TTS/recipes/ljspeech
Shivam Mehta d83ee8fe45
Adding neural HMM TTS Model (#2272)
* Adding neural HMM TTS

* Adding tests

* Adding neural hmm on readme

* renaming training recipe

* Removing overflow\s decoder parameters from the config

* Update the Trainer requirement version for a compatible one (#2276)

* Bump up to v0.10.2

* Adding neural HMM TTS

* Adding tests

* Adding neural hmm on readme

* renaming training recipe

* Removing overflow\s decoder parameters from the config

* fixing documentation

Co-authored-by: Edresson Casanova <edresson1@gmail.com>
Co-authored-by: Eren Gölge <erogol@hotmail.com>
2023-01-23 11:53:04 +01:00
..
align_tts d-vector handling (#1945) 2022-09-13 14:10:33 +02:00
fast_pitch d-vector handling (#1945) 2022-09-13 14:10:33 +02:00
fast_speech d-vector handling (#1945) 2022-09-13 14:10:33 +02:00
fastspeech2 Fastspeech2 (#2073) 2023-01-15 22:39:22 +01:00
glow_tts d-vector handling (#1945) 2022-09-13 14:10:33 +02:00
hifigan Make style (#1405) 2022-03-16 12:13:55 +01:00
multiband_melgan Make style (#1405) 2022-03-16 12:13:55 +01:00
neuralhmm_tts Adding neural HMM TTS Model (#2272) 2023-01-23 11:53:04 +01:00
overflow Adding OverFlow (#2183) 2022-12-12 12:44:15 +01:00
speedy_speech d-vector handling (#1945) 2022-09-13 14:10:33 +02:00
tacotron2-Capacitron d-vector handling (#1945) 2022-09-13 14:10:33 +02:00
tacotron2-DCA d-vector handling (#1945) 2022-09-13 14:10:33 +02:00
tacotron2-DDC d-vector handling (#1945) 2022-09-13 14:10:33 +02:00
univnet Make style (#1405) 2022-03-16 12:13:55 +01:00
vits_tts d-vector handling (#1945) 2022-09-13 14:10:33 +02:00
wavegrad Make style 2022-02-25 11:26:59 +01:00
wavernn Make style 2022-02-25 11:26:59 +01:00
README.md Create LJSpeech recipes for all the models 2021-06-22 16:21:11 +02:00
download_ljspeech.sh Update ljspeech download 2022-02-25 11:12:44 +01:00

README.md

🐸💬 TTS LJspeech Recipes

For running the recipes

  1. Download the LJSpeech dataset here either manually from its official website or using download_ljspeech.sh.

  2. Go to your desired model folder and run the training.

    Running Python files. (Choose the desired GPU ID for your run and set CUDA_VISIBLE_DEVICES)

    CUDA_VISIBLE_DEVICES="0" python train_modelX.py
    

    Running bash scripts.

    bash run.sh
    

💡 Note that these runs are just templates to help you start training your first model. They are not optimized for the best result. Double-check the configurations and feel free to share your experiments to find better parameters together 💪.