mirror of https://github.com/coqui-ai/TTS.git
377 lines
14 KiB
Python
377 lines
14 KiB
Python
import os
|
|
import sys
|
|
import time
|
|
import datetime
|
|
import shutil
|
|
import torch
|
|
import signal
|
|
import argparse
|
|
import importlib
|
|
import pickle
|
|
import traceback
|
|
import numpy as np
|
|
|
|
import torch.nn as nn
|
|
from torch import optim
|
|
from torch import onnx
|
|
from torch.utils.data import DataLoader
|
|
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
|
from tensorboardX import SummaryWriter
|
|
|
|
from utils.generic_utils import (Progbar, remove_experiment_folder,
|
|
create_experiment_folder, save_checkpoint,
|
|
save_best_model, load_config, lr_decay,
|
|
count_parameters, check_update, get_commit_hash)
|
|
from utils.model import get_param_size
|
|
from utils.visual import plot_alignment, plot_spectrogram
|
|
from datasets.LJSpeech import LJSpeechDataset
|
|
from models.tacotron import Tacotron
|
|
from layers.losses import L1LossMasked
|
|
|
|
|
|
use_cuda = torch.cuda.is_available()
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--restore_path', type=str,
|
|
help='Folder path to checkpoints', default=0)
|
|
parser.add_argument('--config_path', type=str,
|
|
help='path to config file for training',)
|
|
args = parser.parse_args()
|
|
|
|
# setup output paths and read configs
|
|
c = load_config(args.config_path)
|
|
_ = os.path.dirname(os.path.realpath(__file__))
|
|
OUT_PATH = os.path.join(_, c.output_path)
|
|
OUT_PATH = create_experiment_folder(OUT_PATH, c.model_name)
|
|
CHECKPOINT_PATH = os.path.join(OUT_PATH, 'checkpoints')
|
|
shutil.copyfile(args.config_path, os.path.join(OUT_PATH, 'config.json'))
|
|
|
|
parser.add_argument('--finetine_path', type=str)
|
|
# save config to tmp place to be loaded by subsequent modules.
|
|
file_name = str(os.getpid())
|
|
tmp_path = os.path.join("/tmp/", file_name+'_tts')
|
|
pickle.dump(c, open(tmp_path, "wb"))
|
|
|
|
# setup tensorboard
|
|
LOG_DIR = OUT_PATH
|
|
tb = SummaryWriter(LOG_DIR)
|
|
|
|
|
|
def train(model, criterion, data_loader, optimizer, epoch):
|
|
model = model.train()
|
|
epoch_time = 0
|
|
avg_linear_loss = 0
|
|
avg_mel_loss = 0
|
|
|
|
print(" | > Epoch {}/{}".format(epoch, c.epochs))
|
|
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
|
|
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
|
|
for num_iter, data in enumerate(data_loader):
|
|
start_time = time.time()
|
|
|
|
# setup input data
|
|
text_input = data[0]
|
|
text_lengths = data[1]
|
|
linear_input = data[2]
|
|
mel_input = data[3]
|
|
mel_lengths = data[4]
|
|
|
|
current_step = num_iter + args.restore_step + \
|
|
epoch * len(data_loader) + 1
|
|
|
|
# setup lr
|
|
current_lr = lr_decay(c.lr, current_step, c.warmup_steps)
|
|
for params_group in optimizer.param_groups:
|
|
params_group['lr'] = current_lr
|
|
|
|
optimizer.zero_grad()
|
|
|
|
# dispatch data to GPU
|
|
if use_cuda:
|
|
text_input = text_input.cuda()
|
|
mel_input = mel_input.cuda()
|
|
mel_lengths = mel_lengths.cuda()
|
|
linear_input = linear_input.cuda()
|
|
|
|
# forward pass
|
|
mel_output, linear_output, alignments =\
|
|
model.forward(text_input, mel_input)
|
|
|
|
# loss computation
|
|
mel_loss = criterion(mel_output, mel_input, mel_lengths)
|
|
linear_loss = 0.5 * criterion(linear_output, linear_input, mel_lengths) \
|
|
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
|
|
linear_input[:, :, :n_priority_freq],
|
|
mel_lengths)
|
|
loss = mel_loss + linear_loss
|
|
|
|
# backpass and check the grad norm
|
|
loss.backward()
|
|
grad_norm, skip_flag = check_update(model, 0.5, 100)
|
|
if skip_flag:
|
|
optimizer.zero_grad()
|
|
print(" | > Iteration skipped!!")
|
|
continue
|
|
optimizer.step()
|
|
|
|
step_time = time.time() - start_time
|
|
epoch_time += step_time
|
|
|
|
# update
|
|
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
|
('linear_loss', linear_loss.item()),
|
|
('mel_loss', mel_loss.item()),
|
|
('grad_norm', grad_norm.item())])
|
|
avg_linear_loss += linear_loss.item()
|
|
avg_mel_loss += mel_loss.item()
|
|
|
|
# Plot Training Iter Stats
|
|
tb.add_scalar('TrainIterLoss/TotalLoss', loss.item(), current_step)
|
|
tb.add_scalar('TrainIterLoss/LinearLoss', linear_loss.item(),
|
|
current_step)
|
|
tb.add_scalar('TrainIterLoss/MelLoss', mel_loss.item(), current_step)
|
|
tb.add_scalar('Params/LearningRate', optimizer.param_groups[0]['lr'],
|
|
current_step)
|
|
tb.add_scalar('Params/GradNorm', grad_norm, current_step)
|
|
tb.add_scalar('Time/StepTime', step_time, current_step)
|
|
|
|
if current_step % c.save_step == 0:
|
|
if c.checkpoint:
|
|
# save model
|
|
save_checkpoint(model, optimizer, linear_loss.item(),
|
|
OUT_PATH, current_step, epoch)
|
|
|
|
# Diagnostic visualizations
|
|
const_spec = linear_output[0].data.cpu().numpy()
|
|
gt_spec = linear_input[0].data.cpu().numpy()
|
|
|
|
const_spec = plot_spectrogram(const_spec, data_loader.dataset.ap)
|
|
gt_spec = plot_spectrogram(gt_spec, data_loader.dataset.ap)
|
|
tb.add_image('Visual/Reconstruction', const_spec, current_step)
|
|
tb.add_image('Visual/GroundTruth', gt_spec, current_step)
|
|
|
|
align_img = alignments[0].data.cpu().numpy()
|
|
align_img = plot_alignment(align_img)
|
|
tb.add_image('Visual/Alignment', align_img, current_step)
|
|
|
|
# Sample audio
|
|
audio_signal = linear_output[0].data.cpu().numpy()
|
|
data_loader.dataset.ap.griffin_lim_iters = 60
|
|
audio_signal = data_loader.dataset.ap.inv_spectrogram(
|
|
audio_signal.T)
|
|
try:
|
|
tb.add_audio('SampleAudio', audio_signal, current_step,
|
|
sample_rate=c.sample_rate)
|
|
except:
|
|
# print("\n > Error at audio signal on TB!!")
|
|
# print(audio_signal.max())
|
|
# print(audio_signal.min())
|
|
pass
|
|
|
|
avg_linear_loss /= (num_iter + 1)
|
|
avg_mel_loss /= (num_iter + 1)
|
|
avg_total_loss = avg_mel_loss + avg_linear_loss
|
|
|
|
# Plot Training Epoch Stats
|
|
tb.add_scalar('TrainEpochLoss/TotalLoss', avg_total_loss, current_step)
|
|
tb.add_scalar('TrainEpochLoss/LinearLoss', avg_linear_loss, current_step)
|
|
tb.add_scalar('TrainEpochLoss/MelLoss', avg_mel_loss, current_step)
|
|
tb.add_scalar('Time/EpochTime', epoch_time, epoch)
|
|
epoch_time = 0
|
|
|
|
return avg_linear_loss, current_step
|
|
|
|
|
|
def evaluate(model, criterion, data_loader, current_step):
|
|
model = model.eval()
|
|
epoch_time = 0
|
|
avg_linear_loss = 0
|
|
avg_mel_loss = 0
|
|
|
|
print(" | > Validation")
|
|
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
|
|
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
|
|
for num_iter, data in enumerate(data_loader):
|
|
start_time = time.time()
|
|
|
|
# setup input data
|
|
text_input = data[0]
|
|
text_lengths = data[1]
|
|
linear_input = data[2]
|
|
mel_input = data[3]
|
|
mel_lengths = data[4]
|
|
|
|
# dispatch data to GPU
|
|
if use_cuda:
|
|
text_input = text_input.cuda()
|
|
mel_input = mel_input.cuda()
|
|
mel_lengths = mel_lengths.cuda()
|
|
linear_input = linear_input.cuda()
|
|
|
|
# forward pass
|
|
mel_output, linear_output, alignments =\
|
|
model.forward(text_input, mel_input)
|
|
|
|
# loss computation
|
|
mel_loss = criterion(mel_output, mel_input, mel_lengths)
|
|
linear_loss = 0.5 * criterion(linear_output, linear_input, mel_lengths) \
|
|
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
|
|
linear_input[:, :, :n_priority_freq],
|
|
mel_lengths)
|
|
loss = mel_loss + linear_loss
|
|
|
|
step_time = time.time() - start_time
|
|
epoch_time += step_time
|
|
|
|
# update
|
|
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
|
('linear_loss', linear_loss.item()),
|
|
('mel_loss', mel_loss.item())])
|
|
|
|
avg_linear_loss += linear_loss.item()
|
|
avg_mel_loss += mel_loss.item()
|
|
|
|
# Diagnostic visualizations
|
|
idx = np.random.randint(mel_input.shape[0])
|
|
const_spec = linear_output[idx].data.cpu().numpy()
|
|
gt_spec = linear_input[idx].data.cpu().numpy()
|
|
align_img = alignments[idx].data.cpu().numpy()
|
|
|
|
const_spec = plot_spectrogram(const_spec, data_loader.dataset.ap)
|
|
gt_spec = plot_spectrogram(gt_spec, data_loader.dataset.ap)
|
|
align_img = plot_alignment(align_img)
|
|
|
|
tb.add_image('ValVisual/Reconstruction', const_spec, current_step)
|
|
tb.add_image('ValVisual/GroundTruth', gt_spec, current_step)
|
|
tb.add_image('ValVisual/ValidationAlignment', align_img, current_step)
|
|
|
|
# Sample audio
|
|
audio_signal = linear_output[idx].data.cpu().numpy()
|
|
data_loader.dataset.ap.griffin_lim_iters = 60
|
|
audio_signal = data_loader.dataset.ap.inv_spectrogram(audio_signal.T)
|
|
try:
|
|
tb.add_audio('ValSampleAudio', audio_signal, current_step,
|
|
sample_rate=c.sample_rate)
|
|
except:
|
|
# print(" | > Error at audio signal on TB!!")
|
|
# print(audio_signal.max())
|
|
# print(audio_signal.min())
|
|
pass
|
|
|
|
# compute average losses
|
|
avg_linear_loss /= (num_iter + 1)
|
|
avg_mel_loss /= (num_iter + 1)
|
|
avg_total_loss = avg_mel_loss + avg_linear_loss
|
|
|
|
# Plot Learning Stats
|
|
tb.add_scalar('ValEpochLoss/TotalLoss', avg_total_loss, current_step)
|
|
tb.add_scalar('ValEpochLoss/LinearLoss', avg_linear_loss, current_step)
|
|
tb.add_scalar('ValEpochLoss/MelLoss', avg_mel_loss, current_step)
|
|
return avg_linear_loss
|
|
|
|
|
|
def main(args):
|
|
|
|
# Setup the dataset
|
|
train_dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata_train.csv'),
|
|
os.path.join(c.data_path, 'wavs'),
|
|
c.r,
|
|
c.sample_rate,
|
|
c.text_cleaner,
|
|
c.num_mels,
|
|
c.min_level_db,
|
|
c.frame_shift_ms,
|
|
c.frame_length_ms,
|
|
c.preemphasis,
|
|
c.ref_level_db,
|
|
c.num_freq,
|
|
c.power,
|
|
min_seq_len=c.min_seq_len
|
|
)
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=c.batch_size,
|
|
shuffle=False, collate_fn=train_dataset.collate_fn,
|
|
drop_last=False, num_workers=c.num_loader_workers,
|
|
pin_memory=True)
|
|
|
|
val_dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata_val.csv'),
|
|
os.path.join(c.data_path, 'wavs'),
|
|
c.r,
|
|
c.sample_rate,
|
|
c.text_cleaner,
|
|
c.num_mels,
|
|
c.min_level_db,
|
|
c.frame_shift_ms,
|
|
c.frame_length_ms,
|
|
c.preemphasis,
|
|
c.ref_level_db,
|
|
c.num_freq,
|
|
c.power
|
|
)
|
|
|
|
val_loader = DataLoader(val_dataset, batch_size=c.eval_batch_size,
|
|
shuffle=False, collate_fn=val_dataset.collate_fn,
|
|
drop_last=False, num_workers=4,
|
|
pin_memory=True)
|
|
|
|
model = Tacotron(c.embedding_size,
|
|
c.num_freq,
|
|
c.num_mels,
|
|
c.r)
|
|
|
|
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
|
|
|
if use_cuda:
|
|
criterion = L1LossMasked().cuda()
|
|
else:
|
|
criterion = L1LossMasked()
|
|
|
|
if args.restore_path:
|
|
checkpoint = torch.load(args.restore_path)
|
|
model.load_state_dict(checkpoint['model'])
|
|
optimizer.load_state_dict(checkpoint['optimizer'])
|
|
print("\n > Model restored from step %d\n" % checkpoint['step'])
|
|
start_epoch = checkpoint['step'] // len(train_loader)
|
|
best_loss = checkpoint['linear_loss']
|
|
start_epoch = 0
|
|
args.restore_step = checkpoint['step']
|
|
else:
|
|
args.restore_step = 0
|
|
print("\n > Starting a new training")
|
|
|
|
if use_cuda:
|
|
model = nn.DataParallel(model.cuda())
|
|
|
|
num_params = count_parameters(model)
|
|
print(" | > Model has {} parameters".format(num_params))
|
|
|
|
if not os.path.exists(CHECKPOINT_PATH):
|
|
os.mkdir(CHECKPOINT_PATH)
|
|
|
|
if 'best_loss' not in locals():
|
|
best_loss = float('inf')
|
|
|
|
for epoch in range(0, c.epochs):
|
|
train_loss, current_step = train(
|
|
model, criterion, train_loader, optimizer, epoch)
|
|
val_loss = evaluate(model, criterion, val_loader, current_step)
|
|
best_loss = save_best_model(model, optimizer, val_loss,
|
|
best_loss, OUT_PATH,
|
|
current_step, epoch)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# signal.signal(signal.SIGINT, signal_handler)
|
|
try:
|
|
main(args)
|
|
except KeyboardInterrupt:
|
|
remove_experiment_folder(OUT_PATH)
|
|
try:
|
|
sys.exit(0)
|
|
except SystemExit:
|
|
os._exit(0)
|
|
except Exception:
|
|
remove_experiment_folder(OUT_PATH)
|
|
traceback.print_exc()
|
|
sys.exit(1)
|