TTS/tests/data_tests/test_loader.py

232 lines
9.5 KiB
Python

import os
import shutil
import unittest
import numpy as np
import torch
from torch.utils.data import DataLoader
from tests import get_tests_output_path
from TTS.tts.configs.shared_configs import BaseTTSConfig
from TTS.tts.datasets import TTSDataset
from TTS.tts.datasets.formatters import ljspeech
from TTS.utils.audio import AudioProcessor
# pylint: disable=unused-variable
OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/")
os.makedirs(OUTPATH, exist_ok=True)
# create a dummy config for testing data loaders.
c = BaseTTSConfig(text_cleaner="english_cleaners", num_loader_workers=0, batch_size=2)
c.r = 5
c.data_path = "tests/data/ljspeech/"
ok_ljspeech = os.path.exists(c.data_path)
DATA_EXIST = True
if not os.path.exists(c.data_path):
DATA_EXIST = False
print(" > Dynamic data loader test: {}".format(DATA_EXIST))
class TestTTSDataset(unittest.TestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.max_loader_iter = 4
self.ap = AudioProcessor(**c.audio)
def _create_dataloader(self, batch_size, r, bgs):
items = ljspeech(c.data_path, "metadata.csv")
# add a default language because now the TTSDataset expect a language
language = ""
items = [[*item, language] for item in items]
dataset = TTSDataset(
r,
c.text_cleaner,
compute_linear_spec=True,
return_wav=True,
ap=self.ap,
meta_data=items,
characters=c.characters,
batch_group_size=bgs,
min_seq_len=c.min_seq_len,
max_seq_len=float("inf"),
use_phonemes=False,
)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=True,
num_workers=c.num_loader_workers,
)
return dataloader, dataset
def test_loader(self):
if ok_ljspeech:
dataloader, dataset = self._create_dataloader(2, c.r, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data["text"]
text_lengths = data["text_lengths"]
speaker_name = data["speaker_names"]
linear_input = data["linear"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
stop_target = data["stop_targets"]
item_idx = data["item_idxs"]
wavs = data["waveform"]
neg_values = text_input[text_input < 0]
check_count = len(neg_values)
assert check_count == 0, " !! Negative values in text_input: {}".format(check_count)
assert isinstance(speaker_name[0], str)
assert linear_input.shape[0] == c.batch_size
assert linear_input.shape[2] == self.ap.fft_size // 2 + 1
assert mel_input.shape[0] == c.batch_size
assert mel_input.shape[2] == c.audio["num_mels"]
assert (
wavs.shape[1] == mel_input.shape[1] * c.audio.hop_length
), f"wavs.shape: {wavs.shape[1]}, mel_input.shape: {mel_input.shape[1] * c.audio.hop_length}"
# make sure that the computed mels and the waveform match and correctly computed
mel_new = self.ap.melspectrogram(wavs[0].squeeze().numpy())
ignore_seg = -(1 + c.audio.win_length // c.audio.hop_length)
mel_diff = (mel_new[:, : mel_input.shape[1]] - mel_input[0].T.numpy())[:, 0:ignore_seg]
assert abs(mel_diff.sum()) < 1e-5
# check normalization ranges
if self.ap.symmetric_norm:
assert mel_input.max() <= self.ap.max_norm
assert mel_input.min() >= -self.ap.max_norm # pylint: disable=invalid-unary-operand-type
assert mel_input.min() < 0
else:
assert mel_input.max() <= self.ap.max_norm
assert mel_input.min() >= 0
def test_batch_group_shuffle(self):
if ok_ljspeech:
dataloader, dataset = self._create_dataloader(2, c.r, 16)
last_length = 0
frames = dataset.items
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data["text"]
text_lengths = data["text_lengths"]
speaker_name = data["speaker_names"]
linear_input = data["linear"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
stop_target = data["stop_targets"]
item_idx = data["item_idxs"]
avg_length = mel_lengths.numpy().mean()
assert avg_length >= last_length
dataloader.dataset.sort_and_filter_items()
is_items_reordered = False
for idx, item in enumerate(dataloader.dataset.items):
if item != frames[idx]:
is_items_reordered = True
break
assert is_items_reordered
def test_padding_and_spec(self):
if ok_ljspeech:
dataloader, dataset = self._create_dataloader(1, 1, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data["text"]
text_lengths = data["text_lengths"]
speaker_name = data["speaker_names"]
linear_input = data["linear"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
stop_target = data["stop_targets"]
item_idx = data["item_idxs"]
# check mel_spec consistency
wav = np.asarray(self.ap.load_wav(item_idx[0]), dtype=np.float32)
mel = self.ap.melspectrogram(wav).astype("float32")
mel = torch.FloatTensor(mel).contiguous()
mel_dl = mel_input[0]
# NOTE: Below needs to check == 0 but due to an unknown reason
# there is a slight difference between two matrices.
# TODO: Check this assert cond more in detail.
assert abs(mel.T - mel_dl).max() < 1e-5, abs(mel.T - mel_dl).max()
# check mel-spec correctness
mel_spec = mel_input[0].cpu().numpy()
wav = self.ap.inv_melspectrogram(mel_spec.T)
self.ap.save_wav(wav, OUTPATH + "/mel_inv_dataloader.wav")
shutil.copy(item_idx[0], OUTPATH + "/mel_target_dataloader.wav")
# check linear-spec
linear_spec = linear_input[0].cpu().numpy()
wav = self.ap.inv_spectrogram(linear_spec.T)
self.ap.save_wav(wav, OUTPATH + "/linear_inv_dataloader.wav")
shutil.copy(item_idx[0], OUTPATH + "/linear_target_dataloader.wav")
# check the last time step to be zero padded
assert linear_input[0, -1].sum() != 0
assert linear_input[0, -2].sum() != 0
assert mel_input[0, -1].sum() != 0
assert mel_input[0, -2].sum() != 0
assert stop_target[0, -1] == 1
assert stop_target[0, -2] == 0
assert stop_target.sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[0] == linear_input[0].shape[0]
assert mel_lengths[0] == mel_input[0].shape[0]
# Test for batch size 2
dataloader, dataset = self._create_dataloader(2, 1, 0)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data["text"]
text_lengths = data["text_lengths"]
speaker_name = data["speaker_names"]
linear_input = data["linear"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
stop_target = data["stop_targets"]
item_idx = data["item_idxs"]
if mel_lengths[0] > mel_lengths[1]:
idx = 0
else:
idx = 1
# check the first item in the batch
assert linear_input[idx, -1].sum() != 0
assert linear_input[idx, -2].sum() != 0, linear_input
assert mel_input[idx, -1].sum() != 0
assert mel_input[idx, -2].sum() != 0, mel_input
assert stop_target[idx, -1] == 1
assert stop_target[idx, -2] == 0
assert stop_target[idx].sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[idx] == mel_input[idx].shape[0]
assert mel_lengths[idx] == linear_input[idx].shape[0]
# check the second itme in the batch
assert linear_input[1 - idx, -1].sum() == 0
assert mel_input[1 - idx, -1].sum() == 0
assert stop_target[1, mel_lengths[1] - 1] == 1
assert stop_target[1, mel_lengths[1] :].sum() == stop_target.shape[1] - mel_lengths[1]
assert len(mel_lengths.shape) == 1
# check batch zero-frame conditions (zero-frame disabled)
# assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
# assert (mel_input * stop_target.unsqueeze(2)).sum() == 0