TTS/datasets/preprocess.py

70 lines
2.2 KiB
Python

import os
import random
def tts_cache(root_path, meta_file):
"""This format is set for the meta-file generated by extract_features.py"""
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, 'r', encoding='utf8') as f:
for line in f:
cols = line.split('| ')
items.append(cols) # wav_full_path, mel_name, linear_name, wav_len, mel_len, text
random.shuffle(items)
return items
def tweb(root_path, meta_file):
"""Normalize TWEB dataset.
https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset
"""
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, 'r') as ttf:
for line in ttf:
cols = line.split('\t')
wav_file = os.path.join(root_path, cols[0]+'.wav')
text = cols[1]
items.append([text, wav_file])
random.shuffle(items)
return items
# def kusal(root_path, meta_file):
# txt_file = os.path.join(root_path, meta_file)
# texts = []
# wavs = []
# with open(txt_file, "r", encoding="utf8") as f:
# frames = [
# line.split('\t') for line in f
# if line.split('\t')[0] in self.wav_files_dict.keys()
# ]
# # TODO: code the rest
# return {'text': texts, 'wavs': wavs}
def ljspeech(root_path, meta_file):
"""Normalizes the Nancy meta data file to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, 'r') as ttf:
for line in ttf:
cols = line.split('|')
wav_file = os.path.join(root_path, 'wavs', cols[0]+'.wav')
text = cols[1]
items.append([text, wav_file])
random.shuffle(items)
return items
def nancy(root_path, meta_file):
"""Normalizes the Nancy meta data file to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, 'r') as ttf:
for line in ttf:
id = line.split()[1]
text = line[line.find('"')+1:line.rfind('"')-1]
wav_file = root_path + 'wavn/' + id + '.wav'
items.append([text, wav_file])
random.shuffle(items)
return items