TTS/models/tacotron.py

157 lines
7.4 KiB
Python

# coding: utf-8
import torch
from torch import nn
from TTS.layers.gst_layers import GST
from TTS.layers.tacotron import Decoder, Encoder, PostCBHG
from TTS.models.tacotron_abstract import TacotronAbstract
class Tacotron(TacotronAbstract):
def __init__(self,
num_chars,
num_speakers,
r=5,
postnet_output_dim=1025,
decoder_output_dim=80,
attn_type='original',
attn_win=False,
attn_norm="sigmoid",
prenet_type="original",
prenet_dropout=True,
forward_attn=False,
trans_agent=False,
forward_attn_mask=False,
location_attn=True,
attn_K=5,
separate_stopnet=True,
bidirectional_decoder=False,
double_decoder_consistency=False,
ddc_r=None,
gst=False,
memory_size=5):
super(Tacotron,
self).__init__(num_chars, num_speakers, r, postnet_output_dim,
decoder_output_dim, attn_type, attn_win,
attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask,
location_attn, attn_K, separate_stopnet,
bidirectional_decoder, double_decoder_consistency,
ddc_r, gst)
decoder_in_features = 512 if num_speakers > 1 else 256
encoder_in_features = 512 if num_speakers > 1 else 256
speaker_embedding_dim = 256
proj_speaker_dim = 80 if num_speakers > 1 else 0
# base model layers
self.embedding = nn.Embedding(num_chars, 256, padding_idx=0)
self.embedding.weight.data.normal_(0, 0.3)
self.encoder = Encoder(encoder_in_features)
self.decoder = Decoder(decoder_in_features, decoder_output_dim, r, memory_size, attn_type, attn_win,
attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask,
location_attn, attn_K, separate_stopnet,
proj_speaker_dim)
self.postnet = PostCBHG(decoder_output_dim)
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
postnet_output_dim)
# speaker embedding layers
if num_speakers > 1:
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
self.speaker_embedding.weight.data.normal_(0, 0.3)
self.speaker_project_mel = nn.Sequential(
nn.Linear(speaker_embedding_dim, proj_speaker_dim), nn.Tanh())
self.speaker_embeddings = None
self.speaker_embeddings_projected = None
# global style token layers
if self.gst:
gst_embedding_dim = 256
self.gst_layer = GST(num_mel=80,
num_heads=4,
num_style_tokens=10,
embedding_dim=gst_embedding_dim)
# backward pass decoder
if self.bidirectional_decoder:
self._init_backward_decoder()
# setup DDC
if self.double_decoder_consistency:
self._init_coarse_decoder()
def forward(self, characters, text_lengths, mel_specs, mel_lengths=None, speaker_ids=None):
"""
Shapes:
- characters: B x T_in
- text_lengths: B
- mel_specs: B x T_out x D
- speaker_ids: B x 1
"""
self._init_states()
input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
# B x T_in x embed_dim
inputs = self.embedding(characters)
# B x speaker_embed_dim
if speaker_ids is not None:
self.compute_speaker_embedding(speaker_ids)
if self.num_speakers > 1:
# B x T_in x embed_dim + speaker_embed_dim
inputs = self._concat_speaker_embedding(inputs,
self.speaker_embeddings)
# B x T_in x encoder_in_features
encoder_outputs = self.encoder(inputs)
# sequence masking
encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs)
# global style token
if self.gst:
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
if self.num_speakers > 1:
encoder_outputs = self._concat_speaker_embedding(
encoder_outputs, self.speaker_embeddings)
# decoder_outputs: B x decoder_in_features x T_out
# alignments: B x T_in x encoder_in_features
# stop_tokens: B x T_in
decoder_outputs, alignments, stop_tokens = self.decoder(
encoder_outputs, mel_specs, input_mask,
self.speaker_embeddings_projected)
# sequence masking
if output_mask is not None:
decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs)
# B x T_out x decoder_in_features
postnet_outputs = self.postnet(decoder_outputs)
# sequence masking
if output_mask is not None:
postnet_outputs = postnet_outputs * output_mask.unsqueeze(2).expand_as(postnet_outputs)
# B x T_out x posnet_dim
postnet_outputs = self.last_linear(postnet_outputs)
# B x T_out x decoder_in_features
decoder_outputs = decoder_outputs.transpose(1, 2).contiguous()
if self.bidirectional_decoder:
decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask)
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
if self.double_decoder_consistency:
decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(mel_specs, encoder_outputs, alignments, input_mask)
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
return decoder_outputs, postnet_outputs, alignments, stop_tokens
@torch.no_grad()
def inference(self, characters, speaker_ids=None, style_mel=None):
inputs = self.embedding(characters)
self._init_states()
if speaker_ids is not None:
self.compute_speaker_embedding(speaker_ids)
if self.num_speakers > 1:
inputs = self._concat_speaker_embedding(inputs,
self.speaker_embeddings)
encoder_outputs = self.encoder(inputs)
if self.gst and style_mel is not None:
encoder_outputs = self.compute_gst(encoder_outputs, style_mel)
if self.num_speakers > 1:
encoder_outputs = self._concat_speaker_embedding(
encoder_outputs, self.speaker_embeddings)
decoder_outputs, alignments, stop_tokens = self.decoder.inference(
encoder_outputs, self.speaker_embeddings_projected)
postnet_outputs = self.postnet(decoder_outputs)
postnet_outputs = self.last_linear(postnet_outputs)
decoder_outputs = decoder_outputs.transpose(1, 2)
return decoder_outputs, postnet_outputs, alignments, stop_tokens