mirror of https://github.com/coqui-ai/TTS.git
61 lines
3.9 KiB
JSON
61 lines
3.9 KiB
JSON
|
|
{
|
|
"model": "speaker_encoder",
|
|
"run_name": "test_speaker_encoder",
|
|
"run_description": "test speaker encoder.",
|
|
"audio":{
|
|
// Audio processing parameters
|
|
"num_mels": 40, // size of the mel spec frame.
|
|
"fft_size": 400, // number of stft frequency levels. Size of the linear spectogram frame.
|
|
"sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
|
"win_length": 400, // stft window length in ms.
|
|
"hop_length": 160, // stft window hop-lengh in ms.
|
|
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
|
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
|
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
|
"min_level_db": -100, // normalization range
|
|
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
|
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
|
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
|
// Normalization parameters
|
|
"signal_norm": true, // normalize the spec values in range [0, 1]
|
|
"symmetric_norm": true, // move normalization to range [-1, 1]
|
|
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
|
"clip_norm": true, // clip normalized values into the range.
|
|
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
|
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
|
"do_trim_silence": true, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
|
"trim_db": 60 // threshold for timming silence. Set this according to your dataset.
|
|
},
|
|
"reinit_layers": [],
|
|
"loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
|
|
"grad_clip": 3.0, // upper limit for gradients for clipping.
|
|
"epochs": 1000, // total number of epochs to train.
|
|
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
|
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
|
|
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
|
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
|
"steps_plot_stats": 10, // number of steps to plot embeddings.
|
|
"num_speakers_in_batch": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
|
"num_utters_per_speaker": 10, //
|
|
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
|
"wd": 0.000001, // Weight decay weight.
|
|
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
|
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
|
"print_step": 20, // Number of steps to log traning on console.
|
|
"batch_size": 32,
|
|
"output_path": "", // DATASET-RELATED: output path for all training outputs.
|
|
"model_params": {
|
|
"model_name": "lstm",
|
|
"input_dim": 40,
|
|
"proj_dim": 256,
|
|
"lstm_dim": 768,
|
|
"num_lstm_layers": 3,
|
|
"use_lstm_with_projection": true
|
|
},
|
|
"storage": {
|
|
"sample_from_storage_p": 0.66, // the probability with which we'll sample from the DataSet in-memory storage
|
|
"storage_size": 15 // the size of the in-memory storage with respect to a single batch
|
|
},
|
|
"datasets":null
|
|
} |