynLp9u3wH999vn+4uloiIuBHReCLaSETVRDTEsn0kEa0hovXG69WWfRca24uI6FXSWV7PidSkVIzvNx7vF7yPkxUnw3JOlbUDQFCOy7hEU9wA+AqFqjpkyjKLY/9UVDkDc7Bm3xpsP7neF3ASKG6qpt2ZuEPGOZKD3JIA0LN1D8SVyF24RZp9rsaMDAAnOmD3V9fYzskBZv25TZvgKIAdO5olfAB3cVPBB9blC74+9xQxqqyUm/r55we36ddPbn4nT8pNr0sXcYtZ6dVLBHT3btMV2q+ffxsliBs3igiuXevvAgXEagEkGAUQQUlLg9+SiTZtZCxKbDZvFjG1WpOACOK335rvV64UMbVmsBk6VARIuQq//lper7jCbKNSwal91dXiXh050qwL2Lq1iLmamwSkTVycv+iOHCkPAWVG3NGhQ/L+hhvMNjfdJK+ffWZuW7ZM/nays+V9RoZcu0WLzDarVvlHxALye3Gx+RAESNDN8OFACyn0gNGjpZ+ff262WbhQXm+5BTFPpCy3DZDkmF8FbC8FcBMz9weQA8Aa+fA3AP8HQC/j53pozonc7Fxf4uBwYBW3wByXlOAvblefdzU6p3X2uSaVZRZX7Z+b667+dyExLhFzt870iZtd1QFVQVqdw85yA4BmP/wS2DQGrZo3sd2vjn32bHBJH0VGhrwWFDi36dBBbrKFhfYVFAARt5MnzfVlduLWvbu4rjZuFIHo1i24jfqcshTtXKAqMGb7dlPcAq1A5RbdsEGOdfp0sAC2aiXiZbUm+/TxLy4LiBWo5gqVyAXOKQ4YIC7NsjIR0zVr/F2ggOTqBMygmlWr5G/FeqwOHeSBQ51n5045ZuCxLr9cjqOswNWrZXzWh6XLLpP9KnpVvQ4bZrbp0UOugbJeAeDLL8XNa70OV18tbVQE5pdfmtsV1xh5OJToHjsmfw/K+gWkf4MGmeKt+tWhg30e11gjIuLGzIXMvNlm+1pmNpw62AigCRElE1EHAGnMvIIllO4tSPlxzTlweVdJHByudFxK3C7tfCl2lO3A1zvN/8az1f7iFh8Xj0kDJmHxtsXYd3yfo+XWpmkbjO49Gu8WzAIST9paboDUtMuIP993DjtrCgBaHBoFvDsfrVra/0tYrQYn4VJBJps3O7fp2FFeCwrEurPzP6i1eGpuyk7c1LmUINkFuKhzKXGzsxKV4CkroV274Lp67dvLHNuOHe7uVKurdPNm//Rkiv79RfiqquRmnZgY3E6937RJrNdTp4LdqVlZYrWoKu6bNon1GuiKy842g2rWrZPXQLdr//4S3LNrlwjY6tXB1qQSUzU3t3KlOWepIBILVolbaalYxOqzikGDxFWpoibz8+V6Wt3YffsGBw0Bwf0aNkz6oubdVqwQq1b7taJ7zu02AD8wczmATgB2W/btNrbZQkSTiWg1Ea2u1An0goijOEwaMAlLty/FzrKdNX+gjqhSMXdk3YHmSc39FpL7rLoq/4CRaq7GrHWzTMuNg92FOQNzcODkAYl0dBA3IsLINvcDVQlAuU0DA+WutAsUAfzFzW4uzXoMwFnc1PF37jTdS4Go7YWF4tps2za4jeqDF3Hbvl0Ezs5y69JFBKG4WKylwGrogNwovcwV9uwp4nbypNzU7Vyl3bqJK3X/fjlWt24icFaU5VhYaLpvA5dVJCaKhav2Fxbazzv27y/XqLpaxI3IXigBsYIPHZK5xUABbN5croGK4tyyRa5BoCdg0CDpy9mzpvAGWrnKRaksynXrgs8XFyf92rBB3it3b6A7+IILxJLetUseAoqKzPnEWKfexI2IlhDRBpufmz18NgvASwAeOJdzM/N0Zh7CzEMSnB7VYxxr4uD6RglYi5QWuD3rdszdONeX41IV97SKW+/WvXFp50sxI38GkpPZUdxu7HUj2jZtCzQ95ChuAHB/v8eAv60DzjgoFwz3J5zFzRqJ6KWNk7gpATx40FnclKuypETa2AW4KHFTN1DlErWihErdRO2EKzFRhPHAAREcNW8YSKC4OQW57Nrl3kYtkC8pEQG0s0rPO08Et6jIWdzUtm3b5Ka+c6e9pZiZKUJz4IAIeMeOweHxStwKCsy+27n1zj/fXDen1pvZ9amqSsbnJG69e8t1LygQC27zZhHhQKzitnWr/E0FPsSoB4jNm835x8AlKLFKvYkbM1/LzBfY/Mx3+xwRdQbwEYBJzKzijvZASh4oOhvbNOfIeS3Pw1WZVwUtmq4PrDXOVI5LNd/ns9wq/efUcrNzUfBjAQqPrQHiKxCPYHFTa97U5+1K5gBAh4x4oNTmsd5CTZabNRDDSUS9uC6t1l1N4rZ3b7BloPBiuaWni2irNk5ja9lSgjO8iNuuXcZ6PpsKD+3bi1tPnc9OcK3iVlKCoGwwgAibEtziYhGCTjZ+GiVuuw2fjlNwDiD93r3b/nwtW8o1LylxX6LRu7eIG7OzuClRLC4WwWnSJPic8fEi6iUlsvC8qspevPv0kWtw/LizW9nqwlUuYS1uQlS5JYmoBYBPADzFzL54KWbeB+AYEQ01oiQnAXAVSU3NqMTBy0uW1+t5fNWpE5IxrMsw9GjZwxcwovalpviL1+1ZtyMlIQXzts8A4iuC9itysqX2GaqSHOcZ7G6ygdQkbnFx5nxOE/uYE0/WnVXc7NbTAaa4lZc7L8K1Wm7x8fZiSiRjV3M7Tn1q1cq7uB0+7OyWDbQm7QRX3eh37pQbu53YANKP/ftFADp3tg9rz8wUN6ISJLu+B4qbnaUIyPj27XN3u3bvLufbuVMCPOxExBqgs2ePnM/O8lYRsUqY7cRbbVP9sutT27bysLVtm7uVG4tEainALUS0G8ClAD4hIrXKZAqAngD+m4jyjB/1L/IQgDcAFAHYBmBR4HE1tWNcv3FITUz1WzRdVwp+LEDZmTK/bVbLzVcodMcy7Cjb4ds3a6a/eLVIaYGxfcZiYckcUGI5xt1iL27Z7bOBvYOB0w6mEpxFxEpNbkm7toFYxc3JuquN5QY4i1tysmnVtWljfwNVn1fr7twst6Iicd/ZuS4B2X76tPtcoRdrskULuQarV4vF4iQ2akH84cPwywdqRW13c81axU0JpR1qcf2OHaYlF4gaj3IV2l2rTp3E0iwudn9Y6NrVdM0C9v1Sc6Z79jiLG5Gc4+BBEdT0dG9/w7FApKIlP2LmzsyczMwZzHydsf13zJzKzNmWn4PGvtWGW7MHM0/h+valxQAqcfD7Be/j1NlTITnmyLdH4uGFD/tts4obAF/16Lfz3/bta2mzvix3YC6OnDkCRjVapzv4HAFg9kJgwZuOu71EjtVkuQFmRJqTuFndknbr6QK3O4mEVdDc0icpMXHqjzqfSrDrFuSibrJOQqI+60XclNjYBcIQyefV/JBdG0CEav9+ETenfgeKqZ24pafLQ0BBgQS6uInbvn0iEk6CpPqqzmd3reLjZXtpqbu4deki11yl2HITt/Xr5cHCbrkHIKJ78KCc0+6BIlaJKrekJvzkDMzBsfJjmLcpuFDouVB2pgwfFn7oZ72poBElbt1adPMVClWRlGqflWu7X4uOzTs67vdxMgM44XAXMWjd2j+zfiBexE09TjmJiXVezkncrJ91Eom4OFPU3MRN3fQDF2Y7nc/NLamoSZRLS50tYavYtG5tv4gdEKtIWZNOFm779mK5HTrkLG5qe2GhiKad2CgxVa5ZJ8tUuV2PHHH+XpS4KfF2ehBo2VKO4yZunTpJ1GhenlwDO0vRKm5u51NW7qFDzi7jWESLW4xzZeaV6JbeLWSuyfLKcl+hUEWg5QZIwMi2I9uwbPuyoH2K+Lh43DPgHsf9irlzJWegG6Wl/lkoAgmFW9JqITq1sc4dOd1EAfNm5yZuyg3qJm5KlOLjnYXEOmanoBwvFqe6sVZWOltkgPSjJnHLyBA36bZt3iy3tm3dxVSV/rETEUBE78wZd8s00HJzGmOrVjK+o0edxVQ9IBQVOc8JN29uWp2Ac7+U5abFzR8tbjFOHMUhZ2AOlhQvwe5ju2v+gAtV1VWoYvGBWReI+wJK4s075619b0VqYir+lfcvAM7ilZudiziKQ8smzqozbpzk5asLXiw3hZsbMPB4brjdiNRN2ClaEjBFLXCdmF0/WrRwds9ax2wXBWk9jjqWUxv1ebfxN29uWsFO4m0VvZost8OH3cU0Lc2sWed0PiU2avmFHYEL552+v5Yt3ecBVZ8AEUEngVfWqHLhOlnMGRkibAcOaHGzosVNY655y6/bmrez1ZJPqF1qOywvWY4th2RRkJ3l1iypGcZnjcePp34EIJGUdvRp0wfrf7Yed15wZ536VhOhFjcvbZzcTIA3y02JmxfLzW1ctRU3twAddXN165P1Zl6XZRXWG7mbmKalmXXPnK6n+r7Ky53FLTVV2p04Icd0GmOrVmYOSqfr7mW5ByDj2r9ffnfqV0aGPCzs3avFzYoWNw16tOqB4V2HY0b+jDqteVMiNmnAJCkUalQesBM3QAJGFG5ux35t+zmKX6i47DJJjhtOy81N3NQNPRziZhWYulhugHlt6ipuXhbEp6SY/XJypwLeok+9zIVa++L23Xl5WLCO2+07tgqf00OFtb9a3Ey0uGkASGDJlkNb8P2e78/5GErEurXohut6XIe31r2Fquoqx6CR4d2GI7NFpu2+cDNqlGRzdwqptxIqy83tRqTWS7ndtGvjlnQTN6tw1VXcVH/dxM3rUgeFF6uzruLmdXxqXG7Wq1WMna6nlz557Zf1WmtxM9HipgEAjM8KLhRaW6xRkbnZudh9bDeW7VjmaLnFURzuzb4X8RSPZkkNp2RwOObc1EJcFXhhR6gsN6t1UFdx8yK4ympJSHAWJev2mtx21vPaEUrLTQWtuI3Pi+VWW3GLj3e+Dtax6zVuJlrcNACAtOQ03NbvNry7wSwUWlusIjbm/DFokdICM/Jm+GUoCeTpy5/G6smrkZbsEMYWhYTKcnMTQFWWxSmUHPAmbl6iQGtrubmJspc+KXFLSnIOcrH2w+1aqnZeLTcngfAq3kq+mCtLAAAUeElEQVTc3FLWeok+ra24OVWQAPyvtZe/u1hBi5vGR87AHBwtP4r5m84ts5lV3FISUjAhawI+LPwQpadKfdsDSYxPlCwjDYhQWW5uDBsmdbqefNK5TajckrW13Nzmm7y4JZ3m2eyOA4RW3JyulVfLTX3eTdy8XM/kZPMYXsXNCeu1drsO4YKIXiaiTUS0jog+MtIqqn1PGwWnNxPRdfXZDy1uGh8jMkegS1oXv5I0tSEw5D8nOwenK09j9vrZACI/rxYq6mq5vfgikJNT8zEuv9xdJLwISajm3LzO69TGcquudm5j7Yfbg0Jt5/icqK3l5uWBAnC+nkTmPi/i5sUVHPh7BPkcwAXMPADAFgBPAwAR9QMwAUAWpNj0X4nIJmtoaNDipvERHxePSQMn4bNtn2HvcZfJHgcC59Yu6XQJzm99PooOS7ryxDiXO0IDoq6W21NPATNm1L0foZpzs/bV6cnf6hLzsvbOrU+qntoZF+93KC232kbA1tUt6cVyA8zgJS/i5mYtR5vlxsyfMbMqpLkCZkWXmwG8y8zlzLwdkif4YrtjhAJq7Ckau3Tpwm+/Xf81yxoLJadKMGnVJEw+bzLu7Fq7tWUbj27ElLwpeKn/S7i4lfzNztk1B//Y/g/EIQ7/ufI/9dHlsKGqMAcWjKxtm1CxZ4+sgWrTxjnvYFmZZPno0cP5ps3sXAzTipexbdsm52zb1r6em6KkRATCKYNHRYWZdmrgQGcxKSqSTCDt2jlXGCgvN5MdO/W9utqsdu12vs2bZZ1berpzaZnTp82F3tnZ9hUNAKmyXVkp352TeO3dKwvQW7WyL8MTeD5VwbuujBgxogLAesum6cw8vbbHIaKPAbzHzLOI6HUAK5h5lrHvTQCLmPmDuvfYBmZu1D9NmzZlTe247M3LuO/rfbm6urpWn1u2fRnjOfDS4qW+bSVHS5ieI27yuyah7mbYSUpiBtzbiFSEpz/Tpsm5HnrIuc2iRdJm6VLnNtXV3vrtpc0dd0ibKVPc29XEnj3m+U6ccG43bpy0eewx5zZVVTX3vaLCbHPmjHO7K66QNjff7Nxm82bzWCdPOre76ippM3u2c5vnn5c2Dzzg3KagwDzfunXO7WoDgJPscl8FsATABpufmy1tpkFqcyoj6nUAd1v2vwlgnNt56vKj3ZKaIHIH5qKwtBCr966u1efsQv47p3XGyB4j0SSx4Ydx5ecDM2fW3C5cKHeUk2UASLLoF1+U+TsnvFRNqG2f6jr349Ut6WXOLS5OinoOG+bcJjFRrmOTJu6uvdrOubkda8gQeS0tde9X4DEDiYRbkmsoRk1EuQBGA5hoiCUgBaat9nW9Fp128RxrYpXbs27HI58+ghl5M3BRp4s8f84p5P/1G17HptJNIe1jJOjTx6x87MTWrWYZk/pG3dTcZhZSUmSOLxTcfbf70gRrn0Ipbm4L69V5arqpFxTULOJNm7rPfwHeoiWtQuT24PHss+LivOce5zanT8urm8BH25wbEV0P4EkAVzKztZbWAgBziOgVAB0B9AKwsr76ocVNE0R6Sjpu6XML3tnwDl657hXX1FfbDm/Dlzu/xH2D7nNcrN2rdS/0at2rXvscLfTs6TwXE2rCHRnnZeo6VOLmFohhRYlHTTd1L9ZpkybuwSRA7QNK3EhLA/72N/c2pwxp8BIxCkRNtOTrAJIBfE5y4Vcw84PMvJGI3gdQAKASwMPMRqb1eiBSlbjHE9FGIqomoiE2+7sS0QkiesKy7XpjbUQREYXoWVTjRG62FAr9eMvHru1m5s/E/Qvux8aDGx3FTVM/uN1gI4USGze3nRe8jk2JVihu6k2bhkbcQikwXsQt2iw3Zu7JzF3YLDj9oGXf8ywFp89n5kX12Y9IzbltAHArgK8c9r8CwDdwYy3EXwDcAKAfgDuNNROaeuKa865Bp+adakzHpbKZzMyfGVSUVFO/qBt7NAY8h8uCUNcgFDf12oibm3iHcg7ziSdkvtTNdRlt4hYtRETcmLmQmTfb7SOisQC2A9ho2XwxgCJmLmbmCgDvQtZMaOoJVSj006JPsf/Efsd2ylqbtW4WTp2Vx0wtbuEhlDfRUFuB4XaPhaL/zz0nYuLlPOGymrt2lUw1DWmdW7QQVdGSRNQMwC8A/DpgVycAJZb3u41tTseZTESriWh1ZWWlUzNNDeRk56CKqzB73WzHNkrc9p3Yh0+2fgLAvyippmFQVgYcP1734yjB9VJdIRSo84TCeh0/Hrj6avc2XgJKwo01aMUtgCXWqLc/QSJaQkQbbH7cLK7nAPyJmU/U5dzMPJ2ZhzDzkIRo+itsYPRp0weXdLrEtc5bRVUF2jZti9ZNWmNRkXiSteUWXkJxY09NrTlS0AuhtCZrcz63VF6hJNyWmxes1zzc1z+aqbeviJmvPYePXQJgHBH9HkALANVEdAbAGoRxfYTGJDc7Fz/75Gf4Yd8PuLBjcHqHiqoKNEtqhtG9R+O1la8B0OIWLqL5RhauecBwzzt6mXPTRAdR5ZZk5uHMnMnMmQD+DOAFZn4dwCoAvYjoPCJKgiTfXBDBrsYMd2TdgeT4ZMzMt1+9XFFV4avfptDiFl6iMaAkVLRr561duMWtJsvtD38A/vzn+u+PxplILQW4hYh2A7gUwCdEtNitPUsSzikAFgMoBPA+M290+4wmNLRs0hI397kZs9fP9kVDWimvKkdyQjIGtR+E/u36I47iEB+nHf/hIBqjJUNpTR49ChQXu7cJ5ZybF7yK2+OPA48+Wv/90TgTqWjJj5i5MzMnM3MGMwfV9WHm55j5D5b3C5m5t7FG4vnw9ji2yR2Yi8OnD/sCRqwoy42IMG34NNzU+6YI9DA2iUa3ZCgFNy2t5gXR4RZ4db5omnPT2BNVbklNdDKyx0h0aNbB1jWpxA0A7rjgDsybMC/c3YtZso0ar1ddFdFuRJTcXHn9yU/Ce1495xb96OcPTY0kxCXg7gF3408r/oSDJw+iXao5EWIVN014ufRS4OBBKS8TLYTbkho8ODJuWW25RT/actN4ImdgDiqrKzFn/Ry/7VrcIks0CVssoIRUryeLfrS4aTyR1S4LQzoOCUrHpcVNY+UXvwDGjAHuvTfSPalfwrVIXXPu6K9I45ncgbnIP5CPvP15vm0VVRU6I4nGR0YGMH9+zTkaGyrK7RptwTz33Qc8+GDN7WIJLW4az0y4YAKS4pMwM88MLCmvLNeWm0YTYd58s+byObGGFjeNZ1o3bY2bet+EWetn+XJKarekJpaIpjWFGne0uGlqRW52LkpPlWLRVskjqcVNo9FEI1rcNLXiuh7XISM1w7fmTYubRqOJRrS4aWpFYnwiJvafiI+3fIwfT/6oA0o0Gk1UosVNU2tysmXN2zsb3tGWm0ajiUq0uGlqzYCMARjcYTBm5M3Q4qaJSaJtKYAmGC1umnMiZ2AO1u5fCwZrcdNoNFGHFjfNOXFX/7uQGCfZY7W4aWINvSQg+tHipjkn2jRtg9G9RwMAkhN0QIlGo4kutLhpzpmcgTkA4LPgNJrGTrLxHJeknRVRT6QqcY8noo1EVE1EQwL2DSCi74z964koxdh+ofG+iIheJdJTupHmxl434pnLn8GNvW6MdFc0mrDw3/8NTJ3a+BNDNwaII+A8JqK+AKoB/B3AE8y82tieAOAHAPcwcz4RtQZQxsxVRLQSwCMAvgewEMCrzLyopnOlpqbyyZMn62soGo1G0+ggolPMXEMd9OgmIpYbMxcy82abXaMArGPmfKPdIUPYOgBIY+YVLGr8FoCxYeyyRqPRaBoQ0Tbn1hsAE9FiIvqBiJ40tncCsNvSbrexzRYimkxEq4lodWVlZT12V6PRaDTRSL0VSyeiJQDa2+yaxszzXfpzOYCLAJwC8B8iWgPgaG3OzczTAUwHxC1Zm89qNBqNpuFTb+LGzNeew8d2A/iKmUsBgIgWAhgMYBaAzpZ2nQHsqXMnNRqNRtMoiTa35GIA/YmoqRFcciWAAmbeB+AYEQ01oiQnAXCy/jQajUYT40RqKcAtRLQbwKUAPiGixQDAzEcAvAJgFYA8AD8w8yfGxx4C8AaAIgDbANQYKanRaDSa2CQiSwHCiV4KoNFoNLVDLwXQaDQajSYKafSWGxFVAzh9jh9PABBrawn0mGMDPebY4FzH3ISZG7Tx0+jFrS4Q0WpmHlJzy8aDHnNsoMccG8TimBUNWpk1Go1Go7FDi5tGo9FoGh1a3NyZHukORAA95thAjzk2iMUxA9BzbhqNRqNphGjLTaPRaDSNDi1uGo1Go2l0aHEDQETXE9Fmo8r3Uzb7k4noPWP/90SUGf5ehg4P473CKDlUSUTjItHHUONhzI8RUQERrSOi/xBRt0j0M9R4GPeDRoX7PCL6hoj6RaKfoaSmMVva3UZETEQNOlTew3ecS0Q/Gt9xHhH9NBL9DDvMHNM/AOIhuSq7A0gCkA+gX0CbhwD8P+P3CQDei3S/63m8mQAGQIrCjot0n8M05hEAmhq//6whf8e1HHea5fcxAD6NdL/re8xGu+YAvgKwAsCQSPe7nr/jXACvR7qv4f7RlhtwMYAiZi5m5goA7wK4OaDNzQBmGr9/AOAaozpBQ6TG8TLzDmZeB6A6Eh2sB7yMeRkznzLeroB/iaWGipdxH7O8TQXQ0CPMvPw/A8BvAbwE4Ew4O1cPeB1vzKHFTSp6l1je21X59rVh5kpI8dTWYeld6PEy3sZGbcd8PxpH1QlP4yaih4loG4DfA3gkTH2rL2ocMxENBtCFzYojDRmvf9u3GS73D4ioS3i6Flm0uGk0FojobgBDALwc6b6EC2b+CzP3APALAL+MdH/qEyKKg5TVejzSfQkjHwPIZOYBAD6H6YVq1Ghxk4re1icZuyrfvjZGEdV0AIfC0rvQ42W8jQ1PYyaiawFMAzCGmcvD1Lf6pLbf9bsAxtZrj+qfmsbcHMAFAL4goh0AhgJY0ICDSmr8jpn5kOXv+Q0AF4apbxFFi5sURu1FROcRURIkYGRBQJsFAHKM38cBWMrGTG0DxMt4Gxs1jpmIBgH4O0TYDkagj/WBl3H3srz9CYCtYexffeA6ZmY+ysxtmDmTmTMh86tjmHl1ZLpbZ7x8xx0sb8cAKAxj/yJGQqQ7EGmYuZKIpgBYDIk8+iczbySi3wBYzcwLALwJ4G0iKgJwGPIH1CDxMl4iugjARwBaAriJiH7NzFkR7Had8PgdvwygGYC5RqzQLmYeE7FOhwCP455iWKxnARyB+RDXIPE45kaDx/E+QkRjIKVvDkOiJxs9Ov2WRqPRaBod2i2p0Wg0mkaHFjeNRqPRNDq0uGk0Go2m0aHFTaPRaDSNDi1uGo1Go2l0aHHTRB1EVGXJYJ7X0KswKCzZ2d+o43GeI6InLO+HEtE/6t7DWvfjRA37mxjfXwURtQlXvzQaQK9z00Qnp5k5226HkbCamLmhJnV+j5mnBG4kogQjb+m5cAOAT+vWrdDDzKcBZBuZQDSasKItN03UQ0SZRr2qtwBsANCFiKYS0SojGeyvLW2nEdEWozbZO8rCIaIvVIolImqjbrhEFE9EL1uO9YCx/SrjMx8Q0SYimq0qQRDRRUS0nIjyiWglETUnoq+IKNvSj2+IaGAN48ologVEtBTAf4ioGUktuR9IaqzdbGnrGxeA8wMOdQ2AJUSUZfQnzxhLL+Oz84hoDRFtJKLJlmOeMMa+kYiWENHFxpiLjUW/qo/zje1biehXDmOx/T40mkihLTdNNNKEiPKM37cD+L8AegHIYeYVRDTKeH8xAILkBrwCwElI9phsyN/2DwDW1HCu+wEcZeaLiCgZwLdE9JmxbxCALAB7AXwLYBgRrQTwHoA7mHkVEaUBOA3JYpML4L+IqDeAFGbO9zDWwQAGMPNhkryltzDzMcONt4KIFhhtbMdltDvLzEeJ6HcA/peZZxupmOKNc9xnHL8JgFVE9G9mPgQpcbOUmacS0UcAfgdgJIB+kOS6KpvHxZB8jKeMz39iTVfl9H0w81cexq/R1Ata3DTRiJ9b0phz28nMK4xNo4yftcb7ZpCba3MAH6m6bIYw1MQoAAPIrDiebhyrAsBKZt5tHCsPUsT1KIB9zLwKMOuhEdFcAM8S0VQA9wGY4XGsnzPzYTVUAC8YQl0NKV2SAWC4y7hGAVBi/B2AaUTUGcCHzKzyRD5CRLcYv3cxxnfIGKNyZ64HUM7MZ4lovTFWax8PGef+EMDlAKy5GJ2+Dy1umoihxU3TUDhp+Z0AvMjMf7c2IKL/cvl8JUw3fErAsX7OzIsDjnUVAGtlgCq4/L8w8yki+hxSKPJ2eM+8bh3XRABtAVxoiMyOgL7acQOkhAuYeQ4RfQ9JgLzQcLFWA7gWwKVGH7+wHPOsJQF4NYzxMnO1YUX6hhc43ID3tt+HRhNJ9JybpiGyGMB9RNQMAIioExG1g1gKY40oveYAbrJ8ZgdMwRkXcKyfEVGicazeRJTqcu7NADqQJJeGMd+mhOANAK8CWMXMR85hXOkADhrCNgJAN2O77biMOcABAPKM990BFDPzqwDmG/vSARwxhK0PpMRLbRlJRK0Mt+ZYiIvWitP3odFEDG25aRoczPwZEfUF8J0R43ECwN3M/AMRvQcgH8BBSDkQxR8AvG8EVFgrML8BccH9YIjFj3CpacbMFUR0B4DXjJv9aYhldIKZ1xDRMQD/OsehzQbwseEWXA1gk3FOp3FdCGCtxfq6HcA9RHQWwH4AL0AswweJqBAizMq1WxtWAvg3pFbYrMDyME7fh9FXjSYi6KoAmkYLET0HEZ0/hOl8HQF8AaCP3VIFIsoFMMRuKcA5nu+XAIqY+d1QHM/hHLmoY58N9+oQZi4NVb80mprQbkmNJgQQ0SQA3wOY5rIG7zSAG6iOi7gVzPy7+hS2umK4UfMAJELm9DSasKEtN41Go9E0OrTlptFoNJpGhxY3jUaj0TQ6tLhpNBqNptGhxU2j0Wg0jQ4tbhqNRqNpdPx/G4lXtvvjmj4AAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"fig, ax1 = plt.subplots()\n",
|
|
"ax1.set_title('Digital filter frequency response')\n",
|
|
"\n",
|
|
"ax1.plot(w / (2 * np.pi), 20 * np.log10(abs(h)), 'b')\n",
|
|
"ax1.set_ylabel('Amplitude [dB]', color='b')\n",
|
|
"ax1.set_xlabel('Frequency [rad/sample]')\n",
|
|
"\n",
|
|
"ax2 = ax1.twinx()\n",
|
|
"angles = np.unwrap(np.angle(h))\n",
|
|
"ax2.plot(w / (2 * np.pi), angles, 'g')\n",
|
|
"ax2.set_ylabel('Angle (radians)', color='g')\n",
|
|
"ax2.grid()\n",
|
|
"ax2.axis('tight')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 105,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(63,)"
|
|
]
|
|
},
|
|
"execution_count": 105,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"b.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 129,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def optimfuncQMF(x):\n",
|
|
" \"\"\"Optimization function for a PQMF Filterbank\n",
|
|
" x: coefficients to optimize (first half of prototype h because of symmetry)\n",
|
|
" err: resulting total error\n",
|
|
" \"\"\"\n",
|
|
" N = 2 #4 subbands\n",
|
|
" cutoff = 1.5 #1.5\n",
|
|
" h = np.append(x, np.flipud(x))\n",
|
|
" f, H_im = sig.freqz(h)\n",
|
|
" H = np.abs(H_im) #only keeping the real part\n",
|
|
" \n",
|
|
" posfreq = np.square(H[0:512//N])\n",
|
|
" \n",
|
|
" #Negative frequencies are symmetric around 0:\n",
|
|
" negfreq = np.flipud(np.square(H[0:512//N]))\n",
|
|
" \n",
|
|
" #Sum of magnitude squared frequency responses should be closed to unity (or N)\n",
|
|
" unitycond = np.sum(np.abs(posfreq + negfreq - 2*(N*N)*np.ones(512//N)))//512\n",
|
|
" \n",
|
|
" #plt.plot(posfreq+negfreq)\n",
|
|
" \n",
|
|
" #High attenuation after the next subband:\n",
|
|
" att = np.sum(np.abs(H[int(cutoff*512//N):]))//512\n",
|
|
" \n",
|
|
" #Total (weighted) error:\n",
|
|
" err = unitycond + 100*att\n",
|
|
" return err"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 131,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"3.0\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEWCAYAAABIVsEJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy9h23ruAAAgAElEQVR4nO3dd3xUVfr48c+TRgglhSQQEkLvHQMIoqCAYEVX17Wsoqvr6vbid7/6dVdd19113aJbv/74KnaxF0SFRQTpJbQQauikkUYSEtLz/P6YC44xIT035Xm/XvPK3Dvnzjz3zmSeOefce46oKsYYY0x9+bgdgDHGmLbJEogxxpgGsQRijDGmQSyBGGOMaRBLIMYYYxrEEogxxpgGsQRiWpyIrBKRe87z+LMi8uuWjKmtEJFYESkQEd8Gbn9URGY1dVytiYjsFpEZbsfREVgC6eCcL5Qi50spXUReFJGuLfj6d4rIWu91qnqfqv62GV6rn4ios68Fzr4/6PW4iMh/iUiSc0yOi8jvRSTAq8yLznPMq/LcTzvr7/Tarwqv1yoQkX9WE9MtIrK3yrrlNax7UFWPq2pXVa1oosPSpETkMREpq7Lfv2zG13tRRJ7wXqeqI1V1VXO9pvmSJRADcI2qdgXGAeOBh1yOp7mFOPt7C/CIiMx11v8duBe4A+gGXAHMAt6osv0BpwwAIuIH3AQcqlJug/Nlf/b2w2piWQ0ME5EIr+caC3Susm6KU7YteLPKfj/ldkCmeVgCMeeoajqwDE8iAUBELhSR9SKSKyI7vZsGnF/Zh0XktIgcEZHbnPWPicirXuXO/vL38349ERkOPAtMcX6p5jrrz/2qFJEZIpIsIr8QkQwRSRORu7yeo4eIfCQi+SKyRUSeqFqjOc/+bgB2A6NEZDDwfeA2Vd2gquWquhu4AbhKRKZ7bfoRME1EQp3luUACkF6X160SQwpwGLjEWTXBiemLKut8gC1Vj6XTHPhbEVnnvA//EZFwr+Nzu4gcE5FsEXnY+7VFpJOIPCMiqc7tGRHp5Dz2hYjc4Ny/yHnNq5zlmSKyoz77Wdtnog77Mc3rc3jC+ezdC9wG/NL5/HzklD3XTFfLPp73s2VqZwnEnCMiMXh+dR90lqOBj4EngDDgAeBdEYkQkS54frFfoardgKlAvb5UVHUvcB9f/lIPqaFoLyAYiAbuBv7l9eX9L6DQKTPfudVlX0VELgJGAtuBmUCyqm6uEuMJYCNwudfqYuBD4GZn+Q7g5bq8bg1W82WyuARYA6ytsm6jqpbVsP2twF1AJBCA531CREYA/wvcDvQGegAxXts9DFyI5wfDWGAS8CvnsS+AGc796Xw1yU13Hm9qNe1HX+BT4B9AhBPvDlVdALwGPOV8fq6p5jnPt49w/s+WqYUlEAPwgYicBk4AGcCjzvpvA5+o6ieqWqmqy4F44Ern8Uo8v947q2qa84u9OZQBj6tqmap+AhQAQ8XTkXwD8KiqnlHVPcBLdXi+LCAHeA54UFVXAOFAWg3l0/B8cXl7GbhDRELwfKF+UM12Fzq/mM/eLqzh+b1rGxfjSSBrqqw73xf2C6p6QFWLgLf4sgZ5I7BEVVeragnwazzv2Vm34TmuGaqaCfwGT7I5G9PZWtclwB+8lmtLIDdV2e/e5ylbl/24FfhMVRc5n4FsVa3rj5Xz7SPU8Nmq43N3eJZADMB1Ti1iBjAMz5cpQF/gm95fBsA0IEpVC4Fv4alBpInIxyIyrJniy1bVcq/lM0BXPF/qfngS31ne92sSrqqhqjpcVf/urMsComooH+U8fo6qrnVe/2E8X9JF1Wy3UVVDvG4ba3j+1cAY55fvhXhqZPuAKGfdNM7f/+HddHb22ICn1nHueDjvWbZX2d7AMa/lY846gA3AEBHpieeL/GWgj9OsNKmWeN6qst+p5ylbl/3ow9f7l+rqfPsINX+2TB1YAjHnqOoXwIvAn51VJ4BXqnwZdFHVJ53yy1R1Np4v2H3A/znbFQJBXk/d63wv24iQM4Fyvtos06eBz/U5ni/ISd4rRaQPni/1VdVs8yrwCxrXfIWqHgZS8XTgH1fVAuehDc66rnia0eorDa/jISJBeJqxzkrF8yPhrFhnHap6BtgK/ARIVNVSYD3wc+CQqn4lodZBfT4TVZ0ABtbwWG2fnxr30TSeJRBT1TPAbBEZi+cL8hoRmSMiviIS6HQ8xohITxGZ5/SFlOCp+p9tHtkBXCKeaxaCOf9ZXSeBGPE6VbaunFNZ3wMeE5EgpwZ0Ry2b1fRcB/B06L8mnhMHfEVkJPAuni/Oz6rZ7O/AbJrm7Kg1eL6c13itW+usi6+hhlObd4CrnQ7oAOBxvvo/vwj4ldOnFQ48guc9P+sL4Id82Vy1qspyfdTnM1HVa8AsEblJRPzEc+LE2eatk8CA82xb2z6aRrAEYr7CaSd+GXjE6UCeB/wPnl/7J4D/wvO58cHz5ZaKpz9hOnC/8xzLgTfxnJm0FVhynpf8HM9ZR+kiUt9fteD5QgvG0/zxCp4vjJIGPM/Z53oOzxfMGSART5PHdapaWbWwquao6gptmkl1vsDTeex9BtkaZ12DEpTTJ/UD4HU8tZFTQLJXkSfw9GklALuAbc4675i6eb1+1eX6xFKfz0TVbY/j6Xf7BZ7P2g48HeIAzwMjnCbW6vqhattH0whiE0qZ9kRE/gj0UtU6nY1Vy3P9BrgeuERVcxsdnDHtjNVATJsmIsNEZIxzWu4kPKdivt8Uz62qjwIL8PSBGGOqsBqIadNEZCKeZqveeNrDFwBPNlGzkjHmPCyBGGOMaRBrwjLGGNMgfrUXaT/Cw8O1X79+bodhjDFtytatW7NUtepoDB0rgfTr14/4+Hi3wzDGmDZFRI5Vt96asIwxxjSIJRBjjDENYgnEGGNMg1gCMcYY0yCWQIwxxjSIJRBjjDENYgnEGGNMg1gCaSGf7krjUGZB7QWNMcZRWaks2nycnMJSt0OpliWQesg8XcI/ViRRWFJee2Ev6w5mcf9r23hscXNNGW6MaY9WJ2Xy0Hu7eODtndR33MLP9pxk2e702gs2giWQevj1B4n8ZfkB/rXyYJ23KSgp55fvJOAjsCYpi+PZZ5oxQmNMe7Jo83F8BD7fl8G721LqvF1KbhE/XLSNH72+vVlbPiyB1NHn+06ydHc6Ed068dyaI3VOBH/4ZC+peUX845YJ+Ai8seV4M0dqjGkPMvKL+WxvBndP68/EfqH85qPdpOcV12nbJz/dhyp08vfh1x8k1rv2UleWQOqgqLSCRz7czaDIrrx3/1T8fIXffbLnvNsUl1Xwt8+SeG3Tce6+qD9XjYnismE9eSs+mbKKr82OiqqycO0RLvvLKo5mFTbXrhhjWomH39/Fbc9tJON09Unh7a3JVFQqt0yK5akbx1JWUcm9r8SzP/30eZ9385EcPtqZyvemD+SXc4ex/lA2i3emNscuWAKpi398nkTyqSKeuG4UfcKC+MGlg1i2+ySrD2R+rWxeURkfbE9h7jOrefqzA1w1JooH5gwF4NbJfcgqKGHF3pNf2aasopL/eT+Rx5fs4XBmIb/+8Ku/GMqrSTjGmLbF+/941f4MXtt0nHUHs7nun+vYk5r/lbJnO8+nDOjBgIiu9A/vwtM3jeN4zhmu/PsaHv9oD/vS879WsyirqOTxJbuJCg7k/ukDuXVSLGNjgvntkj3kFZU1+T65OhqviMwF/gb4As+p6pNVHu8EvAxcAGQD31LVo85jD+GZvrQC+LGqLmuuOCsqlZviYrhwQA8A7p7Wn3e2JvP917ax4I4LmDownMSUPJ5atp/1B7Mor1QGhHfh5e9M4pIhX46APH1IJFHBgfzj84McyiykslLZd/I0246dIi2vmO/PGEh41048vmQPSxLSmD40gh8v2s7BjAL+87NLCAqo/e3al57PvrTTXDc+urkOhzEd3omcM6xJyuLWybF1Kv/vVQd5dtUh/nbLeKYM6MEjH+5mQEQX/vzNsXz/1W1c9+91jOsTwtiYYEK7BJCRX0LyqSJ+OXfYuee4YnQUkwf04E/L9vHC+iMsXHeEmNDO3DGlL3dd1J/yCuX+17aSmJLPv26dQOcAXwB+d/1o/uudBLIKSgju7N+kx8G1GQlFxBc4AMwGkoEtwC2quserzPeBMap6n4jcDFyvqt8SkRF4pjGdhGcq08+AIapacb7XjIuL04YO566qiMi55fS8Ym5/fhPHss8wZ1QvPk5IJaxLAN+M68Os4ZGM6xOKr4987XmeW3OYJz7ee245OqQzY/sEc+3Y3swdFUVFpXLdv9aRnl9McGd/jmQVUlGp/M+Vw7j3koG1xnn785tYfyib7Y/Mpntg035YjDEeD723i0Wbj7P0pxczrFf385bNO1PGtD9+TlFZBZWqTOofxsbDObx+z2SmDgonI7+Y//3iENuP57InLZ/Sck9NJTYsiOU/v4ROfr5fe86M/GJW7MtgSUIq6w5mM6RnV4IC/EhIzuV314/mlklfTWxVv7/qS0S2qmpc1fVu1kAmAQdV9TCAiLwBzAO8OxfmAY85998B/imeozAPeENVS4AjInLQeb4NzRVs1YPfKziQt++bwl0vbmFJQiq3X9iXX1w+tNYMf8/FA7hzaj8qVFGFQP+vfjh8fYTfXT+Kef9aR2l5Ja/ePZl/rzrIgtWHuf3Cfud+VVQn43Qx6w5mUamw4VA2c0b2avgOG2NqtPagp/n6wx2pDJt7/gTy/LojnC4p5937p/LsF4dYvuck14+PZuqgcAAiuwfy6DUjAU8zV3ml4usj+PlIjV/6kd0DuWVSLLdMimX5npM8tng3R7PO8K9bJ3DF6KivlW9M8jgfNxNINHDCazkZmFxTGVUtF5E8oIezfmOVbVu8zSYkKIA3751CZkEJ0SGd67ydn6/PeQ/8mJgQXr/nQmJCO9MnLAh/X+HGZzfw2qZj3HPxgHPlSsorOJhRwMjewQB8nJBGpYK/r7DuYJYlEGOawfHsM5zIKcLfV1i8I5X/unwoPj5CVkEJRaUV9AkLOlc2r6iMF9YdYc7InlzQN5T/9+0L+M+ek0wbHF7tc/v5+lBNheO8Zo/oycWDwzl1ppSo4Lp/DzWFdt+JLiL3iki8iMRnZn6907uxAvx86pU86mrKwB7nPohx/cK4aFAPnv3i8LmLGHPPlHL785u56u9rWZLgOcPiwx2pjIjqzrRB4axNymrymIwxsMapfXzvkoGk5Bax7fgpikor+OazG5j99Bf8x+vivefXHuF0cTk/njkYAB8fYe6oXnTt1LS/3QP9fVs8eYC7NZAUoI/XcoyzrroyySLiBwTj6Uyvy7YAqOoCYAF4+kCaJHIX/GTmEG76fxuY/qeV3DIplk92pXEip4i+PYL49QeJ9OoeyI4TuTx0xTD8fH1YuX8PKblFzZLcjOnI1iZlERUcyH0zBvLc2sN8sCOFj3elcSSrkEGRXfneq1v53iUD2Xkilw2Hs5kzsue5VoL2xs0ayBZgsIj0F5EA4GZgcZUyi4H5zv0bgc/V0+u/GLhZRDqJSH9gMLC5heJ2xaT+YSz67oWMiQnhH58fJKuglFfunsTz8+MoLK3gzhe2IALXjuvNxU71eG1S09e4jOnIKiqV9YeymTYonK6d/Jg1vCfvbUvhhXVHmT+lLx/9cBqzhvfk2S8OcTS7kAevGMZfbhrndtjNxrUaiNOn8UNgGZ7TeBeq6m4ReRyIV9XFwPPAK04neQ6eJINT7i08He7lwA9qOwOrPZgysAdTBvbgWHYhAX4+56qsD1w+hN9/so/J/cOICu5Mr+5KZLdOrD2Yzbcm1u00Q2NM7RJT8sgrKjvXhzFvXDRLEtLo1yOI/75iGJ0DfHn22xeQkJzLqOhg/H3bdy+Bq9eBqOonwCdV1j3idb8Y+GYN2/4O+F2zBthK9e3R5SvLd08bQGpuMZeP6Al4zriYNiicVQcyqaxUfKo5ndgYU39rD3r6Fi9yzqCaPiSCm+Ji+PaFfc9dp+XrI4yPDXUtxpbUvtNjB+HrIzx27chzpwUCTBscTk5hKTuTc12MzJj2Q1VZuS+D4VHdCe/aCfCcRPPUjWMZExPicnTusATSTs0YGklIkD8/eWNHjWPtGGPq7unlB4g/dopv2CgP51gCaafCugTwwp0TyTxdwp0Lt5Bf3PTj4BjTUby0/ih///wgN8XFcM/F/d0Op9WwBNKOjY8N5dnbL+DAydP86v1Et8Mxpk3acSKXxz7azewRPfn99aOb7arutsgSSDs3fUgEt0/py9LEdKuFGNMA725NppOfD09/axx+7fysqvqyo9EBXDu2N6UVlfxn98naCxtjzimvqOSTXWnMHN6zya8ebw8sgXQA4/qEEBPamY+8JpU5klVIcVm7v3TGmHo7mFFwbtK3DYezyS4s5ZoxvV2OqnWyBNIBiAjXjO3NuoNZ5BSWsu34KWb/9Qu++3I8lZVtdnQXY5rcqv0ZzPrrF/zirZ2oKkt2ptG1kx8zhkbUvnEHZAmkg7h6TBTllcpb8Sf40evb6eTnw5qkLBauO+J2aMa0CpmnS3jg7Z10CfBl8c5UXt98nE8T07h8RM+vTbtgPCyBdBAjorozIKILT366j5P5xbxyz2Rmj+jJH5fuIzElz+3wjHFVZaXywNs7OV1czjv3T2XKgB48/H4i+cXlXDPWmq9qYgmkgxCRc+24D8wZyoTYUP54wxjCugTwwNs7vza3sjEdyXvbU/jiQCa/umo4w6O688zN4wjrEkBIkP+5YUvM19lpBR3I3Rf3p194EPPGeq6kDesSwM9mDeHB93axKyWvww7HYMxbW04wKLIr376wLwA9uwfy6t2TKSgpJ8DPfmfXxI5MB9I90J/rx8d8ZXDFK0ZF4e8rfLgj9TxbGtN+peQWsfloDvPG9v7KRYIjendnUv8wFyNr/SyBdHDBQf7MGBrJkoRUKuyMLNMBLXFOb792nPV11JclEMO1Y3tzMr+EzUdy3A7FmBa3eGcqY/uEfG2aBFM7SyCGWcN7EuScupieV8z8hZt5Ysket8MyplnsSc3n8qe/4P3tyRzMKGB3aj7X2plWDWKd6IbOAb7MHtGTJQmpLN+TTlZBKauTMvnGhBhG9O7udnjGNKnff7KXAycL+NmbOxkQ3gURz3VSpv6sBmIAmDeuN6eLywkJCuDd+6fQPdCfp5btczssY5rUmqRM1h7M4n+uHMb3LhnA4axCpgzoQc/ugW6H1iZZDcQAcOnQSF68ayIT+4XRpZMf358xkD98uo8Nh7KZMrCH2+EZ02iVlcofl+4jOqQz86f2o5OfL3NG9aKXJY8Gc6UGIiJhIrJcRJKcv9VOICwi850ySSIy31kXJCIfi8g+EdktIk+2bPTtk4gwY2gkXZwRR+dP7UdUcCBPLt1n42WZduHjXWkkpuTz89lD6OTnGZpkQmwovUM6uxxZ2+VWE9aDwApVHQyscJa/QkTCgEeBycAk4FGvRPNnVR0GjAcuEpErWibsjiPQ35efzx7CzhO5vLj+qNvhGNMoWQUl/OajPQyP6s51NiVtk3ErgcwDXnLuvwRcV02ZOcByVc1R1VPAcmCuqp5R1ZUAqloKbANiWiDmDufGC2KYNTySJz/dx960fLfDMaZBVJVfvpNAfnEZf71pLL4+NqNgU3ErgfRU1TTnfjrQs5oy0cAJr+VkZ905IhICXIOnFlMtEblXROJFJD4zM7NxUXcwIsIfbxhDcJA/P1603eYPMW3SyxuO8fm+DB66YhjDo+yswqbUbAlERD4TkcRqbvO8y6lnFL96N7KLiB+wCPi7qh6uqZyqLlDVOFWNi4iwMf3rq0fXTvz1prEkZRSwYHWNh9mYVimnsJTff7KXGUMjuHNqP7fDaXea7SwsVZ1V02MiclJEolQ1TUSigIxqiqUAM7yWY4BVXssLgCRVfaYJwjXncfHgCKYNCuedrcn86LJBXxkvyJjWbElCKiXllfz33GH2uW0GbjVhLQbmO/fnAx9WU2YZcLmIhDqd55c76xCRJ4Bg4KctEKsBrh8fzfGcM2w7fsrtUIyps/e2pTCsVzdrumombiWQJ4HZIpIEzHKWEZE4EXkOQFVzgN8CW5zb46qaIyIxwMPACGCbiOwQkXvc2ImOZM6oXgT6+/DethS3QzGmTg5nFrDjRC7fmGBnXTUXVy4kVNVsYGY16+OBe7yWFwILq5RJBqwu2sK6dvJjzsheLElI45FrRpw7j96Y1uqD7Sn4CMwbZwmkudhQJqbOrh8fTV5RGSv32dlspnVTVd7fkcJFg8JtmJJmZAnE1Nm0QeGEd+3E+9uT3Q7FmPOKP3aKEzlFXG8XDTYrSyCmzvx8fbhmbBQr92dSUFLudjjG1GjJzlQC/X2YM7KX26G0a5ZATL1cOTqK0vJKVu6r7sxrY9xXWaks232S6UMizo3tZpqHJRBTLxNiQwnv2omlu9PdDsWYau1MziU9v5i5o6z20dwsgZh68fURLh/Zk5X7MmxoE9MqLU1Mx99XuGxYdSMkmaZkCcTU2xWjenGmtII1SVluh2LMV6gqS3enM3VgOMGd/d0Op92zBGLq7cIBPege6MfSRGvGMq3LvvTTHMs+Y81XLcQSiKk3f18fZo3oyWd7T1JWUel2OMac82liOiIwe4Q1X7UESyCmQa4YFUVeURnffm4TH+1MpbTcEolxz8GM0/zmo90sXHuEif3CCO/aye2QOgRLIKZBZg6L5OErh5OSW8SPFm3ngbd3uh2S6aC2Hz/FnGfW8OrGY8wYGsGT3xjtdkgdhiUQ0yA+PsJ3LxnA6v+6lDum9OXjXWlk5Be7HZbpgF7ZcIwgf1/WPXgZ/7x1AgMiurodUodhCcQ0io+PcNdF/amoVN7eakOcmJaVd6aMj3elMW98byK72ZhXLc0SiGm0/uFdmNw/jLfiT1BZWe/JJY1psA93plBSXsnNE2PdDqVDsgRimsTNk/pwLPsMGw9nux2K6SBUlUWbTzCyd3dGRQe7HU6HZAnENIkrRkXRPdCPRVtOuB2K6SASkvPYm5bPzZOs9uEWG2nMNIlAf1+uHx/Nq5uOU1BcxsWDI7hlUiydA2ziKdO0Nh/JYfHOFFbszSDQ34d543q7HVKHZQnENJmfzR6CiLD6QCYr9+/hWHYhv5k3yu2wTDtyNKuQmxdsINDfl6kDe3Db5L50D7QhS9xiCcQ0mZCgAB67diQAP3ljO+9tS+HBK4ZbLcQ0mTe2nEBE+PwXM+gVbGdduc21PhARCROR5SKS5PwNraHcfKdMkojMr+bxxSKS2PwRm/q4dVIsp0vK+Sgh1e1QTDtRWl7JO1tPcNmwSEserYSbnegPAitUdTCwwln+ChEJAx4FJgOTgEe9E42IfAMoaJlwTX1M6h/GoMiuLNp83O1QTDuxfM9JsgpKuXWydZq3Fm4mkHnAS879l4DrqikzB1iuqjmqegpYDswFEJGuwM+BJ1ogVlNPIsItk2LZfjyXvWn5bodj2oHXNx8jOqQzlwyOcDsU43AzgfRU1TTnfjpQ3fCZ0YD3eaHJzjqA3wJ/Ac6c70VE5F4RiReR+MzMzEaGbOrjhgnRBPj58Pomq4WYxjmaVci6g9ncPLEPvj7idjjG0awJREQ+E5HEam7zvMupqgJ1voRZRMYBA1X1/drKquoCVY1T1biICPvl0pJCggK4Zkxv3txygs1HctwOx7RRpeWVPPTeLgJ8fbhpYh+3wzFemjWBqOosVR1Vze1D4KSIRAE4fzOqeYoUwPsTE+OsmwLEichRYC0wRERWNee+mIb59dXDiQntzL2vxHMkq9DtcEwbo6o8/P4uNhzO5o83jqZnd+s8b03cbMJaDJw9q2o+8GE1ZZYBl4tIqNN5fjmwTFX/V1V7q2o/YBpwQFVntEDMpp5CggJ44a6JCPCdF7eQX1zmdkimDVmw+jBvb03mxzMHc/34GLfDMVW4mUCeBGaLSBIwy1lGROJE5DkAVc3B09exxbk97qwzbUjfHl34920XcCSrkPe3pbgdjmkjissq+MfnB5k1PJKfzRrsdjimGq5dSKiq2cDMatbHA/d4LS8EFp7neY4CdrlzKzdlYA+G9OzKxwlpzJ/az+1wTBuw+kAmBSXl3DGlHyLWcd4a2WCKpsVcPaY3W47lkJ5nE0+Z2i1JSCM0yJ+pA3u4HYqpgSUQ02KuGhOFKnyyK632wqZDKyqt4LO9J5k7Kgo/X/uaaq3snTEtZmBEV4ZHdWeJDW9iarFqfwZnSiu4ZkyU26GY87AEYlrU1WOi2HY8l5TcIrdDMa3YkoQ0wrsGMKl/mNuhmPOwBGJa1NXOL8pPrRnL1OBMaTkr9p3kCmu+avXs3TEtqm+PLozs3Z2lieluh2JaqdUHsiguq+TK0dZ81dpZAjEtbuawSLYdP0XumVK3QzGt0Mp9GXQL9COuX7UzPJhWxBKIaXEzhkVSqbA6KcvtUEwro6qs3J/BJYMj8Lfmq1bP3iHT4sbGhBDWJYBV+6ob/sx0ZHvS8sk4XcKlwyLdDsXUgSUQ0+J8fYTpQyJYdSCTiso6D8JsOoCVzo+K6UNs5Oy2wBKIccWMoRHkFJaSkJzrdiimFVm5P5MxMcFEdOvkdiimDiyBGFdMHxKBj3i+MIwBOFVYyvbjp5gx1Jqv2gpLIMYVIUEBTIgNPddkYczqpEwqFS6z/o82wxKIcc2lwyLZlZLH1mM2Qn9HV1GpvLrxGOFdAxgTHex2OKaOLIEY19wxpS99wjrz0zd3cNommurQnv3iEFuOnuKhK4bjY3OetxmWQIxrugX688y3xpFyqohHF+92Oxzjkp0ncnl6+QGuHhPFNyZEux2OqQdLIMZVF/QN40eXDea9bSl8tuek2+GYFlZZqfzsrR1EduvE764bbRNHtTGWQIzrfnTZILoH+vH5futQ72iOZhdyOLOQH80cTHCQv9vhmHqqcwIRkaCmelERCROR5SKS5PytdtAbEZnvlEkSkfle6wNEZIGIHBCRfSJyQ1PFZlqen68Po6KD2Z2S53YopoUlpuYDntEJTNtTawIRkakisgfY5yyPFZF/N/J1HwRWqOpgYIWzXPV1w4BHgcnAJOBRr0TzMJChqkOAEcAXjYBN6I0AAB+3SURBVIzHuGxUdDB7009TVlHpdiimBe1OySPA14fBPbu6HYppgLrUQJ4G5gDZAKq6E7ikka87D3jJuf8ScF01ZeYAy1U1R1VPAcuBuc5j3wH+4MRTqao2Kl8bN7J3d0rLKzmYUeB2KKYFJabmMSyqmw2c2EbV6V1T1RNVVlU08nV7qurZGYXSgZ7VlIkGvF83GYgWkbN13d+KyDYReVtEqtseABG5V0TiRSQ+M9Ouem6tRjnn/u+yZqwOQ1VJTMlnZG+77qOtqksCOSEiUwEVEX8ReQDYW9tGIvKZiCRWc5vnXU5VFajPiHp+QAywXlUnABuAP9dUWFUXqGqcqsZFRNgAba1V/x5d6BLga/0gHUjyqSLyisoYFd3d7VBMA/nVocx9wN/w1AhSgP8AP6htI1WdVdNjInJSRKJUNU1EooDqTr9JAWZ4LccAq/A0pZ0B3nPWvw3cXetemFbNx0cY0bv7uU5V0/7tTvX8WBhlNZA2q9YaiKpmqeptqtpTVSNV9duqmt3I110MnD2raj7wYTVllgGXi0io03l+ObDMqbF8xJfJZSawp5HxmFZgZO9g9qTm2xDvHURiSj6+PsLQXt3cDsU0UK01EBF5gWqamFT1O4143SeBt0TkbuAYcJPzWnHAfap6j6rmiMhvgS3ONo+r6tlBk/4beEVEngEygbsaEYtpJUZFB/Pi+qMcySpgUKR9qbR3ial5DI7sSqC/r9uhmAaqSxPWEq/7gcD1QGpjXtSpwcysZn08cI/X8kJgYTXljtH4M8FMK3O2LTwxJZ/YsC5sOZrD1IE97OrkduRQZgF+PkJsWBCJKXk2dHsbV2sCUdV3vZdFZBGwttkiMh3WoIiudPLzYfmek7yw7gg7k/N47o44Zo2o8SQ708bc/eIWUvOK+dGlg8gqKGVUb+tAb8sacvL1YMB+Npgm5+frw7Co7ny8K43DWYUE+Pmw/lBju9tMa5GaW8TR7DN0D/TnL8sPAF+evm3aprr0gZzG0wcizt90PH0QxjS5GyZEE9LZnyeuG8Uv30lg0xFLIO3F2ffyxbsm8sWBTNYkZVoCaePq0oRlvZmmxdwxpR93TOkHwKT+Yfz98yTyisoI7mwD7bV1mw7n0C3Qj+FR3RkVHcwPLh3kdkimkWpMICIy4Xwbquq2pg/HmC9NHhCGroD4oznMHG79IG3dpiM5TOoXhq9NGNVunK8G8pfzPKbAZU0cizFfMSE2lABfHzYfsQTS1mXkF3Mkq5BbJvVxOxTThGpMIKp6aUsGYkxVgf6+jO0TzMYjNmd6W7fJeQ8n9+/hciSmKdXlOhBEZBSeYdMDz65T1ZebKyhjzprUP4xnvzhMQUk5XTvV6eNqWqFNR7LpEuDLSDttt12py3wgjwL/cG6XAk8B1zZzXMYAnl+sFZXK1mOn3A7FNMKmwzlc0C8MPxu2vV2py7t5I56rxtNV9S5gLGDn3pkWcUHfUHx9hI2H7XTetiqroISkjAIm9w9zOxTTxOqSQIpVtRIoF5HueEbOtZ4w0yK6dPJj2qBwXtt4jMzTJW6HYxrgHyuSEIGZw+364/amxgQiIv8SkWnAZmcSp/8DtgLb8MzBYUyLeOSaERSXVfL4Eht0ua3ZdvwUL288xvwp/RjWy/o/2pvz9UoeAP4E9AYKgUXAbKC7qia0QGzGADAwois/vGwQf11+gG+Mj+bSYfZLti0oq6jkoXd30at7IA/MGep2OKYZ1FgDUdW/qeoUPKPeZuMZFXcpcL2IDG6h+IwB4L7pAxkc2ZVffZBIVoE1ZbUFf/ssif0nT/PbeaPsDLp2qi4TSh1T1T+q6njgFuA6YF+zR2aMlwA/H/78zbFkF5Ywf+Fm8ovL3A7JnMfLG47yz5UHuSkuxkZTbsfqchqvn4hcIyKvAZ8C+4FvNHtkxlQxtk8Iz377Ag6cPM09L8ZTVFrhdkimGh9sT+GRD3cza3hPfn/9aLfDMc3ofJ3os0VkIZAMfBf4GBioqjeranVT0BrT7GYMjeTpb41jy7Ec/rkyye1wTBUn84v55TsJXDggjH/eOt6u+2jnzvfuPgSsB4ar6rWq+rqqFrZQXMbU6OoxvZk7shevbjxOYUm52+EYLy+uP0p5ZSVP3TDWpqrtAM7XiX6Zqj6nqnYJsGl17rl4AHlFZbwdf8LtUIyjoKSc1zYeY+6oXsT2CHI7HNMCXKtfikiYiCwXkSTnb2gN5eY7ZZJEZL7X+ltEZJeIJIjIUhEJb7nojdsu6BvKBX1DeX7dESoq1e1wDPDWlhPkF5fz3YsHuB2KaSFuNlA+CKxQ1cHACmf5K0QkDHgUmAxMAh4VkVAR8QP+BlyqqmOABOCHLRa5aRW+e3F/TuQUsWx3utuhdHjlFZUsXHeEuL6hjI+t9regaYfcTCDzgJec+y/hOT24qjnAclXNcZrSlgNz8UyvK0AXERGgO5Da/CGb1mT2iF707RHEgtWHUbVaiJuW7k4n+VQR373Eah8diZsJpKeqpjn304HqThaPBrwbuZOBaFUtA+4HduFJHCOA56t7ERG5V0TiRSQ+MzOzyYI37vP1Ee6e1p8dJ3JttF4XqSr/t/ow/XoEMcsm/upQmjWBiMhnIpJYzW2edzn1/Hys809IEfHHk0DG4xlqJQHPWWNfo6oLVDVOVeMiIiIavjOmVbrxghhCgvxZsPqw26F0WFuOnmJnch53XzzApqvtYJp1fAFVnVXTYyJyUkSiVDVNRKLwjPJbVQoww2s5BlgFjHOe/5DzXG9RTR+Kaf+CAvy4/cK+/HPlQY5kFdI/vIvbIXU4/7fmMKFB/tw4IcbtUEwLc7MJazFw9qyq+UB1FycuAy53Os5DgcuddSnACBE5W6WYDext5nhNK3X7lL74+/jw/FqrhbS0Q5kFfLb3JLdf2JfOAXbdR0fjZgJ5EpgtIknALGcZEYkTkecAVDUH+C2wxbk97nSopwK/AVaLSAKeGsnvXdgH0wpEdgvk+vHRvB2fTE5hqdvhdCgL1x7B39eH26f0czsU4wLXhshU1Ww8Mx1WXR8P3OO1vBDPSMBVyz0LPNucMZq24+ZJfXgz/gQbDmVz1Zgot8PpMD7fl8HsET2J6NbJ7VCMC2ygGtMujOjdnQBfHxJSct0OpcPIOF1MWl4x4/uEuB2KcYklENMudPLzZVhUN3Yl57kdSoeRmOI51mNiLIF0VJZATLsxKjqYXSl5dlFhC9mVnI8IjOxtU9V2VJZATLsxJjqY08XlHMs+43YoHcKulFwGRnSli8022GFZAjHtxqjoYAASUqwZqyUkJOcx2jnmpmOyBGLajSE9uxHg53Oubd40n5P5xWScLrEE0sFZAjHtRoCfD8OjupOQbGdiNbezJyuMibEE0pFZAjHtyujo7iSm5FNpc4Q0q4SUPHzEc/q06bgsgZh2ZUx0CAUl5RzNttmXm1NiSh6DIrsSFGAd6B2ZJRDTrox2mlR2WT9Is1FVpwPdrv/o6CyBmHZlcGRXOvn5sP249YM0l9S8YrIKShgdbc1XHZ0lENOu+Pn6cPHgCD7YkUJBSbnb4bRLr248hghcMsTm1+noLIGYdueHlw0i90wZr2485nYo7U7umVJeXn+Uq0ZHMSCiq9vhGJdZAjHtzrg+IVw8OJzn1hymqLTC7XDalYXrjlJYWsEPLxvkdiimFbAEYtqlH88cTFZBKa9vPu52KO1GfnEZL6w7wpyRPRnWy/o/jCUQ005N7BfGhQPC+H9fHKK8otLtcNqF1zYe53RxOT+6bLDboZhWwhKIabfmT+lHxukSttkZWU3i08Q0JsSGnBtzzBhLIKbdmjY4HD8fYeX+DLdDafMyT5eQkJzHzOE93Q7FtCKuJBARCROR5SKS5PwNraHcUhHJFZElVdb3F5FNInJQRN4UkYCWidy0Jd0C/ZnYL4yV+yyBNNYqJwnPGGqn7povuVUDeRBYoaqDgRXOcnX+BNxezfo/Ak+r6iDgFHB3s0Rp2rxLh0WwL/00qblFbofSpq3an0lkt06MiLLOc/MltxLIPOAl5/5LwHXVFVLVFcBp73UiIsBlwDu1bW/MpUMjAc8XIMCTn+7jwXcT3AypTYg/msO1/1xLSm4RZRWVrE7K5NKhkXj+/YzxcCuB9FTVNOd+OlCfhtUeQK6qnr3MOBmIrqmwiNwrIvEiEp+ZmdmwaE2bNSiyKzGhnVm5P4NPdqXx7BeHeDP+BFkFJW6H1qq9vvk4Ccl5/PSN7Ww5ksPp4nIuHRbpdlimlWm2BCIin4lIYjW3ed7l1DOBdbONva2qC1Q1TlXjIiKs/bajEREuHRrJ2qQsHnw3gT5hnVGFz/acdDu0VqusopIVezPoE9aZLUdP8Yu3d+LvK1w0qIfboZlWptkSiKrOUtVR1dw+BE6KSBSA87c+vZzZQIiInB1HOgZIadroTXty6bAIisoqqFR49e7J9AnrzNLd6W6H1WptOpxDXlEZv7pqBNePjyYtr5iJ/cLoFujvdmimlXGrCWsxMN+5Px/4sK4bOjWWlcCNDdnedDxTBoQzITaEp24cQ98eXZgzohfrD2aTX1zmdmit0rLd6QT6+3DJ4AgenzeSCweEccukWLfDMq2QWwnkSWC2iCQBs5xlRCRORJ47W0hE1gBvAzNFJFlE5jgP/TfwcxE5iKdP5PkWjd60KZ0DfHnv+xdx5egoAOaO6kVpRaWd3luNykpl2e50ZgyJpHOAL90C/Xnj3ilcM7a326GZVsiV6cRUNRuYWc36eOAer+WLa9j+MDCp2QI07dqE2FDCu3biP7tPMm9cjedfdEg7knPJOF3CnFF2waCpnV2JbjocHx/h8pE9Wbk/g+IyG63X27LEdPx8hMuGWQIxtbMEYjqkOSN7caa0grVJWW6H0mqoepqvpgzsQXBn6zA3tbMEYjqkKQN60C3Qj2V2NtY5B04WcDT7DHNH9XI7FNNGWAIxHVKAnw8zh0Xy2d6TNty7Y2liOiIwe4Q1X5m6sQRiOqy5o3px6kwZm4/muB1Kq7BsdzoXxIYS2S3Q7VBMG2EJxHRYlwyJoJOfD8sSrRnrRM4Z9qTlM2ekNV+ZurMEYjqsoAA/pg+JYNnuk1RWNttoOm3C2b4gSyCmPiyBmA5tzshepOcXk5CS53YorlqamM7wqO7E9ghyOxTThlgCMR3azOGR+PkInyam1V64ncrIL2br8VPMtdqHqSdLIKZDCwkKYMbQSN7dmkxJece8qHDR5hOowrXjbLgSUz+WQEyHN39qX7IKSvlkV8erhZRVVPLapmNMHxJB//Aubodj2hhLIKbDmzYonAERXXhx/TG3Q2lxSxPTyThdwp1T+7kdimmDLIGYDk9EmD+lHztP5LLjRK7b4bSolzccJTYsiOlDbLI1U3+WQIwBvjEhmi4Bvry8/qjbobSY3al5bDl6ijum9MXHx+Y6N/VnCcQYoFugPzdeEMNHCansSc13O5xmp6r8edl+Ovv78s0L+rgdjmmjLIEY4/jxzMGEBgXwo0XbOFNa7nY4zerF9UdZuT+TX84dSnCQjbxrGsYSiDGOHl078fS3xnE4q5DHP9rjdjjNJjEljz98so9ZwyOt89w0iiszEhrTWl00KJz7pw/k36sOkXyqiLh+ocwbF93mT3Etr6jk/e0pbDqSw6r9GYR28eepG8ciYn0fpuEsgRhTxc9mD6FClS/2Z/K3FUm8vuk4a//7MgL82m6FfcGawzy1dD9hXQKYEBvKT2YOJqxLgNthmTbOlf8IEQkTkeUikuT8Da2h3FIRyRWRJVXWvyYi+0UkUUQWiog14pom4+/rw0NXDGfpTy9h4fyJZJwuadMXGZZVVPLy+mNMGxTO1l/N4rn5cYyOCXY7LNMOuPWT6kFghaoOBlY4y9X5E3B7NetfA4YBo4HOwD3NEaQx04dEMDCiCwvXHUG1bY7Y+2liOun5xdw9rb81WZkm5VYCmQe85Nx/CbiuukKqugI4Xc36T9QBbAZimitQ07H5+Ah3XtSfhOQ8th475XY4DbJw7REGhHexiwVNk3MrgfRU1bNtAulAg+bQdJqubgeWnqfMvSISLyLxmZmZDXkZ08HdMCGa7oF+LFx3xO1Q6m3b8VPsOJHLnRf1s4sFTZNrtgQiIp85fRRVb/O8yzm1iIa2DfwbWK2qa2oqoKoLVDVOVeMiIuwXmKm/oAA/bpkcy9LEdJJPnXE7nHpZuPYI3QL9uGGCVdJN02u2BKKqs1R1VDW3D4GTIhIF4PzNqO/zi8ijQATw86aN3Jivu2NKP0SEVza0nQEXU3OL+DQxnVsmxdKlk51waZqeW01Yi4H5zv35wIf12VhE7gHmALeoamUTx2bM10SHdGbuqF4s2nycwpK2cZX6yxuOoarcMaWv26GYdsqtBPIkMFtEkoBZzjIiEiciz50tJCJrgLeBmSKSLCJznIeexdNvskFEdojIIy0bvumIvnNRf/KLy3lvW7LbodTqTGk5izYfZ+6oXsSE2jS1pnm4Uq9V1WxgZjXr4/E6JVdVL65he6uPmxY3ITaEsX1CeGHdUW6b3LpHsH1/ewp5RWV856L+bodi2rG2e2mtMS1MRPjORf04nFXI5/vq3W3XYsoqKnlh3VFGRwdzQd9qr9E1pklYAjGmHq4YFUVMaGfuf20rf/hkL6eLy9wO6StW7s9g7jOrOZhRwPemD7ALB02zsgRiTD0E+Pnw3vencv34aBasOcwVf1tDUWmF22EB8OwXh7jrhS1UKjw/P46rx/R2OyTTzlkCMaaeIrsF8tSNY1l450SSTxXxVvwJt0OisKSc/111iOlDIlj200uYObxB1+YaUy+WQIxpoEuHRnJB31D+b81hyisqUVUeW7ybxxbvbvbXTkzJ45p/rOVIViEAizYfJ6+ojJ/MGtymRw02bYt90oxphPumDyT5VBEf70rjlY3HeHH9Ud7YcpyS8uZt1vpoZyq7UvK475Wt5BWV8fzaI0zqH8aEWOs0Ny3HEogxjTBzWCSDI7vy1NL9/HbJHqJDOlNcVsmO47nnyvxr5UHWH8xq8GuUlFfwyIeJnMj5chiV9YeyiQoO5EDGaa771zrS8oq5f/rARu2LMfVlCcSYRvDxEe69ZAApuUX0DunMG/deiI/AukPZAKTkFvGnZft5bm3DB2LcevQUL284xgvrjgKQd6aMxNQ8bp4YywOXD+VIViHDenVjxlAb6820LLsgz5hGmjcumhM5Z7h2XG/6hAUxOjqYDYeyYPYQPknwDDq9/fgpVLVBp9VuO+4ZRv6TXWn86qrhbDicjSpMHdSDC5wmq4sGhdspu6bFWQ3EmEYK8PPh55cPZVBkNwCmDgpn+/FcCkvKWZKQCsCpM2UczW7YSL7bneaw9Pxi4o+dYsOhLIICfBkbE4KPj/CDSwcxrk9I0+yMMfVgCcSYJjZ1YA/KK5X3tiWzMzmPb0yIBjy1kPpSVbafyOXK0b3o5OfDkoRU1h/KZmK/MDvbyrjOPoHGNLG4vmH4+wp//s8BAH46cwhdO/mda4oqLCnnp29sZ+uxnK9tW1peyUPv7WLF3pMAHMs+Q05hKdMGRXDZsEg+2J5CUkYBUwf2aLkdMqYGlkCMaWKdA3wZHxtKXlEZ4/qEENsjiHF9Qs41RX2wI4UPdqRy78tbSc0t+sq2T3y8h0Wbj/O7T/Y6tQ9P0pnQN4Srx/Qmv9gzlPzUgeEtu1PGVMMSiDHN4GwN4eoxUQCMjw1hX/ppzpSW8/qm48SGBVFSXsl9r26luMxzzchb8Sd4ecMxRvbuzuHMQjYezmHbsVy6BPgyOLIblw2LJCjAl+6Bfozo3d21fTPmLDsLy5hmcO3Y3mw4lM28cZ7+j/GxIVRUKq9uPMbu1Hx+O28kvYI7892X45nzzGqCO/uzL+00Fw3qwf+7PY6pf1jB65uPcySrgLF9QvD1EToH+HLf9IFUquLbioeSNx2HJRBjmsGAiK68+b0p55bH9/Gcbvv08iQ6+/syb3w03QP9+eMNo1mamA7A1WOj+NVVI+jayY9vTIjhtU3HqFS+coHgj2cObtkdMeY8LIEY0wJCuwTQP7wLR7IK+VZcH7oH+gPwrYmxfGti7NfK3zY5lhfXHwU8tRdjWiPrAzGmhZxNBLdM/nrCqGpwz25M7BfqbGfjW5nWyZUaiIiEAW8C/YCjwE2q+rWT5EVkKXAhsFZVr67m8b8D31HVrs0asDFN4K6p/enfowtjY4LrVP5/rvRcdR7WJaCZIzOmYdyqgTwIrFDVwcAKZ7k6fwJur+4BEYkD7KeZaTNGxwTzo5mD6zzkyPjYUL4/Y1AzR2VMw7mVQOYBLzn3XwKuq66Qqq4ATlddLyK+eJLLL5srQGOMMefnVgLpqappzv10oL7Tp/0QWOz1HMYYY1pYs/WBiMhnQK9qHnrYe0FVVUS0Hs/bG/gmMKOO5e8F7gWIja2989IYY0zdNFsCUdVZNT0mIidFJEpV00QkCsiox1OPBwYBB5225CAROaiq1TYWq+oCYAFAXFxcnROVMcaY83OrCWsxMN+5Px/4sK4bqurHqtpLVfupaj/gTE3JwxhjTPNxK4E8CcwWkSRglrOMiMSJyHNnC4nIGuBtYKaIJIvIHFeiNcYY8zWuXAeiqtnAzGrWxwP3eC1fXIfnsmtAjDHGBXYlujHGmAYR1Y7TrywimcCxBm4eDmQ1YTgtzeJ3l8XvLou/cfqqakTVlR0qgTSGiMSrapzbcTSUxe8ui99dFn/zsCYsY4wxDWIJxBhjTINYAqm7BW4H0EgWv7ssfndZ/M3A+kCMMcY0iNVAjDHGNIglEGOMMQ1iCaQORGSuiOwXkYMiUtPkV62CiPQRkZUiskdEdovIT5z1YSKyXESSnL+tejIuEfEVke0issRZ7i8im5z34E0RabXT9IlIiIi8IyL7RGSviExpS8dfRH7mfHYSRWSRiAS25uMvIgtFJENEEr3WVXu8xePvzn4kiMgE9yI/F2t18f/J+fwkiMj7IhLi9dhDTvz73R7eyRJILZzJq/4FXAGMAG4RkRHuRnVe5cAvVHUEnumAf+DEW9dZIFuLnwB7vZb/CDztDJx5Crjblajq5m/AUlUdBozFsx9t4viLSDTwYyBOVUcBvsDNtO7j/yIwt8q6mo73FcBg53Yv8L8tFOP5vMjX418OjFLVMcAB4CEA53/5ZmCks82/ne8oV1gCqd0k4KCqHlbVUuANPDMqtkqqmqaq25z7p/F8eUVTx1kgWwMRiQGuAp5zlgW4DHjHKdJq4xeRYOAS4HkAVS1V1Vza0PHHM0ZeZxHxA4KANFrx8VfV1UBOldU1He95wMvqsREIcaaUcE118avqf1S13FncCMQ49+cBb6hqiaoeAQ7i+Y5yhSWQ2kUDJ7yWk511rZ6I9MMzf8omGj8LZEt6Bs90xZXOcg8g1+sfqjW/B/2BTOAFpwnuORHpQhs5/qqaAvwZOI4nceQBW2k7x/+smo53W/x//g7wqXO/VcVvCaSdEpGuwLvAT1U13/sx9Zy73SrP3xaRq4EMVd3qdiwN5AdMAP5XVccDhVRprmrlxz8Uz6/c/kBvoAtfb15pU1rz8a6NiDyMp1n6NbdjqY4lkNqlAH28lmOcda2WiPjjSR6vqep7zuqTZ6vqDZgFsiVdBFwrIkfxNBdehqdPIcRpUoHW/R4kA8mquslZfgdPQmkrx38WcERVM1W1DHgPz3vSVo7/WTUd7zbz/ywidwJXA7fplxfstar4LYHUbgsw2DkLJQBPB9Zil2OqkdNf8DywV1X/6vVQg2eBbEmq+pCqxjizTd4MfK6qtwErgRudYq05/nTghIgMdVbNBPbQRo4/nqarC0UkyPksnY2/TRx/LzUd78XAHc7ZWBcCeV5NXa2GiMzF04x7raqe8XpoMXCziHQSkf54TgbY7EaMAKiq3Wq5AVfiORPiEPCw2/HUEus0PNX1BGCHc7sSTz/CCiAJ+AwIczvWOuzLDGCJc38Ann+Ug3hmqezkdnzniXscEO+8Bx8AoW3p+AO/AfYBicArQKfWfPyBRXj6a8rw1ADvrul4A4LnrMpDwC48Z5u1xvgP4unrOPs//KxX+Yed+PcDV7gZuw1lYowxpkGsCcsYY0yDWAIxxhjTIJZAjDHGNIglEGOMMQ1iCcQYY0yDWAIxppFE5GFn9NoEEdkhIpOb8bVWiUhccz2/MfXhV3sRY0xNRGQKnquFJ6hqiYiEA61mqHNjmpPVQIxpnCggS1VLAFQ1S1VTReQREdnizKmxwLmq+2wN4mkRiXfmCpkoIu8581Y84ZTp58wF8ZpT5h0RCar6wiJyuYhsEJFtIvK2M/6ZMS3GEogxjfMfoI+IHBCRf4vIdGf9P1V1onrm1OiMp5ZyVqmqxgHP4hli4wfAKOBOEenhlBkK/FtVhwP5wPe9X9Sp6fwKmKWqE/Bc+f7z5tlFY6pnCcSYRlDVAuACPJMTZQJvOoPgXerM4LcLz4CQI702OzuW2i5gt3rmcCkBDvPlQHknVHWdc/9VPEPUeLsQzwRn60RkB57xnvo26c4ZUwvrAzGmkVS1AlgFrHISxveAMXjGWTohIo8BgV6blDh/K73un10++z9ZdYyhqssCLFfVWxq9A8Y0kNVAjGkEERkqIoO9Vo3DM8gdQJbTL3Hj17esVazTQQ9wK7C2yuMbgYtEZJATRxcRGdKA1zGmwawGYkzjdAX+ISIheCb+OYinOSsXz2i26XimBKiv/Xjms1+IZzj1r8zdraqZTlPZIhHp5Kz+FZ5Ro41pETYarzGtjDMV8RKnA96YVsuasIwxxjSI1UCMMcY0iNVAjDHGNIglEGOMMQ1iCcQYY0yDWAIxxhjTIJZAjDHGNMj/B22bEVUzrx2PAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEWCAYAAACNJFuYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADt0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjByYzMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy9h23ruAAAgAElEQVR4nOy9d5wcd33//3pvL7d7e10n3alasmS5YFs2NjYY3DAYMNWhBAgJIbSQQvmFEAIJIZhOiGkGvgEDMRhjSmyDK7Zxt2TZlmVJVtcVXW/b6+f3x2c+s5+Zndlyt3t70n2ej8c97m52duazszOfd39/iDEGhUKhUChkHM0egEKhUCiWHko4KBQKhaIEJRwUCoVCUYISDgqFQqEoQQkHhUKhUJSghINCoVAoSlDCQWELEd1PRO8t8/p3iejTizmm5Q4R/Z6I3l3H45X9jhXLFyUcThCI6AgRJYkoRkQjRPQjImpZxPP/BRE9JG9jjL2fMfa5BpxrLREx7bPGtM/+T9LrREQfJ6L92jU5RkT/SUQeaZ8face4xnTsr2vb/0L6XHnpXDEiut5mXPdr7z3LtP3X2vaX1/M6WMEYexVj7MfS2B+q9J5GUOk7Upz4KOFwYvFaxlgLgBcBOBvAJ5s8nkYT0T7v2wD8KxFdpW3/JoD3AXgXgBCAVwG4HMDPTe9/QdsHAEBELgDXAjho2u9RxliL9PPhMmMyH7MDwIUAxmv9cCcJ4jt6M4BPE9EVzR6Qoj4o4XACwhgbAXAnuJAAABDRBUT0CBHNENEzsharaZiHiChKRIeJ6B3a9s8S0U+l/YQ26JLPR0RbAHwXwIWaljijbf8REf2H9vfLiWiQiD5KRGNEdJyI3iMdo4OI/o+I5ojoSSL6j2q1XsbYowB2AzidiDYC+CCAdzDGHmWM5RhjuwG8CcDVRHSJ9Nb/A3AxEbVp/18F4FkAI9Wc14afAfgzInJq/78NwK8BZKTPej4RPap9F8eJ6HqTVXMlEe0jolki+jYRPSBcO8IaIKKvENG09n29Snrv/UT03jLficFNZLYuiOgKItqrnft6ACR/OCL6SyLao537TiJaU81FYYxtB/+O5HvS8lia5fd17T6ZI6JdRHS69tqPiLsr79bu1wfkMRDRS7T7Z1b7/RLTtfkcET2svfcuIurUXvMR0U+JaFL7Xp4koh7ttVYi+qH2XQ1p96b4fpctSjicgBBRH7i2fED7fxWA2wH8B4B2AB8D8Csi6iKiILim/SrGWAjASwA8Xcv5GGN7ALwfRQ07YrPrCgCtAFYB+CsA35Im5m8BiGv7vFv7qeazEhFdBGArgJ0ALgMwyBh7wjTGAQCPAbhS2pwC8FsAb9X+fxeAG6s5bxmGATwvncfqmHkA/wCgE9yquAxcoEGbrG4Bt/o6AOwD/05kXqxt7wTwJQA/JCLDJF7Dd6KjnftWAP+iHfsggIuk168B8M8A3gigC8CfANxU6bjaey8AcDqK92S5Y10J4GUANoHfL9cCmJQO9w4An9PG+DS4QAYRtYPf598Ev3ZfA3A7cetN8HYA7wHQDcAD/iwA/H5rBdCvvff9AJLaaz8CkANwCrhFfiWAZR+HUcLhxOI3RBQFMABgDMBntO1/DuAOxtgdjLECY+xuANsBvFp7vQCudfsZY8c1TbsRZAH8O2Msyxi7A0AMwKmaFvYmAJ9hjCUYY88D+HEVx5sAMAXgBwD+iTF2L/iEcdxm/+PgE5HMjQDeRUQRAJcA+I3F+y7QtEnxc0GFcYljbgZ3qzwqv8gY28EYe0yzao4A+J52boB/J7sZY7cyxnLgE53ZkjnKGPs+YywPfp16AfRUGFM1iHPfwhjLAviG6dzvB/AFxtgebWz/CeBFFayHCSJKAngUwLdRvL7ljpUFdwduBkDaPvJ3ejtj7EHGWBrAp8Cto34AVwPYzxj7iXZtbwKwF8Brpff+D2PsBcZYEsDNKFoyWXChcApjLK99R3Oa9fBqAH/PGIszxsYAfB1FhWLZooTDicXrNe3/5eAPVqe2fQ2At8gTHICLAfQyxuIA/gz8YT1ORLdrk1ojmNQmAkECQAv4hO0CF2oC+W87OhljbYyxLYyxb2rbJsAnSyt6tdd1GGMPaef/FIDbtEnDzGOMsYj081iFcd0K4FIAHwbwE/OLRLSJiG4jnjgwBz4xiu9qJaTPznjny0HTIUak1xPan/VIPrA6t/w9rAHwX9I9NAXudlpV5pid2tg+Cn5fuisdizF2H4Drwa3JMSK6gYjC0jHlMca0967Ufo6azn/UND5Z2In7D+Df050Afk5Ew0T0JSJya+N0gz8bYqzfA7c8ljVKOJyAMMYeADeFv6JtGgDwE9MEF2SMXaftfydj7ArwyXMvgO9r74sDCEiHXlHutAsY8ji42d4nbeuf57HuA9BPROfLGzXN8gIA91u856fgk9dCXUoA9An79wA+AAvhAOA74Nd5I2MsDO5eEW6h45Cug+Yu6is5QpVDsdhW7js9Dum6a+eWv4cBAH9juo/8jLFHyg6Ca+JfA3fjfbCaYzHGvskYOxfAaeDupY9Lh5TH2ALuKh3WfsxWzGoAQ+XGp50vyxj7N8bYaeBuvNeAuwQHAKTBFRExzjBjbGulY57sKOFw4vINAFcQT6v8KYDXEtEricipBd9eTkR9RNRDRNdosYc0uKunoB3jaQAvI6LVRNSK8tlPowD6SAqsVovmHrkVwGeJKKBZLu+q8Da7Y70AHoj9GfEgvJOItgL4FYBHANxj8bZvArgCwIPzOacN/wzgEs1tZCYEYA5ATPusH5Beux3AGUT0euKB/w+hvFAuh9V38jSAN2rX+RTw2I987q1E9Ebt3B8xnfu7AD6pXU8RqH1LDeO5DsAniMhX7lhEdB4RvVjT3OPgQqUgHefVRHSx9rk+B27ZDQC4A8AmIno7EbmI6M/AhcttlQZGRK8gojM0F+ccuJupoLmz7gLwVSIKE5GDiDaQMbFhWaKEwwkKY2wcXBP+V+3BEQHAcXBt6OPg368DwD+Ca11T4L7vD2jHuBvAL8AzeHag/EN2H3g2yggRTZTZz44PgwcER8C17ZvAhdV8+DB4HOKn4K6D58DdC69njBXMOzPGphhj92pulLrAGBvWXFZWfAw8MBoFt9J+Ib1vAsBbwAPNk+CT23bM71pYfSdfB8+cGgWPV/zM4tzXaefeCOBh6fVfA/giuOtlDvy66plSVXA7gGkAf13hWGHw6zIN/r1NAviydJz/BY+nTQE4FzymBsbYJLjG/1HtPZ8A8Brtc1ViBXgiwByAPQAeQNHqexd48Pp5bUy3wN51uWygOj4vCkXVENEXAaxgjC242peI/g3AGwC8jDE2s+DBLSJE5ACPObyDMfbHZo+n2RDRj8Cz0f6l2WNZ7ijLQbEoENFmIjpTS009H9zd8et6HJsx9hkAN4DHHJY8mvsvQkReFOMRlYLgCsWi4qq8i0JRF0LgrqSV4C6Pr4LXINQFxphly4slyoXgrhPhyni9TRaVQtE0lFtJoVAoFCUot5JCoVAoSmiaW0nLS78RvPKTAbiBMfZfWon8LwCsBXAEwLWMselyx+rs7GRr165t6HgVCoXiZGPHjh0TjDFzVwEATXQrEVEveAXvU0QUAk+lfD2AvwAwxRi7jngL4DbG2P9X7ljbtm1j27dvb/iYFQqF4mSCiHYwxrZZvdY0t5LW4+cp7e8oeO7xKvB8fdF358fgAkOhUCgUi8iSiDkQ0VrwboiPA+iRmnCNwKbhGBG9j4i2E9H28fHl2kpfoVAoGkPThYPWO+VX4F0R5+TXtIpWS78XY+wGxtg2xti2ri5Ll5lCoVAo5klThYPWW+VXAH7GGLtV2zyqxSNEXGKsWeNTKBSK5UrThIPWEfKHAPZoHR0Fv0NxIZh3o46FUgqFQqGojmZWSF8E4J0AdhGRWJnsn8Gbgt1MRH8F3pTr2iaNT6FQKJYtTRMOWkdLsnn5ssUci0KhUCiMND0g3UwOjMXwtbtfwEP7J6DaiCgUCkWRZd14b8/xOVx/334UGHD1mb34+rUvgse1rOWlQqFQAFjmwuG1Z63EFaf14IcPHcaX79yHVr8b//mGM5o9LIVCoWg6y1o4AIDP7cSHXnEK5lJZfO+BQ7j6jF5cdEpn5TcqFArFSYzyoWj8w+Wb0Nfmx5f+sFfFHxQKxbJHCQcNn9uJv3nZejwzOIudAyfUSpMKhUJRd5RwkHjjOX0I+Vz40cNHmj0UhUKhaCpKOEgEvS68+dw+/P6544imss0ejkKhUDQNJRxMvPqMXmTzDA+8oDq9KhSK5YsSDibOWd2GjqAHd+0ebfZQFAqFomko4WDC6SBctqUbf9w7hkyu0OzhKBQKRVNQwsGCSzf3IJrOYdeQylpSKBTLEyUcLNi2tg0A8OSR6SaPRKFQKJqDEg4WdLZ4sb4ziO1Hppo9FIVCoWgKSjjYsG1tG3YcnUahoKqlFQrF8kMJBxu2rWnHdCKLQxOxZg9FoVAoFh0lHGw4Z00EAPD0wGyTR6JQKBSLjxIONqztCMLjcmDfyFyzh6JQKBSLjhIONricDmzsbsHekWizh6JQKBSLjhIOZTh1RQj7lHBQKBTLECUcyrB5RQhj0TSm45lmD0WhUCgWFSUcynDqijAAKNeSQqFYdijhUIbNK0IAoILSCoVi2aGEQxm6Q16EvC4cnog3eygKhUKxqCjhUAYiQn97AMemEs0eikKhUCwqSjhUYLUSDgqFYhmihEMF+tv9GJxOqh5LCoViWaGEQwVWtweQzhUwHks3eygKhUKxaCxZ4UBEVxHRPiI6QET/1Kxx9LcHAAADyrWkUCiWEUtSOBCRE8C3ALwKwGkA3kZEpzVjLEI4qLiDQqFYTixJ4QDgfAAHGGOHGGMZAD8HcE0zBrIq4geREg4KhWJ5sVSFwyoAA9L/g9o2HSJ6HxFtJ6Lt4+PjDRuIz+3EirBPCQeFQrGsWKrCoSKMsRsYY9sYY9u6uroaeq5VET+Oz6Qaeg6FQqFYSixV4TAEoF/6v0/b1hR6Wn0YnVPCQaFQLB+WqnB4EsBGIlpHRB4AbwXwu2YNpiekhINCoVheLEnhwBjLAfgwgDsB7AFwM2Nsd7PGs6LVi3gmj2gq26whKBQKxaLiavYA7GCM3QHgjmaPAwB6wj4AwOhcCiGfu8mjUSgUisazJC2HpYYQDiOzqkpaoVAsD5RwqIKukBcAMBlXwkGhUCwPlHCogs4gFw4TMbVcqEKhWB4o4VAFYb8LLgdhUjXfUygUywQlHKqAiNDR4sGkshwUCsUyQQmHKukIelXMQaFQLBuUcKiSjhaPijkoFIplgxIOVdLZ4sWEijkoFIplghIOVRIJuDGbUBXSCoVieaCEQ5W0+t2IpnPI5QvNHopCoVA0HCUcqiTi520z5lK5Jo9EoVAoGo8SDlXSGuDCYSahgtIKheLkRwmHKon4PQCA2aSKOygUipMfJRyqJKy5lWaUcFAoFMsAJRyqJKK5lVTGkkKhWA4o4VAlrZrloNxKCoViOaCEQ5Uo4aBQKJYTSjhUidvpgMflQDytUlkVCsXJjxIONdDidSGmhINCoVgGKOFQA0GvU1kOCoViWaCEQw0EPS7E0vlmD0OhUCgajhIONdDidSGRUZaDQqE4+VHCoQaCXpdyKykUimWBEg41EPQ6VUBaoVAsC5RwqIGgx4W4ijkoFIplgBIONaDcSgqFYrmghEMNtHhdiGdyYIw1eygKhULRUJRwqIGg14UCA1JZtRqcQqE4uWmKcCCiLxPRXiJ6loh+TUQR6bVPEtEBItpHRK9sxvjsCHqdAIC4SmdVKBQnOc2yHO4GcDpj7EwALwD4JAAQ0WkA3gpgK4CrAHybiJxNGmMJHie/XJmcshwUCsXJTVOEA2PsLsaYUL8fA9Cn/X0NgJ8zxtKMscMADgA4vxljtMLjUsJBoVAsD5ZCzOEvAfxe+3sVgAHptUFtWwlE9D4i2k5E28fHxxs8RI4uHPJKOCgUipObhgkHIrqHiJ6z+LlG2udTAHIAflbr8RljNzDGtjHGtnV1ddVz6LYIt1JaBaQVipOWe54fxY2PHkEqu7xrmlyNOjBj7PJyrxPRXwB4DYDLWDE3dAhAv7Rbn7ZtSVC0HJb3TaNQnKzc9MQxfPLWXQCAB18Yx/fftQ1E1ORRNYdmZStdBeATAF7HGEtIL/0OwFuJyEtE6wBsBPBEM8ZohRAOaRVzUChOOpKZPL70h7148bp2fOzKTbhnzxgeOjDR7GE1jWbFHK4HEAJwNxE9TUTfBQDG2G4ANwN4HsAfAHyIMbZk1HSvCkgrFCct9+wZxXQii49cthHve9kGdAQ9+PmTA5XfeJLSMLdSORhjp5R57fMAPr+Iw6kaj5Nn1S4n4ZAvMDDG4HIuhdwFhaJx/OG5EXSHvLhgfQecDsLVZ/biF08OIJnJw+9ZMhn1i4Z64mtguWUrpbJ5vP37j+GCL9yLZwdnmj0chaJhMMbw6KFJXLyxE04HjzFcurkb6VwBO45ON3l0zUEJhxpYbnUOv316CI8fnsJELIOv3vVCs4dTNQ8fmMBf/ehJ7B6ebfZQFCcIB8ZimIpncMH6Dn3beWvb4XIQHjm4POMOSjjUwHKLOfxm5zDWdwbxkcs24oEXxjEZSzd7SBVJZvJ4/0934N69Y/jbm3aiUFBNEhWV2TXEFYmz+/VOPgh6Xdi6MoynB5an1ayEQw0sJ7dSRjOnLz+tBy/b2AkA2H4CmNcPvDCGaCqHa7f14dB4HI8emmz2kBQnAHuOz8HjcmBdZ9CwfeuqVjw3NFv3TsyMsSXf3VkJhxpYTm6lvSNzyOQLeFF/BGf0tcLjcmD7kamGnzeTK+Cvb9yOq77x4LzWznjghXGEfS58+jWnwe0kPPjC4lTPK05s9hyP4tSeUEnixekrWzGXymFgKlm3c82lsnjDtx/B6Z+5E/ftHa3bceuNEg41oFdILwPh8MwgN7PP7GuF1+XEpp4W7BuNNfy89+wZxd3Pj2LvSBQ3Pnq05vc/fzyKrStbEfK5cfbqNjy8TP3Fito4OB7Dxu6Wku2be0MAgBdGo3U713fuP4hnBmfgdBA+/stnl2wlthIONSB3ZU1l80veLFwIh8ZjCHicWBXxAwDWdbbg8ETjhcNtzw6jJ+zFGata8ce9YzW9t1Bg2D8axakr+AO9bU0b9h6PIp2r38M3NJPENd96GB/82Q7kloF7cTmQyuYxMpfC6o5AyWsbOrnAOFSnez+XL+AXTw7gytN68N13novJeAa3PXu8LseuN0o41IDDQXA7Cb96ahCbP/0H3LJjsNlDahjHJhNY3R7QWwes6wxiaDpZ14nWil1Ds9i2th3nrW3Hs0MzyNYwAQ9OJ5HI5LFZEw5besPIFRj219Hi+fztz+OZgRncsWsEv9i+fAukTiaGZpJgDFjdXiocWgNudAQ9ODQer8u5nh2axVQ8g9edtQoXru/AylYf7to9Updj1xslHGrE43RgcJr7H3cPzzV5NI3j6FQCayRNan1nEAUGDEwlyrxrYcwmsxiYSmLryjDOWRNBKlvAvpHqzfnBaT42oQFu6Q0D4MHGehBNZXHP82P4y4vW4dSeEG5fohqfojaOafe0lXAAgPVdwboJh0cP8gSJCzd0gIjw8s3deOjAxJKMYyrhUCMiKA0Ax2frF6RaShQKDMemEljTUczcWNXG3UvHZ1MNO+9ebRLf0hvGes2cP1aDMBqZ42NbEfYB4NaOx+nA/rH6WA4P7Z9AJl/AVaevwCs2d+OJw1OIzSNorlhaDFYQDqvbg7risVB2HpvGKd0taA96AAAv2dCBRCaPvSNLT9FUwqFGjMKBT0bxdO6kqqKcSmSQyRX0eAMAdLV4AQDj0WKtw23PDuOlX7oPX71rX13iL8IiW9sR1IVRLZbK6BwfW48mHJwOQn+7H0cn66P17RyYgcflwIv6Izh/XRtyBaYLtOXC0EwSv9w+cFLVj4zOpeF0EDq0e9zMqogPI3OpmlycduwdieoWLQCcvboNAJZkLYUSDjUiC4fhGS4c/u7nT+NN33mkbpNQs5nQit06pYelM2QUDtFUFp+8dRcGppL47/sO4I5dC/ebCkust9WHVr8bYZ9LFxhW/PbpIVz61fsxPMP3GZ1LIeR1Iegttgxb2xHE0cn6aH3PDMxgS28YHpcDm3p4XGNfHbNYljrpXB6v+++H8PFbnsUPHjrU7OHUjfFoGh1Bj942w8zKiB8Fxu+vhRBNZTE4ndRjYgCwstWHrpAXTx9TwuGExyPlQU/E0oilc7hnD89VvvWpJbP0xIKYjGUAAJ0tHn1b0OOE3+3UhcOjBycRTeXws/e+GFt6w/jiH/YuOHtneDaF9qAHPjdvctbfHsCAjTmfLzD83c+fxqHxOH76GE95HZ1LoTts1P7WdnLhsFDLhjGG3cNzOGMV1/pWRfwIepw1xUROdB4/NIXJOL83bt5+8iRjjMfS6ApZWw1A0aUqlMH5ItybQrEAACLClt7wklQylHCokVa/2/C/nP/83NDJ0ctHWA6ymU1E6Ap5Ma699sjBSfjcDmxb24a/v3wjjk0lcPuuhQVoj88k0dvq0//vbfXjuM0DeXC8GEf4035eyzAWTesuJcHq9gCS2bw+7vkyHuWKwMZu/mATEU7pCRnGcbJz394x+NwOfPSKTTgwFtMtthOd8Wh54bBSc68OzSzMAhUu0rWmlNlN3S04MBZDfom56pRwqBExYQqt+sgEdyX53U5bLfdEQ1gHXSYfbFfIq7+2e3gWZ66KwOty4ootPdjY3YJv//HggnzRx2dT6G0txjnag27MJDOW+z6rFem9ZEMHjkzGwRjDXDJbIryFsBmdXZhwOKx9z2ul9gqrIr6GBuiXGs8Pz+H0la245FS+LO/J0ql3PJouuddlRIKDiGnNF+EiFZaIYNOKENK5Qk3JF4uBEg41IiYf4Y8/ovmzz13ThsHp5AlZGHfbs8P4yaNH9Il9Mp6B20kI+43LfbQHPbrL6dhUQk8ZdTgIH3zFBuwbjeLeGgvXZCbjGXSFiq6sSMCD6UTW8pruPT4Hn9uBV5zajWgqh+lEFtFUDiGfccwrNOGw0MyyI1o8aZ2UwbUi7MfIbKou33kuX8CPHzmypBMb9o9FsbGnBeu7RGHYiR9jKxQYJiq4lYJeF/xuJyai1sIhly/gy3fuxX/ds7/svTA4nURH0IOAx3iPbtCu52IUmdaCEg414tf84SIVTVgO56xpQyKTx3Qi27SxzYedx6bx4f/diU//djdueYr7kSeiaXQEvSVr54a8LsTSOaSyeYzOpQ2pf689cyX62vy4/o8H5j1ZziWzCEuafyTg1qrRS2MZI3PcyljfxSfrI5NxxNI5tHiNlkNR61uYhn9kMgG3k7AyIru9fEhk8ojWIZ31+j8ewGd+txtv+s4jGFqC7prJWBrTiSxO6Q6hxetCd8iLw1Lufyqbx83bB3QL60QhlskhV2D682xHZ8iju1vN3Lx9EN/640F8/Z4XyrpWB6cT6DNZDQDQ3y4y85bW966EQ4343PySubXA9JHJODwuB7au5IFKkQ9dKLCGtVcoFBj+uG+sLrnXP3v8GEJeFzpbvPi1FlCfS5W6ZwCuQcUzOd08loWDy+nA+y/ZgGcGZvRCn1pIZfNI5woI+4rnbQvwB3Y6UepaGtP8xP3aGAamElw4mCyHjhYvXA7SayBkhmaSiKaqE+bDM0msaPUZGrMJq2Rkga6lrGY1bF4RgstBeoB9KSGshA2aMF7XGTQIgi/+YS8+ccuz+PD/PnVCWc9zSf79my1OM10tXkzErF2ct+wYwMbuFvSEvfi/Z4ZtjzE8k9TjF+Zj+9yOhhaYzgclHGpEWA5CqT46mUB3yKtrHjOJLEbnUrjwunvx7v95oiFj+Ma9+/Ge/3kSf/6Dx+fVuVSQyRVw1+4RXLG1B687ayV2DkyjUGCIp/MIekuXRWzxuRBL5fTYilkLevO5fegOefGt+w9Udf4DY1F84fd7kMsX9IfUYDlof08nMmCM4Z7nR5HI8M87Hk2jO+TV9xG+/7DpIXc6CN0hb0ls4N49o3jpF+/D277/WFUtQUZmU+gJGYPdvbrLih97NpHFJ255Bk8crq177WOHJjGdyOIfr9iEs1dH8FgVbcYZYzg0Hlu0egNheQmB2N8e0C2cbL6A3+zkisXu4Tk8eaT5rrHr79uPP//B4xUTBqIpfj+FfKXKkExni9dQ41N8fxY7B2Zw9Zm9uPK0FXjwhQnbwPJkPGNIDxcQEfra7DPzkpk87nl+FDMWSlIjUcKhRkTVsNCaZ5NZtHhduuYRTeVw754xjM6l8fCBybovkJPJFXDjo0cAcFfHbc/aayqVePjABOZSOVx9Ri/WdwWRyhZwfC6FWDpnqBUQtHhdyBUYRrXJ0Fw05HM78dcvXY+HD0xaBivNguyTt+7C9x44hJ8/OYA5TYNvNbiVuMCdTWTxy+2DeO+N2/H9Bw8DAMbmUugO+XRhIjJnWizG3dPqK3Erffv+gygw4LmhOdy7p3KcZCyaRk+rUTgIhWBaS+/8wu/34Obtg/jAT3fU1IPqycNTcBBw0Smd2La2Hc8NzSKZKf/+nzx2FJd+9QH8+23PV32ehSAmxm5NQHa08PgTF1JxTCey+PdrtoIITV857f59Y/jKXS/goQMT+PRvnjO8NhXP4M3feQT/8IunARSFQ7iScAh5Ld1Ku4ZmwRjwov4IzuxrRTKbt3StZfMFzCSy6Gixdl/1t/kt3UqFAsN7b3wS771xO9747UcWtSJfCYcaeeM5q/C9d56Lv7p4nb7N63Lomkc0lTWktz50oL4Pyt6ROcwksrj+7WdjfVcQv95ZubYiX2D4+C+fwVXfeBBPSmsy3L7rOEI+Fy7e2Kn77g+Px5HI5BD0lE6yQW2R9WFNOFi5nt56fj/cTirxvX7h93uw9TN34iEt7TSVzeOZAZ5xdPfzo5gVloOk+bcFheWQxa+0eMizgzOIpXOIZ/LoDnvhdTngdlJROFi4B3pbfQbXz8hsCjuOTuNjV25C2OfCfRWC6IwxjMym9PiFQHz+uRQPmv9p/wQcxDXEWoqadg7MYPOKMIJeF/JbofoAACAASURBVM7qiyCbZ9g/Zp/3zhjD9fdx6+wnjx3Vr91COKplfNkxFk3D7STdUusMepHJFxBN5/SxnrumDVtXhquyfBrJzx4/hq6QF3932UY8cnASY9Hid3/bs8PYfnQav945hGOTiardSp0tXkwlMiVWwS69tX2kbC8voUDYVWH3tQUs3cQPH5zAwwcm8YpTu3BoIo6bn1y8Zo9KONQIEeGVW1cYNGuPy6FPatFUDntH5nD6qjCIUHXDLsYYbnjwIL557/6y+4kUzrP6Injl1hXYfmS6omvplh0D+OWOQewdieIDP92B2US26FI6rQdel1PPmDg0EdPcShbCQdt2XJuIrR6okM+N89a24/69xUV2svkC/ufhIwCAX+7gN/fgdEJfUW9gKoG5JP8MBsvBr7nqkhndhbH96LSeNdLZwoPmYZ9bj4NYuQd6wkbhsP0oF5Av29SFi07prDiZzaVySGbzJcJBWC2zCV75OjSTxD9cvglEqHoFOsYYnhmYwVna8pRrO7lFWi6t8dBEHGPRNN5ybh/yBYb7980/QwzgLrZLvnw/vnLXPtt9xubS6GzxwqFVEQsNeDKWwYGxGIh41s1ZfRE8PzzXtLhDMpPH/fvG8LqzVuKyLd0AYIiB3bl7RF/u9969o4imqxMOEb8bjKEkRnVgLIYuza28sacFLgdZFkaKeEWnTeC7v92PuVSuRND/ascgIgE3vvvOc3H26ghuXsROwEo4zJOAp+iT97qcCHpcIOI3z+GJOLasCGNF2Gfb/uGh/RN6phMAPHlkGv95x1587e4XMFYms+a5oVm0Bdzoa/PjJRs6kCswPFFhhbZf7RjiXUQ/cjGm4hl88c69uHfPKOZSObz2zJUAeFDMQcVirxaLmIN4gIZnkwh4nHpQ3swF6zuwbzSqm8C7hmaRyRXgczt0y0FMfuevbcfgdFIPOssxBxH8T2byGJlNwekgzCazunkvxhP2u8u6lVaEfYhn8vqDvePoNPxuJ7b0hnFabxiD08my5vq4pnmaq6/dTgcCHifmUlndt33hhg6c2hPCM1X2ypmIZTCXymFTDxfO/W1cOJRr+SFW5PubSzYg6HFiZw1WynNDsyUB7+8+cBAA8P0/Hbb1l4/HeIxHIDTgyVgaB8fj6Gvzw+d2YlNPCHOpHMZs0j4bzfajU8jmGV66sRNbV7aixevCU1J68N7jUbzxnFVoC7hxYCxWdCtZWMEyQmkxT97HphJYo7mYvS4nesI+y2yzybim0NikzIrvXQ5KC2v00lO74XU58arTV2DvSHTRig8rCgciWkNEndrfFxDRx4joDY0f2tLG55KFgwMOB6HF68JcKoeZRBbtQQ/62vyWpuJELI0//+HjePlX7tfNTaHNAjDUCjw7OGMQIkcnE1jf1QIiwrY17XA6qOzyndPxDLYfncIrt/Zg68pWvOeidfjfx4/hwzftxKqIHy/bxAuaHA5C2O/GTCKLuE3MQWwbnkmV9dEK83qf1mlSmN5vPW81JuMZxNI5HNMmv4s3diKTL+jtA1oNwoFf44GpBHIFhjNWtfL/tWsqXF8hH7/u4m8zIogq4g57j0exuTcEt9OhLwy0v0z7gqk4nxCs0h3DPjdmk1k9KN0b8WNDd0vVNQBCqAjLLahljpXLXDk8kYDHydc73tgTqrqj52wyi9f890P4l988h0c0d2ehwNuCtHhdyOQKej2HGXMVcYd2LSZiGYxHiy43vedUk9qKPH5oCk4H4by1/NlY1xnEYe1em45nMBnPYH1nC1a1+TE4nZQC0uUth3LCQV4kaGXEZzl5i/qgDlvLgR9Dni9eGI1hMp7BBRs6AACvOJVbQkLBajRlhQMRfRrAfQAeI6L/APANAJ0APkJE31iE8S1ZHA7SM5dEM76wz42JWJqnZPrd6G8LWFoOv5f88TsHuFbz1NEZrOsMIuRz6Z0+ZxIZvO76h3HZ1x7QzfSRuZQ+2fk9TmzpDZXVHJ8ZnEGBARdu6AQA/MMVm3BKdwsKjOFfrt5iaDbW6ndjPJpGrsAqCIekZbxBsEVbWvH543yCGJxOwOty4Nw1vAPlwFQCx6aS8LudeJHmThGTiaz5iz5WYqI9s08TDlrgzq9Zb7KgEt+JjJi4xAR+cDymT8ZCOJRbBnJKE+AitVam1a8Jh5kkHAR0h7xY3xnEwFSiqh79wu0oYj4AdzHIbqW7do/gDumeGZhKYFWbH04HYfOKEPaNRKty48jus19pactHpxJIZPJ487l9AHgVNMCvx1/fuF1fjS+ayhqus8i6mYilMR3P6tfmFG2pzWa1Fdk1NIuN3S36vcpTbvlYxGpuG7qD6IvwbKu5ZBYelwNeV+l9I9MaKBUO+gpyUkp3b6vfsmpeWMZW9xBQtBzk+WLnMT43nLe2HQC/tq1+tz5nNJpKlsPbAGwBsA3ARwBcyhj7JwBXALi8wWNb8ojJSfgwQz6XblKG/W6sjPhxfDZZkm749MAsWrzcDbVrkD+MhydiOLUnhFURv36D/PZpnomULzA8dWwajDGeKy1lzZyzug3PDMzYugOe1wTNaVodRovXhT/83Uvx6D9dhled0WvYN+J3Y1irJA56LFJZtQeOCz97TWtVxI+Ax4mDWqOxoZkkVkX8+uJBx6YSGItyIRfRHjqhWcmuKoeD4HEW8783r+CfQfwv0m3lsbicpZ01e6T2B9FUFmPRtC4cVkX8cBAwVKb7q0ghbLOyHPwuzCVzOD6bQlfIC7em0RdYdWtRHNXqZFa2GtujC4H03NAs3veTHfjgz57S3WIDUjHVxp4QphNZvSFeOR47xPthvXhdO/aN8vtCWHevPasXTslf/uudQ7j7+VF87e4XAKDEmhTKQTSVw2Q8o8cgOls88LudlkqRKJQ70qBCOd4ccRanaxYmwNudDE0nkckVdEG8TrccEphL5UrSn62wshyOz6bAGA8mC3ojPL5lfuZjmoVilTAB8Pso4HEamvsJi064rYgIZ/VHanIjLoRKwiHFGMswxmYAHGSMJQCAMZYDsLhJt0sQoaUKrSPkc+mTTNjnQlvQgwIrpssJjk3FcdrKMNZ1BvHcMHe5jEfT6Al70ddWzB8/IC1Ss28khplEFulcASukieTs1RHEM3nb7Jbnh+fQ1+Y3aPoup0O3PmTCfrc+frtUVn3fMm4lIkKvlD46NJ3Eqja/wa86l8oh7Hfr55mKZ+B0UEnbZK/LgRntgdQrSc1uJakq2knlhEOqRFN3OR3oDvkwVKbjpqh6by9nOUh9oUS687GpypPg8GwKva0+PdALcPeVEA6PSzUTj2iB1WNTCd0NIYSEXYNCmd1DvDfSGatasX+UN3oTWu66zhZ0tnj070y08RAN4cxJCkIhSmRymE5kdJcbz9m3dqde93teKPeh/32qIfUZ47E0JmIZvSAVANa0B1BgXEERQeGesBerIn6euj2b1JW8clgJBxH7kmMxK1v9yOQLJcI6ls5pmXXWU654ZuQ2L7uHZ3Fab9hwb5zV14oXRqNIZRu7XC9QWThEiOiNRPQmAK3a3/r/Cz05EX2UiJgU0yAi+iYRHSCiZ4nonIWeo5EIzdWjWw5uPRAX9rv1tD9z87gjkzyItbo9gJHZFFLZPOZSOXSHfdqDxXs0HZ6I44xVrfC4HDg6GS/6taWJ/ex+7qp56qi1NnFwPG5oEVyOVr9bv6mtArvyjV3OrcTHWDSvh2aS6GvzIxJww+UgTMYzvFWGz6WfZyaRMbRDF3jdTsxok3OfLlyMbiX54XZY9OT3e5wI+1wYm0uV+PgB7icu13tpOpGB1+WwnETCmnCQ+/OIyWIiWll/GplNlmRB8Z5SvIbgqaPT6A554XE68NTRaaSyecwksrr1KCyOalpuiNX95EZv41G+0E3E70ZnC8/lZ4zh2cEZhLwuJLNc8cjkCwa/vHCrjs6lkC8wg7tE3MMyyUwev9LWXN89PIddDehgLNp5yN+tCABPxdOYjKXhczsQ8Lj0+3cylrGdsGWEMmQQDlHRvbj42YW7bcpCOFSKa6yM+PU0ccYY9o1EdRetYFNPCAVWfRbkQqh0VR4A8BoAV0t/i58HFnJiIuoHcCWAY9LmVwHYqP28D8B3FnKORiM0KaFFeV3GyVO4TGakfkuJTA7j0TTWdga1RnbpYhfUkBd9bX7E0jyl7fBEHOu7gljdHsDhibjedlrWVNZ0BNAe9Oj+STOD0wn0W/RzsUKe8AMWwkGed30VtK0VWm1BLl/ARCyDnrAPRISQz4VoKos5zYctrmE8k4fbwiUkX9P2oAdel0OfCIXlIFsbVpYDoKWzapaD00FGP3HE2k8smI5nbHvvBDxOpLJ53vRP+yxCSMj59XYcn02VtFRoD7qRzTPE0jkcHI/hzL5W9EZ8GJ5N6ZOTKBDsjVTXWDCVzWM0yv3jQqCMzaUwEeML3TgcxZbss8ksUtkCLtVSQUXmldnV6Pc49e9CniD72gIlAfWdx6YRTedw3RvPAMBTkmX2jUT1Qsj5clQ7p7z2uQgAT8YymIpn0BHk341ssVopJWZ8bgc8TodROGgCQO7oahe4tisslVnZ6pcWrkojnsnrMRyBUPTK1cHUi0pX5TkAu7WfXaa/nyvzvmr4OoBPAJDty2sA3Mg4j4FbLr2W714CCK1XWA6y1hr2ScJBulGET7GvzY/OFi8m4xl9EukOeXUNbCKWxvBsEms6gljbEcDRyYTut5Rz+YkIZ/dHsNMidXI2yTuVyj7RcojxArCcqKuZhAW9rT6MRVP6ZxcPTcjnRjSVQzSV435Wt1NvReKxCAp63cVbNOBx6tecqJjqKo/LynIAuLAanUvj4HgMa9oDhhX9Vrby9EO7oO50IqNPxmY8TicyuQIvHNTG5nNzS8Wq3YJMocAwKiUYCPSeUvEsbxMS9mFF2IfjM0ld0RDfVUfQA4/LUbF1OP98wOoOvy7opuIZTMSKLR06W7yYiGZ0d4mYiOxcjX530UcuWw69ER/mUjm91QkA/f686vQVWBXxG9JLdw/P4pXfeBCXffUBw3tq5egkF/yysG2TPqscGxH30awWkK4EEc/mE/U4QNFykBWHokJoshxSOUtrXKY34sNELK3FR0otXIAH2O1qKepNpavSov2cC+ADAHoBrATwfgDzdvkQ0TUAhhhjz5heWgVArvIY1LYtScwxB5csHPwutGpFXLIWIWctdAQ9SOcKODzBNZ7ukE83PblriT/8XSEuRERA0hzUOnt1BAfGYiXayqBNDyQ7ZMvBavKXu7TazME6PWGfwfwVAi2k9WfibiU3HA7SLQCPhUDySdfW7Sz6bHldCd/fILTshIOWf35gLGbIDAL4dc/kCrbdVWeTWd1FaMbtImTyBcTTeQSk2hB5YSSACwKzJTEZzyCbZyVuJTHZjEVTmEpk0NXi1ZIbipaD+K6ICCtbK68rITT5/raAvhbJRDxjSFHlykpad42KiWnQpujR73HqNTmywiJabIxJ6x88PTCD9Z1BRAIebOk1LpL0w4d4S5TxaBoP7CsWT9bK0ckEVkX8BjeRbjnEM5iMp/X/hUs4ls5V5VYS75GF10QsjbaA29CMcaGWA9OWI9XdnybLweNyoL89YJtyXE/KXhXG2L8xxv4NQB+AcxhjH2OMfRRcWKwu914iuoeInrP4uQbAPwP414UMnIjeR0TbiWj7+Pj8b6iFIG4qod3KE6psOcxKWoTQ/NoCHn0SEIHn9qBHf8iERhb2uxD2uTGXyuqFWuaHVCxSbi68sltcxA6PKVPIjLzJ3M7bjNAkhYASGSEtXhcm4hk93Rcojd3IiGsrBLHbxc8r+//l625n0WzobsF4NI39YzE9fVWga3txa7dGzKZiHAC8TgfSuQIy+QJapJYj8sJIAPCp3+zC+Z+/Fzc8eFDfNqW3VDBaJULb3T8WA2O8+E4E+Ke0YipRPQ6IAHZ5K0UEY7tC3qI2HeNWQqe0gFU2z6SsniCcDrK1HAIeJ+JaDyjZ/SfcnrJwPDAWw2bNf74q4jfESHYem8Flm7vRFnDjbm3J3fnAYypGK9nndiLgcWIqnsFULIN2za0ka/FWVrIVfrcTCann1WSstJFeuIxwCFVhOQA8VfzgeBxBj9PgQhas0TwJjabaCukeGLOTMto2WxhjlzPGTjf/ADgEYB2AZ4joCLjgeYqIVgAYAtAvHaZP22Z1/BsYY9sYY9u6urqq/Bj1RdxUYlKVJ1Svy6FrEXLMQVgOkYBbv7FE9o3f49QnfrEkYavfjbCfr2sgHnBz36Mz+1pBBDxlijuIycm8dKYd8vitFPBqNHSBsG70bqmSW0n4VYXAEJOOlQYnJh0R4yhaDtZBaIfNHX2KZJ6LIj2B7max6XoZt6kYN49ZjtPIXTyPTSZw0xPcIP7mvQf0icMu913cN0Jp6GrhwiFXYDioTdyyC7A96MG0jWATyOm4bie/N6fiaS3TyG0Yh37ekBdhn0tXMszCwec2FoIK9JiLZjlk8wUMTCWwTltFr68tgKjWKmI6nsHhiTi2rW3HOavbFrTU7tHJUuEgPtdUPIOpRNGtFDQIh+qmwYDHaWiIOJ3IlKQ3h7QU9TkL4WCXxioQ2W7HZ7nlsKG7xVIJW9MewLE6rIteiWqFw40AniCizxLRZwE8DuBH8zkhY2wXY6ybMbaWMbYW3HV0DmNsBMDvALxLy1q6AMAsY2xhCxM3EHFTCY1XuJUcxDVrt9OBFq/LsADQrOQzFpOSePj8bkk46Cmxbn0SHZ5JosXrKpmYQz43Tu0pLYYrV7xlhcPgNrKyHKp3K4nJVK/70Cwi2RcvrKSWssKBH0e0KxGCWF5Ny1lh3AAMgb3TTMIhUmbdCKA0x19GtnZkAdLqd+uW3p8OcMv2S28+E7F0Dn/az/+fsREOcmU4AHSHi91nxb3SKgkHkd1Ujql4Bi4H6dprR9CDiVgGqWwBfu1aCmtscDqhZzBFAh699sWs+cotZDwWloNwow1OJ5ErMKzr1GpLNEt2aDqJA5r7ZEtvCJtWhHBoPF5V8aCZ2UQWs8ks1rQHS17raOEL9aSyBV2xkhUsbxUxB4Dfc7JbKZYurZFwOAitfrchzgiUv4cEYiGp4dkkDo3HS+INgjUdQUTTuZKMqHpT1VVhjH0ewHsATGs/72GMfaEB47kD3LI4AOD7AD7YgHPUDZdpMhMarDx5m/2U0wn+kLZ4XbomMRFNw+UgeKTurmISCGuWA1AUDlacvTqCpwdmDPnjU/EMQj5XVQE3oEbhUMly8BpbaYtCNdklJv7WYw4W4/SZ3Uq6cJDcStLb7NxK/e0BvPqMFXjHi1djbYdxAjG33jbDe01ZX3eD5SBNOC0+l17f8vihKawI+/CGs1ch4HHi8UO8dkEoDaL7rMCnXQdhdbUHPPo1GtYqsWUXVnuwsnAQQXWhiXa0eHTBLa6t+D08k0LE79YnOqGgWrmVBPJ31xbwwOUgPXYhKpTXaU0FV0WK6bfiM66M+LGppwW5ApuXP/2oVlOy2sJyEG4loHg/yeuVVGs5+D1Gt5LdfSFqX2TkbDY7Ah4XIlrPp6GZJNZ3lgo6QG610dgeS5VLAzUYY08BeKreA9CsB/E3A/Chep+jUYgAalbrLuq0CJB6XU6kJU1oJplFJOAGEekay2wyqz+YIclKAITlwCePoZmkba702f1tuOmJARyeLGock/GMbS8XKwyTbIWYg52GLtDdSjPGgKUcuBRWgZh0LOsctH18unDg55WzmIxuJetxOR2Eb7/jXMvX2gLF1uBmcvkC0rlClZaDJPi8Lh6L0PoVbexpgdvJW4iIAjM7t5L4rKI+xu9x6sHu4ZkkwtrELYgE3EhlC0hm8rYFXVPxovsI4NdcxBb82rXUz5vI6H/L7iuzhm10KxndfF0hr+5WEpOYKIIUrp3peEb/jCtafUhry8EekmpzRmZT+NubnkImz3D9287WJ0YzVqsTyuPUrXPt+ricDnhdPF5UtXBwO5GUis+iKWtXkRAO2XwBB8dj2NjN60qqKbbb0NWid0Ywx8YEvdK66KKbbyNQXVkXgLAcdOGgPbAuyfHtdTkM1YwziYzuUxYTSyyd028ct9MBn9uhF8OE/S5d6z4+m7L1W569mt8kchO+qXi64tq4MrJ/02rud1QR+BWIiXJ4NgmiokvCWEgl9i0TkHZZWw7yZFRpLJUI+9xwkLXlEE/z785WOEgTi7yP+PzxdA4DUwk9nXhjdwiHJ/jaCTOJLHxuh2GSBYqfWcSqfG6HbjlMxjMImPZvr+AW469lDULI63Lobi1zMeFMMqtr2IYMNpPgtbMcAO5aEm6l47MpuBykx9jkjJ7jsykEPU6EvC49pVfO6vra3fvw5JFpPDMwg4/+0pzcWERUdlvF1/hn1a6ldN+Uc2daETBbDqnSNcsBTYhk8vjBnw7jqm/8SV8ZsJrzbF0Z1lvhvMhm4i9aXgtbnrYSSjgsAJduOfAv0ynFHAQ+t9FymE0W12eWJzhZqxA3nNvJq1DlVhV2yxme0t2Cla0+3COtajYpZWdUgyHrx8pyqBCwlhEPXjSVQ4vHpb83YJFlVAxIW6Syuo0Tl5iEZC22UnC8Eg4HIRLwWAakY5pL0DYg7SqeW/5sLb7i8qXTiayu0a7tDCCZzWMsmsZ0PGMZD3I5HXA5SHdL+dxO3Q0yk8iUTMQiZlLOB20+l9fl1DvZimssBEIik9fvTbmRoTk4Kr9mtvq6Qj49tnR8JomecLFFSNDjgoP4Ikkjs7zOg4jQEfTA6SB97Y1kJo/fPTOMt53fj8++9jQ8cXgKO45adyAWixG1BUqfD5/bqcd/ZItTt1irdLv6pYB0OpcvqRrXr4XLgUy+oHfLFWswVJMVJeJhbieh2yaRJBJww+d26OuqNAolHBaA8AmKPHXdcnAaLQd5ychkJq/7puUJTn7QRJAr7HPrxTcCu0mKiHD5aT340/5x3VKZqtGtJGf62LmNxOZKqaxOqWutzxAfKJ5ECFdzMaGMveVQP+EAcIvGatEksc3ecijVROW/ReND0RdKxDsOT8QxIykKZsSELeo7xD1TYKUaaJtFx1Azwp2pj9vi3pPvQSEoyikEfinuYZ74usPFbC1eBV6c6ER7+NkkX29daPsObb3vUc0d9dzwLFLZAi7b3INrz+tH0OPELVoLDjNjc2l0aYs/mZGtBdlKK7ozq7t/Ah7uVmKMFRvpWdwXXpcT6WxBd6uJleFcdql0Elec1oM3n9uH/36bfRkZEWmtNpRwWLJcu60fP/7L8/HGc3idnphQ5YnV53YilS1aDulcwbLdhmw5FDU5o08esPbLC166sQupbAFPa/UOc6msIaulErVkI1UzIQsXmFwc6DJMNkbhYJmtpE1SYvLRYw6yW6kOwiHgcekuJBmhvdsJB3lSlIvghEYpKl2FAiHSOY9O8uVY7QLdegqvxT1gvk5ByYVlh6yUyMcHJLeSRQyhXJypnFXRrRVuZvMFHJ9NGZpFAkW/fDSVMwjInrBPdyuJup2z+iMIeFy4dEsP7tw9atmBeCyaQpeNpi1bC/KYhaJVvVvJhXyBIZMv6JaItXDglsN+LSVY9CurxnLoaPHiK285C1edvqLsfr1VFD4uFCUcFgAR4ZJNXfqD4XIYfwOllkM6V9BvViLSJ3v5ptXdU9q34zTEAuxvsPPXtcNBvDVzvsAMqXvVUClbybhv5eOJOINdewuhSZUz7y/Z1I1IwI0z+rj/1Zw+XM1YqyHocVq2boiXmQTM47CyHMx1HqIGYCKWQTKTL4k3CMyuHtll5TZdJ/Ga7A83k8zm9WMBRuEq3u+VhYOwHMq4Gu2sWKBYJT0eTWNkNmVoMw9w4TCXLF1Yqifs1d1Ku4fn0Nvq06/Z5Vu6MRXPYPdwaS3EeDRtWTAGGK0F+W8hLM3X0w7xjCYzeV1psIoBel0OJDN5vQ3JpPbbnN24ELolt12jUMKhjlilsnrdDpPlkDc8mEKDkx9+8XbxYMpzX7l5sNXvxrrOIPYcn9MnumCZB9iM00Krt6NSKis/dwXLQQ9I22crnb+uHU//65X4q4vXGfapt1sp4HXp1b4y+nW0EbJiPEQmrdSUdSYsCVGxOx3nNQZ2wsFryiByOx26IDK7QYrNC43C7ZO37sJnfvsc0rk88gVmtAwkQeGzcivploN9kkK5vH0xoe8b4R1dzf2jxAp65nTQDmkti8HphCH76EJtRbRHDpauzz1WRjjI94osIMvdd1bIQljvVmBxDTwuhyE5QBg6rjrcpwJRgd/IQjglHOqI02Iy97mcRsshWzDcrOZJAJCEjIWbqtKkvb6rBYfG47oWGajJcpA+i82NTPq+lW908TntLAexvZbAoLllCbDwbCVAsxws3DJCsNulIYoxy72egOKkISwHOZGgTQt+p0zavIzPlMIrxgiUukHEpCVX7yYzedz0xDH8+NGjeFhbElT+DFbxLrezuJ6GleVg/s7LCQcxUQsXZ6+NWymeyRsUmJBUHzI8Y+xY2x3yYX1XEE8eNgalM7kCpuIZ3VoxY2c5lGvbYoVfFg4VLAfx/MkCq1r3VTV0tXiRzhX0pIJGoIRDHbFahazUcjAJB1MFMFBqMRj9vuXHsL4riKOTCb1JXy2WQzktUcD0fSsfT1wPORBnZUUEa/D9ikOZ8+oXCq9+LbUcRLWunb9Yb+dhus6ilcbIbAoOMrb7aAvytbpT2bzlsqaArDSUFtmVCgcRcyiOf4+0rvT+0Zh2TOu6BDHpEUlJBFXEHMp1Ge0O80nx2UEhHEyWg5+vfZI3LUkb9rmRyfOajZE5YyAbAF7UF8Ezg7MGjVlfdCdc2XLwWwSka+mtBHDBK+odAhZKgyxseiXhZjU/zBfxWRvpWlLCoY5YadM8cyGPqXgGc6ksMrmC4SH1mLJxgNJiOkP9AcrfYBs6W5DJF7BvhE8ItVkO5VNZ7fa1QwgFO3eVOSBdjQYn5gSP5CFgIAAAIABJREFUwa1U8W0VCXqdJW4ZAMhoNSx2rgfZcpAREw5Pd3QbvkPR6yeVs3cr+SxSSe2uk9NB8LkdhpjJbqlHkejwaQw4W0+YQhjpzSTLZCtZTYyCzhYviIBnB/k4ek2TvN/tLAb7pWsn3G8Hx/kKdGaL48y+VkzE0oZgrKjEtnUr2bjTaq1zEPvlCgVJabAv3ARgiLVUk61ULWINiUYKh+pnDkVFxH0iz5tetwNzqRzO+dzd8LkdXDhID6aYdOR0z6LFINxKxeNVur96tJtRtCCwWgvafvy1BKSrEA6mDCPAaDmY3UrVPKQFTToYYw4Lf+gCHhcSFtlKosDRTnAVLQfjoyS7usy58G0BD45NJbSAtI1bycLdqNd6WFyngMdlEG5DMym4nYSwz6036zMEpC1iDvLf4vqSZMWakyHKWQ5upwPtAQ8m4xm4nYROU72NfE9YFQ+KxWzMloNYH3rvyJzuchJtw23dSi7rz1prnYO4X/MFpt8XVveswXKQhFu1Fko1dFl0vq03ynKoI3aWgyCVLaDAjBObmOzkFszmlFhj5XL5G0zkvItAqNWKbnZUG/gGqgsCW1kOVn+LCaGaBmgiuFfPCmmAC9FMvqA/9IJyGiIfR2lCAWD8nObCxbaAW7McyriVXE7Db8AYGzAT8DgNwk0Uva1q8+vptFapqvJnAErTqM3JETKVGsmJCWxDV0uJ6092sbQYYg5abzFtKdhWv7FOR7SGkZfJ1C0HG7eSzyLQLo+/WstBKDY5STiUq80BjO60emYr6c0iG9h8TwmHOmKVjWClGcoPpvBzy5Wd5lRWQH5Iy49BCBnRVK2c6W+mlpXeqoo5WLQTsRIOQrOuRjgIt5I8udTHrcTHYI47lNMQ5e1mLZqISj6foDXgQTSVA2NGl4eM3nDQU2o5WI0laIqZTGpLm3aHfHrPKDu3kqxwiO9MvG5lvernrNhllGvNGy3WMJfvCfk44lod1xcRMlldQb4OirxY0Fg0DSLYFnzKn9VgsZSxxKwQ32ehwPSuB5Ush85QcUzuOmYrRfR+YEo4nBBYadOyIBDIN4/wE8vLUJrdSvLfldw5kaDJcqhBONSSFVXJggGKE3glyyES8OBLbzoTrztrZcVjikBkLWOtBhFQNtc6ZLTWKPYBab7dykITn8/c1tln49Ix7iMCwxZZRRZCNGCKmYi+WoYMJRvhICNateiWg8P+vqvksrxkE19nxWrylZ8BS+Fgs/ocwDsTHJQsh/EoX+HNTjOXr7F839ZsOThly4HfF+WaRQLG57qeloPb6UDI5zKsFVNvlHCoI+JBkoPG1pZDcVu8nOVgkT1UaRoMaes96Kt3zbcIroKWU51bSbMcnDbCQTrftef12/aSkRE5KvLZ61UhDaCkSjqTK8DjdNgKQzHJWRWEic9vTgqQJxQ7t5KY0ORiYLHNOuZgbAo3nciiPeixDTwLQWH+WF2aa0ZfF13cdxYfv9Jk95Ztfbj6zF68/5L1pe+VvjNjN1vjSohWcY0NXS26qwyAYTU7K+wEYS2JEEAxtpWvwa3UbhAO9bMcAB67UpbDCYKVW8nKcpCDgcKnLXdPtTLlySL+YAURX6RFCJ1ATams1n9X2tcOMXnIk7dVQLoWRIzG4HKri3Cwthyy+ULZQGJxfQl7y8GsmXoMPn7rR/DVZ/QCMNXMmFqJGMdv7A01GePatF0BmNhuLuLq0YK6omZC3IvzqbUKeFz41tvPsXYrGdbBKG07IvoGWSk3G7qDmIhl9IWz5HWwrRDX27xPf1sALgeVBL3tkGMOmVwBDrK+h81rWwjcdcxW4sd2W7aZrxcqW6mOWAeky5udAtn8FMexSiOsxoXSGnBjMp6B00FV+1PN56tPKisZfgPWRXC1ICapWtqHV4OYrHKmvj2ZXKGsZulxOmzX+rX6/IBRWNhZDueva8fNf3Mh1ncFS/a1Go+81kA2z4uj2oIezCWLAsOqCC5savwngroiyFvpO3I7CZdu7i67j937BFYupmiKV05bCf712opyBydiOGd1GyZiab1nlRXimG8/37js/eqOAHZ99pVVrbMAyNlKBU1pKJ+kABhX7Ku35VDNCoALQQmHOlKsSyhus6ugNCN3zCya8lYxh8rj4NpKHF6XvTvECqvz2VFLKmsjLAerIOpC0LXCvFE4lJsEAC7sbvvIS/XGejLCDWGeFOTj2cUcAC4gZITFaZUv73KS3pBOrF8c8bsN7eKt+neZM6ku2dSF636/Fxeu560qil14rce4//Ovth1/OQxrnkidbWWhYbew1QZtydeDYzGc3R+paDls6gnhzr9/GTb1lC67Wa1g4GOWLIe8vdJg1fEWqG8qK8Ath0MTsco7zhMlHOqI1WTXbtGvX7Yc1nYEcGQyYZgwxHGs1kauZq4XZnqtGnVtvZUqH09MAPJEUEuhnRXCcpDfWQ+3klN/8E2prGUmAYGd1iomk3JuJa+NW8n6eHxfKw+Pk4rCIaUJBJ/baZmmChTbgrSblijd0hvGvv+4SurKOn+3UjnsLAeR5ZUvMNs6ir42P5wOwtHJBGLpHNK5gl4UZofdqmq1INc5iFiUFfLzbazxqa9bKRLwNDQgrYRDHbEUDhbpdfKEcOsHLzKsfAVIVoJ0L5HptXKISclZo6ZiFEbl961pHLLlIAen5+EO+shlG7FvNIqXbewqHqcOwkE8xOZ20OUmgUo4LT4/YGycZ+dWssIluTVKXpMsh7TmXuLCwTpD6ZzVEbzzgjX44Cs2lBzL0JqkvsqujiwwzRq1LhxsLAe304GVER+OTSX0CmE5ZbRRiMk9l+cB6UqWQ8DjNFq4dbYcWrw8zsQYq8lDUC1KONQRvfGetM1SOMjZDFretoxV+mDRvK98E+jujBqfbPnQ9XErlY6j0mpzlTh1RQj3/OMlNY+lEuKamWMOldxK5dB7S5kmBY+NNl8Jh+TWMCMmVKBoFXhdDvt6BqcDn3v96ZXP2YBJh5/fOBbDaw5CBvarHgLAmvYgjk4lMBHjPveuluqCygvBKSkQmTJrT4skk3PXtBm219tyCHpdKDDer62W+6haVLZSHbFyb1jVGVgFpA3HsQg+FwVG5XGIe7bWB9uue2qlfe2olMpaL22nHpaDfcyBVZ3qaDcuc5ZKtTEHuzHm8xbCgUgXGqILsM/tlNYOqWHgErW4M2uh3EQprpt5rWyZ/vYABhbdcigK52ye2cYQzlkTwbsuXIOvXnuW8f11thxEbU6szCJPC0EJhzpipalbTYDlMisAuVV3cVstD6lrnpZDLcKkulTWUguoHhO5mXpkKzlNLptMroBP3roLB8dj8w4kWmWdAdXVOZQdo0UAwOlwlFoOboeuiMw3jVIMvZExBzN6rKaMUF7TEcBUPKP3EKsUc6gH8j3CY1H2rU/+/ZrTS3o91TuVNajX5jRGOCi3Uh3Ri+BsJqu3nNuHF6/vqKiJksWkUksqa7H9Rq2WQ/X7VlUhbXH+RgiHejxzbqn6FQAePjiBm544BgCWmUjzObb+fxV1DlaI61mwcCsZYg6a5eB1FQPS89VaG/F9AeUL6Kpxi67RFgHacXQaTgcZ6gkahbnOodq1p/X3N8hysFreth4o4VBH7DRYt5OQzTN8+S1nWb5uxiqVVUQyapmUa485VL9/Ndq61QTQEMuhLtlKxWAjYGxoNl+3kmj1Yb4Onnm6lZw2tRiAdczB5y7GHOZ7jRoR6ASqsxzK3b/9knDoCHrqkrFWCXNX1lpjUfUXDtYrANYLJRzqiN3N/NSnr4DF82yLVSprsd9S5fdbLVda1XlrcStVlcrKjye7JBohHOpa56B9UaI3FVB9Y7ZKx9aPZ1jsqfpjr9fckZssKo55zIELBYPlIC0zOh8aFZAuNx5xj5SzLlZ3cOEwm8zi9FXh+g7OBuGuTecKZbOV7Ki7W8mr3EonDHbaS7msCyuEtmZ1L1Va7AewTiGthtpiDtWPg0mZ+fXO2Kh2LJUQ1+rBF8bxxOFJg0Cb78QqDlEiHKTj1aKZX3RKJ3734YtwhramgYzTQSgw4LX//ZCeGu1zO/TGffMVynXsFWegnEAvriBov0/Y50Z7kC+atLW39Ho0AnENv3znPgDFxoLVUm/rJmjTD6xeKOFQR/QK6QUfh/+2mvSqy1YSwqG2J7ua3a3aV9hh6VZqgCZal2wlbUL63TPDAIzVyfN3K4ljm7KV5nk8ADizL2K5XUyku6QV4AyWw5JzK1VjOZQ/twhKn7ZysSwHU+yoUZKzSvSYQ4PcSipbqY7Uy2VSrj13NdrHfGMOtWjgtaSyGtxKdfa7AvWxHMwWzYS0/OJCJ4FylkO9sLov5JjDfNtF6xXS8x+aJeUmfrvKcjMfu/JUALVr8PPFfI1rcQk2gkZnKzXt0xHR3xLRXiLaTURfkrZ/kogOENE+Inpls8Y3H+qlFZfro1TNKfSaiJqzlSrvX6nXjmEcFjstVcvBfAx5+UWPa37HryYgXS+sF5pyWtaa1MJiVEibERZvpe/1olM6ceS6q7G2Qmp4o6h3r6RaOSljDkT0CgDXADiLMZYmom5t+2kA3gpgK4CVAO4hok2MscY41eqMfjMv8J4pts+wcis1Mlup+n2r0ta1XWStc6lmK5mvVTRVfODmO5mLz22eRObrpiqH+Ro4iH8msSjNfIOh9XKVmik3HnG567lyWiOYSTaur1E1eFwOeJwOvT1/vWlWzOEDAK5jjKUBgDE2pm2/BsDPte2HiegAgPMBPNqcYdaGXqi2wOOUizlUc+xqNa+S99XZrVTP95WjLm4lCy1wVcSPF69vx5vO7VvQsc2fuREap1m4+dy8r8+6ziB6wl586uot8zpuo2IO5SyZYvHg0vZ6H5tKVLXff77hDDx+eLIhY/juO8/Bmo7GWE7NEg6bALyUiD4PIAXgY4yxJwGsAvCYtN+gtq0EInofgPcBwOrVq612WXTqlcesPxxyKqvptbLjsEiFreW85SgGpGs6tHSO+b2vHPVJZS2diLatbcPXrn3RvI+pB6RNx67ncpECswAS/nC/x4nH//nyeR9Xr5Ce9xGsKfesWK0TvtT4s239eOeFa6ra9+0vXo23v7gxc9Slm3saclyggcKBiO4BsMLipU9p520HcAGA8wDcTETrazk+Y+wGADcAwLZt2+p9786Lek18xZhBcZu+PGZN2Uo1Coca9q9FW5cD0o3QROuRImh1iIUGokUK72L4ps1adr0asTUiRgSUdyst5nWbL+96yRpsXbk4KbTNomHCgTFmq64Q0QcA3Mp4xO4JIioA6AQwBKBf2rVP23ZCUK/+M+VaZdTSPqPW57qaOZaIf85qxrFYj3Y9XFVWQqtesYFGtaCQKVdotxCoTq5SM9VYBUvZrdTsTKXFoFmf8DcAXgEARLQJgAfABIDfAXgrEXmJaB2AjQCeaNIY581CteNi4z2LmEMNlkPN563ifbXUOejvqbtTwkijtNuFZhWJa7UY+fBm66kerjagcW6lctekeN2WruVQqbPyyUCzYg7/D8D/I6LnAGQAvFuzInYT0c0AngeQA/ChEyVTqZ7oFdLSszGfmEOt1FQhXcV8pwvJBjv9GqVgLlT7LsYcSq/rJZu6cPEpnQs6voz5HJ116lLaKKunGuHQiGr6etGIjLOlRlOEA2MsA+DPbV77PIDPL+6I6kO95sByk3QtFdK1urnq3T5j0dxKTWgOVwtWLpQf/+X5dTm2wDyJ10s4NKq3Ui1FlEsR5VZSzIt6pbLKFAPS1cccaqWWt9VyjkZnC9RbuxWX2OOsj+tgMTTgUsuhPi2s9aLHuhytlL+7bGPJNr0n1RJ2KynLQVETp3S14N0XrsG7XrJ2QccpJwCqW+yncTGHYkC68vEapHRanKe+Jwp6XIilc3VwK4kK6cZfCHPM4TypN9SCjtug9hkAcOS6qy2321WWLyUaUeW+1FDCoY44HIR/u6byuryVsJqka4k5zDfLo5pJVriqqtn3Vaf34p49o/jEVafOazy1snlFaSvr+eBzOxFL5+rnVlpky+H2j1xctzTLxci0smMpu5WWsuCqF0o4LEHKPRPVPC+L8VBV4+f3e5z49jvObfhYAOC2v70Y/W2Buhwr6HViIrZwv/JiukfkSbye+feLZf1ZsZSFw3JACYclSDnroBqNfTFWxWpUoHK+nG6xxsF8CWjdLhdcBCdSMhfBcmiUht/M77nZLbGXO+rqL0GsHkg9IF3F+xdD41rCWYYLJuDhgegFxxy0b60RbcrNzLfwsdrjLiZCqDbTpaVQwmFJUu4Br6VCupEsNcuhnvjc/LGol+XQqFRbGRHXqPf30oz5WQjVpZyttBxQbqUTBD0gXcvazQ1MIl3IJPQvV29BV6g+efiNQAT0F245cBZDjjaqtXajurJWg3IrNRclHE4wlozlsIDn9r0vranH4qIjhOuJZB05GzTm/7+9uw+2o67vOP7+3OSGYEIIENQUCEFAESiGJCIPDkalTshQUjU62PIUH1JbIWqHUVs7FrTVGUY6FTtDyiDGUAFB1AkRBh8gBYGgEUkQkZoiHVFGHtqGplY6Id/+sb+TrHfPPffc3Hv24ZzPa+bM3ad79vs7e85+d3+/3d9W8Rm4WqkenBwaooyb4MajSTvO8Wp9fi/umtiZ15pzF3L13Y9P2t3KnUztVZtDFckh/S2jIX+81py78HceBNXPnBxqqNPPsZufahnJoYqdRlmmTlJyWHT4gfzTeZNzM9pYenXmUOmlrDVsc1h6/NyqQyhN/VKztW0pGN9NcD5zmIjW57dz166KI+ler65WqnI7u1qpWk4ODdNVtxUldHmnPv7mLDhsNpA9JrQpenXmUM2lrNnhkVNDtVyt1DBVXj2S14/VSn955jE8u+MF3vP6IzjlyIMa9aSvXrU5VHnw3odfsUZxcmiYuvxg+rFa6U/fcOTu4SYlBuhlm0N6vxIfxFuLZ/6aq5Wapi475RpeSDLQ9iSH3rxvqXZnh3p81weVf+INM57f6mQ907p9HP7h1kmnR8tOxO7vW4mb+yNLX8U+U4ca1ebTj1ytVEOdfod12Sn3Y5tDo7UeytMHVystPX4uj/3t4FwyWlc+c2iaEn6rnfYHl519HNOmDNWm7cMy43nOxnjsfjs3BAwcnzk0TK+P5L730Tey7/Doj8e84NT5XDDBJ93Z5Nt/32EAVrd57OZE+F6DweXk0DDd/FYPmJHtKI566cxxv/+hk/TAHCvX9OEpoz52cyJ2H4w4RwwcJ4eG6ebM4bjf25/r3/s6Fs0/oISIrJ+5WmlwOTk0TLcHcKceNaencdhg8IUHg8sN0g1TlzukbTDU5eo4K5+TQw11OoN3+6CVyclhcDk5NMyQs4OVqJ87WLTOvOlrqPNNcKWFYeY2hwHm5NA4/rFaeVytNLgqSQ6SFkjaJOkhSZslnZSmS9KVkrZJ2ippYRXxVe30Vx4MwPITDynM85mDlcm5YXBVdSnr5cBlEXG7pGVpfAlwJnB0er0OuCr9HSivOHjmqDc0+UjOyuSv2+CqqlopgFlpeH/gV2l4ObAuMpuA2ZLcA1eOk4OVaXhoiCHBX5/16qpDsZJVdebwIeAOSZ8lS1CnpumHAL/ILfdkmvbUyDeQtApYBTBv3ryeBlsnzg1WpqEh8fhnJr9bDqu/niUHSd8BXt5m1seBNwMfjohbJL0T+AJwxnjePyKuBq4GWLx4cd/f3L+7ixsnBzMrQc+SQ0SMurOXtA74YBq9GbgmDf8SOCy36KFp2sBrdcnsaiUzK0NVbQ6/At6Qht8E/CwNrwfOT1ctnQxsj4hCldIgc3IwszJU1ebwPuBzkqYCvyW1HQC3AcuAbcBvgJXVhFdfzg1mVoZKkkNEfA9Y1GZ6AB8oP6L6ayUF3+dgZmXwHdIN415ZzawMTg4N4QZpMyuTk0PDODWYWRmcHBpiT5uD04OZ9Z6TQ8M4N5hZGZwcGsYP+zGzMjg5NMSeBulq4zCzweDk0DByk7SZlcDJoSHc1mBmZXJyMDOzAieHhoi+75TczOrEycHMzAqcHBrCbQ5mViYnBzMzK3ByaIiXTMt6V/cZhJmVoaqH/dg4rV35WjZsfYqX7rdP1aGY2QBwcmiIww+awQfeeFTVYZjZgHC1kpmZFTg5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWYGTg5mZFTg5mJlZgaIP+oKW9Azw73v573OAZycxnCo0vQxNjx9chjpoevxQfhkOj4iD283oi+QwEZI2R8TiquOYiKaXoenxg8tQB02PH+pVBlcrmZlZgZODmZkVODnA1VUHMAmaXoamxw8uQx00PX6oURkGvs3BzMyKfOZgZmYFTg5mZlYwMMlB0lJJj0naJuljbebvI+kraf4DkuaXH2VnXZThQknPSHoovd5bRZyjkXStpKcl/XiU+ZJ0ZSrfVkkLy46xky7iXyJpe+7z/0TZMXYi6TBJd0n6iaRHJH2wzTJ13wbdlKG220HSdEnfl7QlxX9Zm2XqsS+KiL5/AVOAfwNeAUwDtgDHjljmz4E1afgc4CtVx70XZbgQ+MeqY+1QhtOBhcCPR5m/DLgdEHAy8EDVMY8z/iXAhqrj7BD/XGBhGt4P+Nc236G6b4NuylDb7ZA+15lpeBh4ADh5xDK12BcNypnDScC2iHg8Iv4PuBFYPmKZ5cCX0vBXgTdLUokxjqWbMtRaRNwN/EeHRZYD6yKzCZgtaW450Y2ti/hrLSKeiogH0/B/A48Ch4xYrO7boJsy1Fb6XHek0eH0GnlVUC32RYOSHA4BfpEbf5LiF2r3MhGxE9gOHFRKdN3ppgwAb0/VAV+VdFg5oU2abstYZ6ekKoPbJR1XdTCjSVUVJ5IdueY1Zht0KAPUeDtImiLpIeBp4NsRMeo2qHJfNCjJYVDcCsyPiBOAb7Pn6MPK8SBZXzWvAT4PfKPieNqSNBO4BfhQRDxfdTx7Y4wy1Ho7RMSLEbEAOBQ4SdLxVcfUzqAkh18C+aPoQ9O0tstImgrsDzxXSnTdGbMMEfFcRLyQRq8BFpUU22TpZjvVVkQ836oyiIjbgGFJcyoO63dIGibbqX45Ir7WZpHab4OxytCE7QAQEf8F3AUsHTGrFvuiQUkOPwCOlnSEpGlkjTzrRyyzHrggDa8A7ozUIlQTY5ZhRN3w2WT1sU2yHjg/XTFzMrA9Ip6qOqhuSXp5q25Y0klkv6/aHGCk2L4APBoRfz/KYrXeBt2Uoc7bQdLBkman4X2BPwB+OmKxWuyLppa9wipExE5JFwF3kF31c21EPCLpk8DmiFhP9oW7TtI2skbHc6qLuKjLMqyWdDawk6wMF1YWcBuSbiC7kmSOpCeBvyFrkCMi1gC3kV0tsw34DbCymkjb6yL+FcCfSdoJ/C9wTs0OME4DzgMeTnXeAH8FzINmbAO6K0Odt8Nc4EuSppAlrZsiYkMd90XuPsPMzAoGpVrJzMzGwcnBzMwKnBzMzKzAycHMzAqcHMzMrMDJwWpBUki6Ijd+iaRLS45ho6TFafi21vXoE3i/JZI2jDI932vodyayHrNecHKwungBeNve3sma7iSdNBGxLN3B2iv3RMSC9DojP2Oyy2K2N5wcrC52kj0/98MjZ0iaL+nO1KHgdyXNS9PXSloj6QHg8jR+laRNkh5PR+jXSnpU0trc+10lafNo/emnZZ6QNEfS+3NH+D+XdFea/xZJ90t6UNLNqa+f1jM3firpQeBt3RZe2bM41ku6E/iupBkp9u9L+pGk5Wm5fSXdmMr0dWX9/bfOdnbk3m9Fq8zprtxbJP0gvU5L0y9N69iYPq/Vuf8/P33eWyRdJ2m/VP7hNH9Wftz6UBX9hPvl18gXsAOYBTxB1pfMJcClad6twAVp+N3AN9LwWmADMCU3fiNZn/nLgeeB3yc7CPohsCAtd2D6OwXYCJyQxjcCi9PwE8CcXHzDwD3AHwJzgLuBGWneR4FPANPJetM8OsVwE22eK0B2l/V24KH0+jjZ3exP5mL7NHBuGp5N9tyCGcBfkN0dD3ACWVJtxbwjt44VwNo0fD3w+jQ8j6zrCYBLgfuAfVKZnkvlPC6tb86Iz+uLwB+l4VXAFVV/b/zq3cunr1YbEfG8pHXAarJuD1pOYc9R+HXA5bl5N0fEi7nxWyMiJD0M/DoiHgaQ9Agwn2xn/E5Jq8i6j5kLHAtsHSO8z5H1cXOrpLPS/9ybuvCZBtwPHAP8PCJ+ltb5z2Q70XbuiYizWiOSLiTrvrn1vIi3AGdLuiSNTyfbsZ8OXAkQEVsljRU3wBnAsdrzSIBZrTMd4JuRddb4gqSngZcBbyL7XJ9N62nFdA3wEbJeTlcC7+ti3dZQTg5WN/9A1uXyF7tc/n9GjLd6pd2VG26NT5V0BNlZyWsj4j9T1cv0TitIO+7DgYtak8h25O8asdyCLmMeTb4sAt4eEY+NWEen/8/3hZMv0xDZ08Z+2+a98p/Ri3TYJ0TEvamKbwnZ2Vrbx6Vaf3Cbg9VKOkq9CXhPbvJ97Ol87E/Iqnf21iyynfB2SS8Dzuy0sKRFZMnk3IjYlSZvAk6TdFRaZoakV5L1rjlf0pFpuXcV3rB7dwAXS7t7Fz0xTb8b+OM07XiyqqWWX0t6taQh4K256d8CLs6VaawkdifwDkkHpeUPzM1bR1ZN1W3ytoZycrA6uoKsDrzlYmBlqkI5Dyg8VL5bEbEF+BHZjvx64N4x/uUi4EDgrtQofU1EPEPWRnBDiul+4Jh0ZL4K+GZqkH56b+MEPkVW/781VYl9Kk2/Cpgp6VHgk2RtKS0fI2uDuQ/Id7O9GlicGph/Ary/04oj4hHg74B/kbQFyHeN/WXgAOCGvS2YNYN7ZTVrMEkbgUsiYnNJ61sBLI+I88pYn1XHbQ5m1hVJnyerhltWdSzWez5zMDOzArc5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWcH/A09HDwZiAAAAA0lEQVQgq1zuqXC/AAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"err = optimfuncQMF(b)\n",
|
|
"print(err)\n",
|
|
"\n",
|
|
"#Restore symmetric upper half of window:\n",
|
|
"h = np.concatenate((xmin, np.flipud(xmin)))\n",
|
|
"plt.plot(h)\n",
|
|
"plt.title('Resulting PQMF Window Function')\n",
|
|
"plt.xlabel('Sample')\n",
|
|
"plt.ylabel('Value')\n",
|
|
"plt.show()\n",
|
|
"\n",
|
|
"f, H = sig.freqz(h)\n",
|
|
"plt.plot(f, 20*np.log10(np.abs(H)))\n",
|
|
"plt.title('Resulting PQMF Magnitude Response')\n",
|
|
"plt.xlabel('Normalized Frequency')\n",
|
|
"plt.ylabel('dB')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"Collapsed": "false"
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3.7.4 64-bit ('base': conda)",
|
|
"language": "python",
|
|
"name": "python37464bitbaseconda58faf23c4b5f4fef93406f29a1005f35"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|