mirror of https://github.com/coqui-ai/TTS.git
55 lines
3.2 KiB
JSON
55 lines
3.2 KiB
JSON
{
|
|
"model_name": "TTS-dev-tweb",
|
|
"model_description": "Higher dropout rate for stopnet and disabled custom initialization, pull current mel prediction to stopnet.",
|
|
|
|
"audio":{
|
|
"audio_processor": "audio", // to use dictate different audio processors, if available.
|
|
// Audio processing parameters
|
|
"num_mels": 80, // size of the mel spec frame.
|
|
"num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame.
|
|
"sample_rate": 22050, // wav sample-rate. If different than the original data, it is resampled.
|
|
"frame_length_ms": 50, // stft window length in ms.
|
|
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
|
|
"preemphasis": 0.97, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
|
"min_level_db": -100, // normalization range
|
|
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
|
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
|
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
|
// Normalization parameters
|
|
"signal_norm": true, // normalize the spec values in range [0, 1]
|
|
"symmetric_norm": false, // move normalization to range [-1, 1]
|
|
"max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
|
"clip_norm": true, // clip normalized values into the range.
|
|
"mel_fmin": null, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
|
"mel_fmax": null, // maximum freq level for mel-spec. Tune for dataset!!
|
|
"do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
|
},
|
|
|
|
"embedding_size": 256,
|
|
"text_cleaner": "english_cleaners",
|
|
"epochs": 1000,
|
|
|
|
"lr": 0.001,
|
|
"lr_decay": false,
|
|
"warmup_steps": 4000,
|
|
|
|
"batch_size": 20,
|
|
"eval_batch_size":32,
|
|
"r": 5,
|
|
"wd": 0.000001,
|
|
"checkpoint": true,
|
|
"save_step": 5000,
|
|
"print_step": 10,
|
|
"tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
|
|
|
"run_eval": true,
|
|
"data_path": "../../Data/LJSpeech-1.1/", // can overwritten from command argument
|
|
"meta_file_train": "transcript_train.txt", // metafile for training dataloader.
|
|
"meta_file_val": "transcript_val.txt", // metafile for evaluation dataloader.
|
|
"dataset": "tweb", // one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
|
"min_seq_len": 0, // minimum text length to use in training
|
|
"max_seq_len": 300, // maximum text length
|
|
"output_path": "../keep/", // output path for all training outputs.
|
|
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
|
"num_val_loader_workers": 4 // number of evaluation data loader processes.
|
|
} |