TTS/utils/audio.py

125 lines
4.0 KiB
Python

import os
import librosa
import pickle
import numpy as np
from scipy import signal
_mel_basis = None
class AudioProcessor(object):
def __init__(self, sample_rate, num_mels, min_level_db, frame_shift_ms,
frame_length_ms, preemphasis, ref_level_db, num_freq, power,
griffin_lim_iters=None):
self.sample_rate = sample_rate
self.num_mels = num_mels
self.min_level_db = min_level_db
self.frame_shift_ms = frame_shift_ms
self.frame_length_ms = frame_length_ms
self.preemphasis = preemphasis
self.ref_level_db = ref_level_db
self.num_freq = num_freq
self.power = power
self.griffin_lim_iters = griffin_lim_iters
def save_wav(self, wav, path):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
librosa.output.write_wav(path, wav.astype(np.int16), self.sample_rate)
def _linear_to_mel(self, spectrogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = self._build_mel_basis()
return np.dot(_mel_basis, spectrogram)
def _build_mel_basis(self, ):
n_fft = (self.num_freq - 1) * 2
return librosa.filters.mel(self.sample_rate, n_fft, n_mels=self.num_mels)
def _normalize(self, S):
return np.clip((S - self.min_level_db) / -self.min_level_db, 0, 1)
def _denormalize(self, S):
return (np.clip(S, 0, 1) * -self.min_level_db) + self.min_level_db
def _stft_parameters(self, ):
n_fft = (self.num_freq - 1) * 2
hop_length = int(self.frame_shift_ms / 1000 * self.sample_rate)
win_length = int(self.frame_length_ms / 1000 * self.sample_rate)
return n_fft, hop_length, win_length
def _amp_to_db(self, x):
return 20 * np.log10(np.maximum(1e-5, x))
def _db_to_amp(self, x):
return np.power(10.0, x * 0.05)
def apply_preemphasis(self, x):
return signal.lfilter([1, -self.preemphasis], [1], x)
def apply_inv_preemphasis(self, x):
return signal.lfilter([1], [1, -self.preemphasis], x)
def spectrogram(self, y):
D = self._stft(self.apply_preemphasis(y))
S = self._amp_to_db(np.abs(D)) - self.ref_level_db
return self._normalize(S)
def inv_spectrogram(self, spectrogram):
'''Converts spectrogram to waveform using librosa'''
S = self._denormalize(spectrogram)
S = self._db_to_amp(S + self.ref_level_db) # Convert back to linear
# Reconstruct phase
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
def _griffin_lim(self, S):
'''librosa implementation of Griffin-Lim
Based on https://github.com/librosa/librosa/issues/434
'''
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = self._istft(S_complex * angles)
for i in range(self.griffin_lim_iters):
angles = np.exp(1j * np.angle(self._stft(y)))
y = self._istft(S_complex * angles)
return y
def melspectrogram(self, y):
D = self._stft(self.apply_preemphasis(y))
S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db
return self._normalize(S)
def _stft(self, y):
n_fft, hop_length, win_length = self._stft_parameters()
return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
def _istft(self, y):
_, hop_length, win_length = self._stft_parameters()
return librosa.istft(y, hop_length=hop_length, win_length=win_length)
def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
window_length = int(self.sample_rate * min_silence_sec)
hop_length = int(window_length / 4)
threshold = self._db_to_amp(threshold_db)
for x in range(hop_length, len(wav) - window_length, hop_length):
if np.max(wav[x:x + window_length]) < threshold:
return x + hop_length
return len(wav)