TTS/utils/generic_utils.py

250 lines
8.8 KiB
Python

import os
import sys
import glob
import time
import shutil
import datetime
import json
import torch
import numpy as np
from collections import OrderedDict
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def load_config(config_path):
config = AttrDict()
config.update(json.load(open(config_path, "r")))
return config
def create_experiment_folder(root_path):
""" Create a folder with the current date and time """
date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I:%M%p")
output_folder = os.path.join(root_path, date_str)
os.makedirs(output_folder, exist_ok=True)
print(" > Experiment folder: {}".format(output_folder))
return output_folder
def remove_experiment_folder(experiment_path):
"""Check folder if there is a checkpoint, otherwise remove the folder"""
checkpoint_files = glob.glob(experiment_path+"/*.pth.tar")
if len(checkpoint_files) < 1:
if os.path.exists(experiment_path):
shutil.rmtree(experiment_path)
print(" ! Run is removed from {}".format(experiment_path))
else:
print(" ! Run is kept in {}".format(experiment_path))
def copy_config_file(config_file, path):
config_name = os.path.basename(config_file)
out_path = os.path.join(path, config_name)
shutil.copyfile(config_file, out_path)
def _trim_model_state_dict(state_dict):
r"""Remove 'module.' prefix from state dictionary. It is necessary as it
is loded for the next time by model.load_state(). Otherwise, it complains
about the torch.DataParallel()"""
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
return new_state_dict
def save_checkpoint(model, optimizer, model_loss, out_path,
current_step, epoch):
checkpoint_path = 'checkpoint_{}.pth.tar'.format(current_step)
checkpoint_path = os.path.join(out_path, checkpoint_path)
print("\n | > Checkpoint saving : {}".format(checkpoint_path))
new_state_dict = _trim_model_state_dict(model.state_dict())
state = {'model': new_state_dict,
'optimizer': optimizer.state_dict(),
'step': current_step,
'epoch': epoch,
'linear_loss': model_loss,
'date': datetime.date.today().strftime("%B %d, %Y")}
torch.save(state, checkpoint_path)
def save_best_model(model, optimizer, model_loss, best_loss, out_path,
current_step, epoch):
if model_loss < best_loss:
new_state_dict = _trim_model_state_dict(model.state_dict())
state = {'model': new_state_dict,
'optimizer': optimizer.state_dict(),
'step': current_step,
'epoch': epoch,
'linear_loss': model_loss,
'date': datetime.date.today().strftime("%B %d, %Y")}
best_loss = model_loss
bestmodel_path = 'best_model.pth.tar'
bestmodel_path = os.path.join(out_path, bestmodel_path)
print("\n | > Best model saving with loss {0:.2f} : {1:}".format(model_loss, bestmodel_path))
torch.save(state, bestmodel_path)
return best_loss
def lr_decay(init_lr, global_step):
warmup_steps = 4000.0
step = global_step + 1.
lr = init_lr * warmup_steps**0.5 * np.minimum(step * warmup_steps**-1.5,
step**-0.5)
return lr
def count_parameters(model):
r"""Count number of trainable parameters in a network"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class Progbar(object):
"""Displays a progress bar.
# Arguments
target: Total number of steps expected, None if unknown.
interval: Minimum visual progress update interval (in seconds).
"""
def __init__(self, target, width=30, verbose=1, interval=0.05):
self.width = width
self.target = target
self.sum_values = {}
self.unique_values = []
self.start = time.time()
self.last_update = 0
self.interval = interval
self.total_width = 0
self.seen_so_far = 0
self.verbose = verbose
self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and
sys.stdout.isatty()) or
'ipykernel' in sys.modules)
def update(self, current, values=None, force=False):
"""Updates the progress bar.
# Arguments
current: Index of current step.
values: List of tuples (name, value_for_last_step).
The progress bar will display averages for these values.
force: Whether to force visual progress update.
"""
values = values or []
for k, v in values:
if k not in self.sum_values:
self.sum_values[k] = [v * (current - self.seen_so_far),
current - self.seen_so_far]
self.unique_values.append(k)
else:
self.sum_values[k][0] += v * (current - self.seen_so_far)
self.sum_values[k][1] += (current - self.seen_so_far)
self.seen_so_far = current
now = time.time()
info = ' - %.0fs' % (now - self.start)
if self.verbose == 1:
if (not force and (now - self.last_update) < self.interval and
self.target is not None and current < self.target):
return
prev_total_width = self.total_width
if self._dynamic_display:
sys.stdout.write('\b' * prev_total_width)
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
if self.target is not None:
numdigits = int(np.floor(np.log10(self.target))) + 1
barstr = '%%%dd/%d [' % (numdigits, self.target)
bar = barstr % current
prog = float(current) / self.target
prog_width = int(self.width * prog)
if prog_width > 0:
bar += ('=' * (prog_width - 1))
if current < self.target:
bar += '>'
else:
bar += '='
bar += ('.' * (self.width - prog_width))
bar += ']'
else:
bar = '%7d/Unknown' % current
self.total_width = len(bar)
sys.stdout.write(bar)
if current:
time_per_unit = (now - self.start) / current
else:
time_per_unit = 0
if self.target is not None and current < self.target:
eta = time_per_unit * (self.target - current)
if eta > 3600:
eta_format = '%d:%02d:%02d' % (
eta // 3600, (eta % 3600) // 60, eta % 60)
elif eta > 60:
eta_format = '%d:%02d' % (eta // 60, eta % 60)
else:
eta_format = '%ds' % eta
info = ' - ETA: %s' % eta_format
else:
if time_per_unit >= 1:
info += ' %.0fs/step' % time_per_unit
elif time_per_unit >= 1e-3:
info += ' %.0fms/step' % (time_per_unit * 1e3)
else:
info += ' %.0fus/step' % (time_per_unit * 1e6)
for k in self.unique_values:
info += ' - %s:' % k
if isinstance(self.sum_values[k], list):
avg = np.mean(
self.sum_values[k][0] / max(1, self.sum_values[k][1]))
if abs(avg) > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
else:
info += ' %s' % self.sum_values[k]
self.total_width += len(info)
if prev_total_width > self.total_width:
info += (' ' * (prev_total_width - self.total_width))
if self.target is not None and current >= self.target:
info += '\n'
sys.stdout.write(info)
sys.stdout.flush()
elif self.verbose == 2:
if self.target is None or current >= self.target:
for k in self.unique_values:
info += ' - %s:' % k
avg = np.mean(
self.sum_values[k][0] / max(1, self.sum_values[k][1]))
if avg > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
info += '\n'
sys.stdout.write(info)
sys.stdout.flush()
self.last_update = now
def add(self, n, values=None):
self.update(self.seen_so_far + n, values)